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Abstract

We consider nonparametric identification and estimation of pricing kernels, or equivalently

of marginal utility functions up to scale, in consumption based asset pricing Euler equations.

Ours is the first paper to prove nonparametric identification of Euler equations under low level

conditions (without imposing functional restrictions or just assuming completeness). We also

propose a novel nonparametric estimator based on our identification analysis, which combines

standard kernel estimation with the computation of a matrix eigenvector problem. Our esti-

mator avoids the ill-posed inverse issues associated with existing nonparametric instrumental

variables based Euler equation estimators. We derive limiting distributions for our estimator

and for relevant associated functionals. We provide a Monte Carlo analysis and an empirical

application to US household-level consumption data.
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1 Introduction

The optimal intertemporal decision rule of an economic agent can often be characterized by first-

order condition Euler equations. These equations are fundamental objects that appear in numerous

branches of economics, in particular in the literatures on consumption, on savings and asset pricing,

on labor supply, and on investment. Many empirical studies of dynamic optimization behaviors rely

on the estimation of Euler equations. One of the original motivations of the generalized method

of moments (GMM) estimator proposed by Hansen and Singleton (1982) was estimation of rational

expectations based Euler equations associated with consumption based asset pricing models. In this

paper we study the nonparametric identification and estimation of such Euler equations.

To fix ideas, consider a familiar consumption based asset pricing Euler equation (e.g. Cochrane

2001)

bE[g(Ct+1, Vt+1)Rt+1 | Ct, Vt] = g(Ct, Vt), almost surely (a.s.) (1)

where b is the subjective discount factor, Ct is consumption at time t, Vt is a vector of other economic

variables such as durables or lagged consumption (for habits) that might a§ect utility, Rt is the gross

return of an asset, and g is the time homogeneous marginal utility function of consumption. Equation

(1) is the first order condition that equates in real terms the marginal cost of an extra unit of the

asset, purchased today, to the expected marginal benefit of the extra payo§ received tomorrow.1

Our work is the first to establish nonparametric point identification of the marginal utility function

g, or equivalently of the pricing kernel function M (see below), under low level assumptions.2 We

also provide a novel nonparametric estimator based on this identification analysis, which combines

standard kernel estimation with the computation of a matrix eigenvector problem. Our estimator

overcomes the ill-posed inverse problem that a§ects existing nonparametric instrumental variables

based estimators.

We take the primitives of the Euler equation to be the marginal utility function g, defined up to

an arbitrary sign and scale normalization, and the discount factor b. The (nonparametric) identified

set for the Euler equation is defined to be the set of all (g, b) 2 Θ ≡ G×(0, 1), for a suitable parameter

space G, that satisfy equation (1), given the true joint distribution of the data (see Tamer 2010 for a

review of set identification definitions). A model is defined to be globally identified if the identified

set only consists of one element.

In this paper we first show that the Euler equation is partially identified, with a finite identified

1For a formal derivation of this Euler equation, with internal or external habits, see the Appendix.
2This paper is a merged revision of two earlier working papers: Lewbel, Linton and Srisuma (2011) and Escanciano

and Hoderlein (2012). Some recent papers by others that establish related identification results cite these earlier

versions of our paper as prior knowledge. See the next section for details.
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set for the discount factor and an identified set for marginal utilities that is the union of finite

dimensional spaces. This implies that the discount factor is also locally identified (in the sense

of Fisher 1966, Rothenberg 1971 and Sargan 1983), meaning that b is nonparametrically identified

within a parameter space that equals a neighborhood of the true value. We then show that if the

class of utility functions is restricted to be monotone, which is a natural economic restriction, then

the Euler equation model is, nonparametrically, globally point identified.

Having established identification, we next propose a novel nonparametric kernel estimator for

the marginal utility function and discount factor based on our identification arguments. We pro-

vide asymptotic distribution theory for the discount factor, the marginal utility function, and for

semiparametric functionals of the marginal utility function such as the Mean Relative Risk Aver-

sion (MRRA) parameter defined below. We illustrate the applicability of our methods with US

household-level data from the Consumer Expenditure Survey (CEX).

In the empirical asset pricing literature, the Euler equation (1) is traditionally written as

E [Mt+1Rt+1 | Ct, Vt] ≡ E
[
b
g(Ct+1, Vt+1)

g(Ct, Vt)
Rt+1 | Ct, Vt

]
= 1,

where Mt+1 = bg(Ct+1, Vt+1)/g(Ct, Vt) is the time t+ 1 pricing kernel or Stochastic Discount Factor

(SDF). Then, the pricing equation for asset R can be cast in the form of excess returns

E [Mt+1 (Rt+1 −R0t+1) | Ct, Vt] ≡ E
[
b
g(Ct+1, Vt+1)

g(Ct, Vt)
(Rt+1 −R0t+1) | Ct, Vt

]
= 0, (2)

whereR0t denotes the return from the risk-free asset. Equation (2) is a conditional moment restriction

that forms the basis of moments based estimation. In a parametric model, g (and hence Mt) is

assumed known up to finite-dimensional parameters; prominent examples include Hall (1978), Hansen

and Singleton (1982), Dunn and Singleton (1986), and Campbell and Cochrane (1999), among many

others. Euler equations have also been specified semiparametrically, e.g., Chen and Ludvigson (2009)

and Chen, Chernozhukov, Lee and Newey (2014).

Nonparametric estimators of equation (2) and similar models (taking the form of nonparametric

instrumental variables models) have been proposed, by, e.g., Gallant and Tauchen (1989), Chapman

(1997), Newey and Powell (2003), Ai and Chen (2003) and Darolles, Fan, Florens, and Renault

(2011). However, in these applications identification is assumed rather than proved, by way of high

level completeness assumptions. These models have the structure of Fredholm equations of the

first kind (also called Type I equations). Solving these types of equations involves ill-posed inverse

problems that can be severe, and as a result, nonparametric estimators of M based on (2) can have

very slow convergence rates and possibly unstable inference.

In contrast, we start by writing the pricing kernel problem in the form of equation (1) instead

of equation (2), thereby estimating g instead of M . The advantage is that equation (1) takes the
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form of a Fredholm linear equation of the second kind (or Type II equation). As a result, unlike

equation (2), the solution of equation (1) has a well-posed generalized inverse, leading to much better

asymptotic properties for inference. In particular, in solving equation (1), a candidate discount factor

b and associated marginal utility function g is characterized as an eigenvalue-eigenfunction pair of

a certain conditional mean operator. Under the mild assumption that this operator is compact, a

classical result (see e.g. Kress (1999)) ensures that the number of eigenvalues is countable. The

behavioral restriction that b < 1 reduces this set to a finite number of pairs, leading to our finite set

identification result and hence to local identification for the discount factor. To obtain global point

identification of b and g, we impose the additional behavioral restriction that utility is increasing

in consumption, which implies that the function g is positive. Applying an infinite-dimensional

extension of the Perron-Frobenius theorem (see Krĕın and Rutman 1950) yields uniqueness of a

positive eigenvalue-eigenfunction pair, which then provides nonparametric point identification.

Following this identification argument, we propose a new nonparametric estimator for the mar-

ginal utility function g and discount factor b. The estimator is based on standard kernel estimation of

a sample analogue of (1), which with finite data replaces the problem of solving for an eigenfunction

with the simpler problem of solving for a standard finite-dimensional matrix eigenvector. No nu-

merical integration or optimization is required, making the estimator straightforward to implement

(and numerically practical to bootstrap). We establish our estimator’s limiting distribution under

standard conditions, which are simpler than those associated with estimators that solve related ill-

posed inverse problems, such as nonparametric instrumental variables. Our expansions show that,

in contrast to nonparametric problems leading to Type-I equations, nonparametric inference on g

in our Type-II equation is to a large extent equivalent to inference on a standard conditional mean

function, and in particular has comparable rates of convergence to ordinary nonparametric regres-

sion. Although our assumptions are standard, both our identification and asymptotic theory entail

machinery that is novel in the econometrics literature, applying an infinite-dimensional extension of

Perron-Frobenius theory to a type II Fredholm equation (see the next section for details comparing

our results to the literature).

In addition to the pricing kernel Mt+1, another functional of the marginal utility function g that

is of interest to estimate is the Arrow-Pratt coe¢cient of Relative Risk Aversion, and its mean value,

RRA and MRRA, given respectively by

RRA(c, v) =
−c@g(c, v)/@c

g(c, v)
and MRRA = E [RRA(Ct, Vt)] .

We illustrate the applicability of our asymptotic results by establishing asymptotic normality of a

nonparametric estimator of the MRRA. Given our estimates of g(c, v), we also provide tests of

whether g is independent of v, thereby testing whether lagged consumption (or any other potential
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covariates v such as durables consumption) a§ects the pricing kernel. These tests are based on

semiparametric functionals of g, which are asymptotically normal under the same type of regularity

conditions we use to establish asymptotics for the MRRA.

One of the main motivations for estimating marginal utility nonparametrically is to look for

evidence on whether common parametric or semiparametric alternatives are correctly specified, or

whether there is some feature of the data that parametric models may have missed. In our empir-

ical application, we compare our nonparametric estimates to the common Constant Relative Risk

Aversion (CRRA) specification of utility, and find evidence against the CRRA specification. More

generally, we find evidence that theMRRA is not constant, and thereby reject semiparametric mod-

els like that of Chen and Ludvigson (2009) and Chen, Chernozhukov, Lee and Newey (2014), which

assume that RRA is constant (note, though, that they estimate their model with aggregate time

series data while we use individual consumer level data). We also find some, albeit weaker, evidence

that habits (lagged consumption) may a§ect utility in more complicated ways than previous models

in the literature assume.

The rest of the paper is organized as follows. After a literature review in Section 2, we provide

su¢cient conditions for partial identification and point identification in Section 3. We propose

our kernel-type estimator in Section 4, and we investigate its asymptotic properties in Section 5. In

Section 6 we describe how our asymptotic theory applies to functionals of g, and give some examples.

We report the results of a Monte Carlo experiment in Section 7. In Section 8, we apply our results

to US household level consumption data. Section 9 concludes. An Appendix contains the derivation

of the Euler equation, as well as mathematical proofs of the main results.

2 Literature Review

The forerunners of our research are the papers by Gallant and Tauchen (1989) and Chapman (1997),

who estimate nonparametrically the marginal utilities and the pricing kernel, respectively, from the

Euler equation by sieves, using the moment restriction (2) (i.e. using a Type I Fredholm equation).

These papers did not investigate identification, nor impose the positivity of marginal utilities, and

the asymptotic properties of their nonparametric estimators were not established.

Nonparametric instrumental variables is a leading example of estimation based on a Type I Fred-

holm equation, yielding associated ill-posed inverse problems on estimation. Newey and Powell (2003)

note that assuming statistical completeness (a high level assumption) is essentially the same as just

assuming identification of this type of model. Other related examples of nonparametric and semi-

parametric ill-posed inverse estimation problems include Carrasco and Florens (2000), Ai and Chen

(2003), Hall and Horowitz (2005), Chen and Pouzo (2009), Chen and Reiss (2010), Darolles, Fan,
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Florens and Renault (2011) and, more recently, Cai, Ren and Sun (2015). A particularly relevant

example is Chen and Ludvigson (2009), who studied identification and estimation of a semiparamet-

ric specification of the Type-I equation (2). Their model assumes g has the semiparametric form

g(Ct, Vt) = Cη
t h (Vt) (here η is a constant that determines risk aversion), where h is an unknown

function of current and lagged values of Ct/Ct−1 representing habits. Virtually all parametric esti-

mators of the asset pricing model, going back to Hansen and Singleton (1982) and including Dunn

and Singleton (1986), and Campbell and Cochrane (1999), use the form of equation (2) rather than

equation (1).

Many parametric rational expectations models that focus on utility or production rather than

asset pricing do estimation in the form of equation (1). Early examples include Hall (1978) and

Mankiw (1982) (though see Lewbel 1987 for a critique). This earlier work does not appear to

recognize the theoretical integral equation advantages of casting the model in the form of equation

(1). Anatolyev (1999) recognizes that this form is a Type II Fredholm equation and provides a

numerical method for estimating Euler equations that makes use of this structure, but he does not

consider identification or inference. We believe our paper is the first to make explicit use of this

Type II Fredholm structure for identification and inference. An and Hu (2012) exploit the nature

of a type II Fredholm equation to identify and estimate a measurement error rather than an Euler

equation model, but they cite our working paper as prior knowledge.

Our proof of global identification makes use of extensions of the classical Perron-Frobenius the-

orem that positive matrices have a unique positive eigenvalue that corresponds to a unique positive

eigenvector. In particular, we apply a theorem of Krĕın and Rutman (1950), which extends Perron-

Frobenius to compact operators in Banach spaces. See, e.g., Schaefer (1974) and Abramovich and

Aliprantis (2002) for details regarding this theory.

Versions of Perron-Frobenius have been used before in Euler equation models, though we believe

we are the first to use this machinery of infinite-dimensional Perron-Frobenius theory for nonpara-

metric identification and inference of Euler equations. There is, however, some closely related work.

Ross (2015) applies the classical finite-dimensional Perron-Frobenius theorem to identify the pricing

kernel and the natural probability distribution from state prices. Starting from the ill-posed inverse

form of equation (2), Hansen and Scheinkman (2009, 2012, 2013) consider a di§erent problem of

identification than ours in a continuous-time setting, using Markov theory and extensions of the

classical Perron-Frobenius theorem. In our notation, they give conditions for identification of the

positive eigenfunction and eigenvalue of the operator φ ! E[Mt+1φ(Ct+1, Vt+1) | Ct, Vt], assuming

that the SDF Mt+1 is known. In contrast, we solve the also fundamental problem of showing that

Mt+1 itself is identified, by obtaining identification of b and g. Christensen (2014, 2015) applies

identification results, based in part on our earlier working papers, to a discrete version of Hansen

6



and Scheinkman (2009).

Perhaps the closest work to ours is Chen, Chernozhukov, Lee and Newey (2014). Although their

paper mainly concerns local nonparametric identification, in their Euler equation application they

consider a semiparametric rather than a nonparametric model like ours. Specifically, their model is

the same functional form as Chen and Ludvigson (2009) described above, but allowing for a more

general conditioning set. They cite the working paper versions of our paper as prior knowledge,

making similar use both of well-posedness and of extended Perron-Frobenius theory. Their general

theory imposes restrictions on the marginal utility. These restrictions assume a semiparametric

CRRA functional form, that is, their model assumes the RRA is both constant and identified, and

given that assumption, they identify the role of habits. In contrast, our resuls including proving

that both the role of habits and the RRA (whether constant or not) are both nonparametrically

identified, and we provide inference tools to test if the RRA constant.

An alternative to our kernel based estimation would be the use of sieves. Nonparametric sieve

estimation of eigenvalue-eigenvector problems for self-adjoint operators is extensively discussed in

Chen, Hansen and Sheinkman (2000, 2009), Darolles, Florens and Gouriéroux (2004) and Carrasco,

Florens and Renault (2007), among others. However, their results cannot be applied to our model,

since in our case the associated operator is not self-adjoint. Christensen (2014) (who cites our earlier

working paper version) proposes a nonparametric sieve estimator for the discrete Markov setting

of Hansen and Scheinkman (2009), establishing asymptotic normality of the eigenvalue estimate

and smooth functionals of it. See also Gobet, Ho§mann and Reiss (2004) for sieve estimation of

eigenelements in di§usion models. As noted earlier, sieve estimation has more directly been applied

to nonparametric and semiparametric versions of equation (2) going back to Gallant and Tauchen

(1989). In comparison, our kernel based estimator has numerous advantages as summarized in the

previous section, mainly attributable to our method of exploiting well-posedness of equation (1).

Our empirical application uses household level consumption data, and in particular considers

the possible presence and role of habits, that is, lagged consumption. A large literature focuses on

individual level consumption smoothing implied by equation (1), and potential sources of violations

of the model, even after controlling for durables or habits. Example of possible violations include

liquidity constraints and precautionary savings (see, e.g., Deaton 1992 and references therein) and

the so-called consumption retirement puzzle (see, e.g., Banks, Blundell, and Tanner 1998). Also

relevant is the implied impact of this model on consumption distributions. See, e.g., Deaton and

Paxson (1994), Lewbel (1994), and Battistin, Blundell, and Lewbel (2009). Within these literatures,

of particular relevance for our empirical application are earlier studies on individual heterogeneity

of risk aversion in consumption choice, and the role of habits. For a recent summary see Gayle and

Khorunzhina (2014) and references therein. Virtually all of this literature imposes parametric or
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strong semiparametric restrictions on g, and so, like the earlier aggregate consumption models of

Hall (1978), Mankiw (1982), Hansen and Singleton (1982), or Campbell and Cochrane (1999), does

not exploit the theoretical advantages of having equation (1) be type II Fredholm.

3 Identification

Since our goal is the study of Euler equations, we shall take as primitives the pair (g, b) 2 Θ ≡

G × (0, 1), where G denotes the parameter space of marginal utility functions, which satisfies some

conditions below. From equation (1) it is clear that, for a given b, the Euler equation cannot

distinguish between g and g0 if there exists some constant k0 2 R such that g = k0g0 a.s., so a scale

and a sign normalization must be made. For the moment we shall assume there is just one asset, and

we denote its rate of return by Rt. We later discuss how information from multiple assets can be

used to aid identification. As seen in the previous section, for each period t, Ct is consumption and

Vt is (possibly a vector of) other economic variable(s).

Let S ⊆ R` denote the support of (Ct, Vt). Let (S, µ) be a σ-finite measure space, and let L2 denote

the Hilbert space L2(S, µ) of (equivalence classes of) square µ-integrable functions equipped with the

inner product hg, fi =
R
gfdµ and the corresponding norm kgk2 = hg, gi (we drop the domain

of integration for simplicity of exposition). Our identification and estimation results are valid for

a generic µ, as long as some conditions below are satisfied, but for concreteness and simplicity of

implementation, we choose as µ the probability measure of (Ct, Vt) for estimation purposes.

LetM be a linear subspace of L2, and define the linear operator A : (M, k·k)! (M, k·k) given

by

Ag(c, v) = E[g(Ct+1, Vt+1)Rt+1 | Ct = c, Vt = v]. (3)

The spaceM is chosen so that Ag is well-defined and Ag 2M for g 2M. The requirementM ⊂ L2

can be relaxed (see Escanciano and Hoderlein, 2012, Section 4) but it is made here for simplicity, and

is unlikely to be violated in empirical application. We provide below an example ofM for which our

conditions are easily verifiable. With our notation, (1) can be written in a compact form as bAg = g.

The parameter space for g, G, will be a subset of M incorporating normalization restrictions. We

introduce the assumption of correct specification and a formal definition of identification.

Assumption S. There exists (g, b) 2 Θ ≡ G × (0, 1), g 6= 0, satisfying equation (1).

Definition 1. Given the joint distribution of (Rt+1, Ct+1, Vt+1, Ct, Vt), the Euler equation is non-

parametrically identified if there is a unique (g, b) 2 Θ that satisfies equation (1). When the

solution is unique we denoted it by θ0 ≡ (g0, b0).
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Definition 2. Given the joint distribution of (Rt+1, Ct+1, Vt+1, Ct, Vt), the identified set, denoted

by Θ0, consists of elements in Θ where each (g, b) 2 Θ0 satisfies equation (1). The sets B0 = {b 2

(0, 1) : there is g 2 G such that (g, b) 2 Θ0} and G0 = {g 2 G : there is b 2 (0, 1) such that

(g, b) 2 Θ0} are, respectively, the identified sets for b and g.

Therefore the Euler equation is point identified, if Θ0 is a singleton. To provide some insights on

our identification and estimation strategies we consider first the case where A in (3) has a finite-

dimensional range. In what follows let R(·) denote the range of an operator, so that R(A) = {f 2

M : 9g 2M, Ag = f}. In this case, we can write

Ag (·) =
IX

i=1

Li(g)φi(·), (4)

for a set of functions {φi} that span R(A) and linear operators Li(g), i = 1, . . . , I. This case arises,

for example, when the support S is discrete and finite. Under (4), any potential solution of (1) has

to have necessarily the form g (·) =
PI

i=1 βiφi(·) for a vector β = (β1, . . . , βI) satisfying the Euler

equation
IX

i=1

IX

j=1

Li(φj)βjφi(c, v) = b
−1

IX

i=1

βiφi(c, v).

In turn, this is the case for the solution, provided it exists, of

IX

j=1

βjLi(φj) = b
−1βi 1 ≤ i ≤ I.

Therefore, β, i.e. g, and b−1 are identified as any eigenelement of the I × I matrix (Li(φj))i,j, with

b 2 (0, 1). In general, we may have more than one such eigenelement, i.e., we may have partial

identification. In any case, the number of eigenvectors β and eigenvalues is bounded by I, so we have

a finite identified set.

The previous arguments extend to the general case replacing the finite-dimensionality of R(A)

by the compactness of A. A linear operator A is compact if it transforms bounded sets into relatively

compact sets (relatively compact sets inM are those whose closure its compact). The compactness

assumption is not needed just for identification, but is useful for obtaining asymptotics of continuous

functionals of g. Note, however, that compactness rules out the caseM = L2 if there are overlapping

elements in (Ct+1, Vt+1) and (Ct, Vt); see Carrasco, Florens and Renault (2007, Example 2.5, pg. 22).

We could deal with the lack of compactness of A on the whole L2 by conditioning on (i.e. fixing)

the overlapping components (see e.g. Blundell, Chen and Kristensen, 2007, pg. 1629). From the

identification point of view there is little loss of generality by following this “conditioning” approach,

however, for deriving asymptotics compactness is very convenient, since it guarantees that inference

9



will be based on well-posed generalized inverses (see the discussion at the end of this section). Lemma

1 in Section 5 below provides su¢cient lower level conditions for compactness of A, but for now we

maintain compactness as a high level assumption.

Assumption C. A : (M, k·k)! (M, k·k) is a compact operator .

Let G = {g 2M : kgk = 1, g(c0, v0) > 0, (c0, v0) 2 S} be the parameter space for g.

Theorem 1. Suppose that Assumptions S and C hold. Then, B0 is a finite set and G0 is the union

of finite dimensional subsets.

Theorem 1 shows that the Euler equation is partially identified, with b identified up to a finite

set corresponding to eigenvalues, and g is identified up to a corresponding set of eigenfunctions. The

discount factor b is also locally identified, meaning that for any b 2 B0 there is an open neighborhood

of b that does not contain any other element in B0. Essentially, compactness of A ensures that B0 is

at most countable, and the economic restriction that discount factors lie in (0, 1) ensures that B0 is

finite.

The identified set without additional economic restrictions can be further reduced if there are

multiple assets. If there are J assets, then there are J Euler equations. Applying Theorem 1

to each asset, gives an identified set for each, and the true (g, b) must lie in the intersection of

these identified sets. One might further shrink the identified set by imposing the restriction that

bg(Ct+1, Vt+1)Rt+1 − g(Ct, Vt) is uncorrelated with all variables in the information set at time t, not

just (Ct, Vt).

Assumptions S and C do not su¢ce for point identification in general. We consider now a

shape restriction on marginal utilities, which is a common behavioral assumption that is satisfied

for common parametric specifications of utility. Specifically, we impose the assumption that that

marginal utilities are positive. Let

P ≡ {g 2M : g ≥ 0 µ− a.s.} (5)

denote the subset of nonnegative functions inM, and let P+ ≡ {g 2M : g > 0 µ−a.s.} denote the

subset of strictly positive functions, which is assumed to be non-empty. The assumption is then:

Assumption I. Ag 2 P+ when g 2 P and g 6= 0.

Assumption I is a mild condition that extends the classical assumption of a positive matrix in the

Perron-Frobenius theorem to an infinite-dimensional setting, see Abramovich and Aliprantis (2002,

Chapter 9) and Schaefer (1974). A su¢cient and mild condition for it is that the conditional expected
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(gross) return is strictly positive, i.e. E [Rt+1|Ct+1 = ·, Vt+1 = ·, Ct = ·, Vt = ·] > 0 a.s. With our

shape and normalization restrictions the parameter space is G = {g 2 P : kgk = 1}.

Theorem 2. Let Assumptions S, C and I hold. Then, (g, b) 2 G × (0, 1) is point identified.

Identification can be established under weaker conditions than those of Theorem 2, however, we

do not pursue these conditions here because the stronger conditions of Theorem 2 will facilitate our

later asymptotic inference results. These weaker conditions are evident from our proof of Theorem

2, which also shows that b = 1/ρ (A) , where ρ (A) is the spectral radius of A (see the Appendix for a

definition of the spectral radius of a linear bounded operator). Following Escanciano and Hoderlein

(2012) a key su¢cient condition for identification of g is that A is irreducible; see Abramovich and

Aliprantis (2002, Chapter 9) for a definition of irreducibility in a general setting. Assumption I

is a su¢cient but not necessary condition for irreducibility (cf. Abramovich and Aliprantis, 2002,

Theorem 9.6).

We could consider other su¢cient conditions that replace conditions on A by conditions on a

power of A, i.e. we could require that Assumptions C and I hold for An, for some n ≥ 1. It is

hard to interpret these conditions, however, in a possibly non-Markovian environment, so we do not

pursue them here. The identification result in Theorem 2 suggests It is also likely that the Euler

Equation is overidentified under the conditions of Theorem 2, since as noted earlier we could exploit

additional information coming from multiple assets, or from uncorrelatedness with other data in the

information set at time t.

We close our study of identification with a discussion on the degree of ill-posedness of our non-

parametric problem. Assumption S implies that the operator L = bA − I is not one-to-one, as the

marginal utility g satisfies Lg = 0, and g 6= 0. Therefore, solving the Euler equation (1) is an ill-

posed problem (see e.g. Carrasco, Florens and Renault 2007, Section 7). However, even though our

problem is ill-posed, unlike in ill-posed Type-I equations, the ill-posedness in our Type-II equation is

moderate, with stable solutions. Formally, the operator L, although not invertible, has a continuous

(i.e. bounded) Moore-Penrose pseudoinverse, which is denoted by L†; (see Engl, Hanke and Neubauer

1996, p. 33). To see this, note that the compactness of A and the Second Riesz Theorem, see e.g.

Theorem 3.2 in Kress (1999, p. 29), imply that the range of L, R(L) = {f 2 L2 : 9s 2 L2, Ls = f},

is closed. This in turn implies that L† is a continuous operator by Proposition 2.4 in Engl et al.

(1996). It is in this precise sense that our problem leads to well-posed rather than ill-posed general-

ized inverses. This property of our nonparametric problem, which results from considering Type-II

equations rather than Type-I equations, has important implications for inference. For example, in

the next sections we obtain rates of convergence for estimation of g that are the same as those of

ordinary nonparametric regression.
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4 Estimation from Individual level-data

Our estimation strategy follows the identification strategy described above, and is also motivated

from our empirical application below. For estimation we assume that we have a random sample

of household-level data {(Rti+1, Cti+1,i, Vti+1,i, Cti,i, Vti,i)}ni=1 for n households, with possibly over-

lapping non-decreasing time periods t1 ≤ t2 ≤ · · · ≤ tn. To simplify notation denote Wi =

(R0i, C
0
i, V

0
i , Ci, Vi) ≡ (Rti+1, Cti+1,i, Vti+1,i, Cti,i, Vti,i) , where Vi = (V1i, . . . , V`1i) and V 0i = (V 01i, . . . , V 0`1i)

with ` = `1 + 1. We assume the data, {Wi}ni=1, are independent and identically distributed (iid),

generated with respect to an underlying parameter θ0 ≡ (g0, b0) 2 Θ. We shall henceforth as-

sume that Assumptions S, C and I hold, so that θ0 is point-identified. Particularly, we consider

g0 2 G = {g 2 P : kgk = 1}.

Let the vectorW = (R0, C 0, V 0, C, V ) have the same distribution as (R0i, C
0
i, V

0
i , Ci, Vi). We assume

that the vector W is continuously distributed (the discrete case is simpler). We denote the Lebesgue

density of (C, V ) by f . We consider the setting described in the identification section where µ is

the joint probability associated to f. Henceforth, g and b denote generic elements in G and (0, 1),

respectively.

Define the Nadaraya-Watson (NW) kernel estimator of the operator A at g as follows,

bAg (c, v) = 1

n

nX

i=1

g0iR
0
iφi(c, v),

where, for i = 1, . . . , n, g0i ≡ g (C 0i, V 0i ) , φi(c, v) = Khi (c, v) / bf (c, v) , while for v = (v1, . . . , v`1),

bf (c, v) = 1

n

nX

i=1

Khi (c, v) ,

and

Khi (c, v) = h
−` K

(
c− Ci
h

) `1Y

j=1

K

(
vj − Vji
h

)
.

Here, K is a univariate kernel function and h ≡ hn is a possibly stochastic bandwidth. Note that

contrary to A, the operator bA has a finite-dimensional closed range (that is spanned by the functions
φi(c, v), i = 1, . . . , n). Therefore, similar to our discussion of identification in Section 3, the number of

eigenvalues and eigenfunctions of bA is finite and bounded by n, and they can be computed by solving
a linear system. Indeed, any eigenfunction bg(c, v) of bA necessarily has the form n−1

Pn
i=1
bβiφi(c, v),

for some coe¢cients bβi, i = 1, . . . , n, satisfying for its corresponding eigenvalue bλ the equation

1

n2

nX

i=1

nX

j=1

bβjφj(C 0i, V 0i )R0iφi(c, v) = bλ
1

n

nX

i=1

bβiφi(c, v).

12



A solution to this eigenvalue problem exists if, for all i = 1, . . . , n,

1

n

nX

j=1

bβjφj(C 0i, V 0i )R0i = bλbβi,

which in matrix notation can be written as

bAnbβ = bλbβ,

where bAn is an n× n matrix with ij-th element aij = φj(C
0
i, V

0
i )R

0
i/n, and bβ = (bβ1, . . . , bβn)| (hence-

forth, v| denotes the transpose of v). Thus, let bλ denote the largest eigenvalue in modulus of bAn and
bβ = (bβ1, . . . , bβn)| its corresponding eigenvector. The eigenvector bβ is normalized so that bβ

|bΩbβ = 1,
where bΩ is the n× n matrix with entries

!ij =
1

n3

nX

l=1

φi(Cl, Vl)φj(Cl, Vl),

and n−1
Pn

i=1
bβiφi(c0, v0) > 0, for some (c0, v0) 2 S.We define the estimators for b0 and g0 respectively

as follows,

b̂ = 1/bλ and bg (c, v) = n−1
nX

i=1

bβiφi(c, v), (6)

where bg satisfies kbgkn = 1 by the normalization of bβ above, with kgkn denoting the empirical norm
of g, i.e. kgk2n =

Pn
i=1 g

2(Ci, Vi)/n. The estimator (bg, b̂) can be easily obtained with any statistical
package that computes eigenvalues and eigenvectors of matrices. There are also e¢cient algorithms

for the computation of the so-called Perron-Frobenius root bλ, see e.g. Chanchana (2007).
Notice that under very mild conditions the matrix bAn itself satisfies the classic conditions of the

Perron-Frobenius theorem, which guarantees that b̂ = ρ−1( bAn) and bβ is the only eigenvector of bAn
with positive entries. That is, in this case we also have identification in finite samples. For example,

for strictly positive kernels and strictly positive gross returns, bAn has strictly positive entries, which
then implies a positive estimator bg (c, v) > 0 and a positive discount factor b̂ with probability one

for a fixed n ≥ 1.

5 Asymptotic Theory

In this section we provide conditions for the consistency and limiting distribution theory of our

estimators as defined in the previous section, under a random sampling framework.3 We need to

3We consider the random sampling iid framework to be a good approximation for our household-level data. The

proofs in the Appendix could be straightforwardly adapted to allow for weakly dependent data using the uniform rate

results of Andrews (1995).
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introduce some notation from empirical processes theory. To measure the complexity of the class G,

we can employ covering or bracketing numbers. Here, for simplicity, we focus on bracketing numbers.

Given two functions l, u, a bracket [l, u] is the set of functions f 2 G such that l ≤ f ≤ u. An "-

bracket with respect to k·k is a bracket [l, u] with kl − uk ≤ ", klk < 1 and kuk < 1 (note that

u and l not need to be in G). The covering number with bracketing N[·](",G, k·k) is the minimal

number of "-brackets with respect to k·k needed to cover G. An envelope for G is a function G,

such that G(c, v) ≥ supg2G |g(c, v)| for all (c, v). To simplify notation, we use the following definition.

Denote by K(r) the class of r-order kernels K that are Lipschitz continuous on the support [−1, 1] ,

symmetric, integrate to one, and such that for some r ≥ 2:
R
ulK (u) du = δl0 for l = 0, . . . , r − 1,

where δll0 denotes Kronecker’s delta, and
R
urK (u) du > 0.

Assumption A1:

1. P (hbg, g0i > 0)! 1 as n!1.

2. For each " > 0, logN[·](",M, k·k) ≤ C"−v for some v < 2. The class G is such that g0 2 G and

has an envelope G such that sup(c,v)2S E[|G(C 0, V 0)R0|
δ |C = c, V = v] < 1 for some δ > 2.

Functions in R (A) are uniformly equicontinuous on S.4

3. There exists a convex and compact subset T contained in the interior of S, such that

P ((C 0, V 0) 2 T |(C, V ) 2 T ) = 1. The density function f (·) is bounded away from zero on

T and is continuous on S.

4. K 2 K(2).

5. As n ! 1, the possibly stochastic bandwidth h ≡ hn satisfies P (ln ≤ hn ≤ un) ! 1 for

deterministic sequences of positive numbers ln and un such that: un ! 0 and lδ`/(δ−2)n n/ log n!

1.

Condition A1.1 is a suitable sign normalization condition in our L2-setting. This is a mild

condition which is guaranteed to hold if, for instance, the kernel and the gross returns are strictly

positive, since then bg and g0 are strictly positive.
Condition A1.2 requires existence of certain moments. Marginal utilities may not have finite

moments around zero (where they may diverge). To overcome this problem, by suitable redefinition

4That is,

lim
δ!0

sup
|(c,v)−(c0,v0)|<δ

sup
g2M

kE[g(C 0, V 0)R0|C = c, V = v]− E[g(C 0, V 0)R0|C = c0, V = v0]k = 0.
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of g we can rewrite equation (1) in the form

bE[C 0g(C 0, V 0) (C/C 0)R0 | C, V ] = Cg(C, V ). (7)

This reparameterizes the problem in terms of Cg(C, V ), which under natural economic assumptions

is bounded; see Lucas (1978). This identity also gives an alternative way to estimate the marginal

utility function and other objects of interest, which we shall discuss further below. Examples of

classes satisfying A1.2 abound in the literature; see van der Vaart and Wellner (1996). For example,

we could takeM as the following smooth class: For any vector a of ` integers define the di§erential

operator @ax ≡ @|a|1/@xa11 . . . @x
a`
` , where |a|1 ≡

P`
i=1 ai. For any smooth function h : T ⊂ R` ! R

and some η > 0, let η be the largest integer smaller or equal than η, and

khk1,η ≡ max
|a|1≤η

sup
x2T

|@axh(x)|+ max
|a|1=η

sup
x 6=x0

|@axh(x)− @axh(x
0)|

|x− x0|η−η
.

Further, let CηM(T ) be the set of all continuous functions h : T ⊂ R` ! R with khk1,η ≤ M

(for an integer η, the η-th derivative is assumed to be continuous). Since the constant M is ir-

relevant for our results, we drop the dependence on M and denote Cη(T ). Then, it is known that

logN[·](", Cη(T ), k·k) ≤ C"−vs , vs = `/η, so if M ⊂ Cη(T ), then ` < 2η su¢ces for the bracketing

condition in A1.2. We also have that M ⊂ L2 here. With some smoothness conditions on the

density of W , R (A) ⊂M holds withM = Cη(T ). Condition A1.2 is used here to control the term

supg2G || bAg − Ag|| and also to guarantee that A is compact, as the following result shows.

Lemma 1. Suppose that Assumption A1.2 holds. Then A is compact .

Under Assumption A1 we can write (a.s.)

bE[g(C 0, V 0)1((C 0, V 0) 2 T )1((C, V ) 2 T )R0 | C, V ] = g(C, V )1((C, V ) 2 T ),

and hence, we can restrict the domain of g to T. We therefore, hereafter restrict the support of µ to

T (and thus, of the associated norm k·k). The assumption of densities bounded away from zero is

standard in the nonparametric and semiparametric literatures, though it could be relaxed here at the

cost of longer proofs by introducing a vanishing random trimming parameter. See e.g. Escanciano,

Jacho-Chavez and Lewbel (2014).

The remaining conditions in Assumption A1 are self-explanatory. For A1.4 we can also use kernels

with unbounded support that satisfy some smoothness and integrability conditions. Finally, note

that A1.5 allows for data-driven bandwidth choices, which are common in applied work. Our next

result shows the L2-consistency of our estimators.

Theorem 3. Let Assumptions S, C, I and A1 hold. Then, b̂!p b0 and kbg − g0k !p 0.
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To obtain asymptotic distribution theory for our estimators, we impose the following additional

assumptions and notation. Simple algebra shows that the adjoint operator of A, that is, the linear

compact operator A∗ such that hAg1, g2i = hg1, A∗g2i for all g1, g2 2 M, is given by A∗'(c0, v0) =

E [' (C, V )R0|C 0 = c0, V 0 = v0] × f 0(c0, v0)/f(c0, v0), where f 0(c0, v0) denotes the Lebesgue density of

(C 0i, V
0
i ). To see this, note that by the Law of Iterated Expectations, for any g1, g2 2M,

hAg1, g2i = E [E [g1 (C
0
i, V

0
i )R

0
i|Ci, Vi] g2 (Ci, Vi)]

= E [g1 (C
0
i, V

0
i ) g2 (Ci, Vi)R

0
i]

= E [g1 (C
0
i, V

0
i )E [g2 (Ci, Vi)R

0
i|C

0
i, V

0
i ]]

= hg1, A∗g2i .

Note that b−10 is also an eigenvalue for A∗; eigenvalues of A∗ are complex conjugates of those of A.

Similarly as we did for g0, it can be shown that under Assumption A1 there exists a unique (up to

scale) strictly positive eigenfunction of A∗ associated to b−10 .

Definition 3. Let s be the unique strictly positive eigenfunction of A∗ with eigenvalue b−10 and

satisfying the normalization hg0, si = 1.

The function s plays an important role in the asymptotics for b̂ and bg, as does the error term

"i = g0 (C
0
i, V

0
i )R

0
i − b

−1
0 g0 (Ci, Vi) , i = 1, . . . , n. (8)

Henceforth, to simplify notation, define 'i = ' (Ci, Vi) for any ' 2 L2. For asymptotic normality of

our estimators we require the following assumption.

Assumption A2.

1. f 2 Cr(T ), where r as in A2.4 below.

2. Functions in R (A) are in Cr(T ) with uniformly equicontinuous r − th derivative on T.

3. s 2 Cr(T ) and Σs ≡ E [s2i "2i ] <1.

4. K 2 K(r), for r ≥ 2.

5. For ln and un satisfying A1.5, it also holds that l2`n n/ log n!1 and nu2rn ! 0 as n!1.

Theorem 4. Let Assumptions S, C, I and A1-A2 hold. Then, as n!1,

p
n
(
bb− b0

)
d! N

(
0, b40Σs

)
.
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We can estimate the asymptotic variance of bb by using the sample variance of the sequence {bsib"i}ni=1
where b"i = bg (C 0i, V 0i )R0i−bb−1bg (Ci, Vi) , and bs is obtained as our estimator bg, with the normalization

1

n

nX

l=1

bg(Cl, Vl)bs(Cl, Vl) = 1.

An alternative is to use bootstrap. Since the eigenvalue b−10 is simple, and isolated from other

eigenvalues, we expect the standard bootstrap sampling with replacement to provide a consistent

estimation for the asymptotic distribution of
p
n(bb− b0), and in particular, for confidence intervals.

See Hall, Lee, Park and Paul (2009) and references therein.

Our next result establishes an asymptotic expansion for bg − g0. This expansion can be used to
obtain rates for bg − g0 and to establish asymptotic normality of (semiparametric) functionals of
bg. Define the process ∆n (c, v) ≡ n−1

Pn
i=1 "iφi(c, v), where recall that φi(c, v) = Khi (c, v) / bf (c, v) .

Note that a standard result in kernel estimation is that for all (c, v) in the interior of S, under suitable

conditions, p
nh`n∆n(c, v)

d! N (0,Σ∆ (c, v)) ,

with Σ∆ (c, v) = f−1(c, v)σ2 (c, v)κ2, κ2 =
R
K2(u)du and σ2 (c, v) = E ["2i |Ci = c, Vi = v].

Recall L† denotes the Moore-Penrose pseudoinverse of L = b0A− I, which under our conditions

is continuous (cf. Section 3.1).

Theorem 5. Let Assumptions S, C, I and A1-A2 hold. Then, in L2, as n!1,
p
nh`n (bg − g0) = b0L†

p
nh`n∆n + oP (1) .

This result implies that the rates of convergence of bg − g0 in L2 are the same as those of the NW
kernel estimator of E ["i|Ci = c, Vi = v]. Combined with standard kernel regression results, this

also implies asymptotic normality for
p
nh`nL (bg − g0) , which can be used for inference on g. For

example, we could use the expansion of Theorem 5 to test parametric hypotheses about g, i.e.,

H0 : g0(c, v) = gη0(c, v), against nonparametric alternatives, where the function gη0(c, v) is known

up to a finite-dimensional unknown parameter η0 (e.g. power utility). A test can be based on the

discrepancy

Tn =
∥∥∥
p
nh`n

bL (bg − eg)
∥∥∥
2

,

where bL = bb bA−I and eg = gbη(c, v) is a parametric fit, with bη denoting a consistent estimator for η0 un-
der the null (e.g. a GMM estimator). Noting that bLbg = 0, Tn further simplifies to Tn = ||

p
nh`n

bLeg||2.
Similar test statistics have been suggested by Härdle and Mammen (1993) in a di§erent context. More

generally, we could test nonparametric hypotheses such as the significance of certain variables, for

example H0 : g0(c, v) = g0(c, v0) for all v, v0, against nonparametric alternatives. The same Tn can
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be used, where now eg denotes a restricted estimator of g0 under the null (e.g. our marginal utility
estimator depending only on c). In each case, the expansion in Theorem 5 is instrumental in analyz-

ing the asymptotic limiting distribution of Tn, which can be readily obtained combining Theorem 5

here with the results of Härdle and Mammen (1993).

6 Summary Measures

We now consider some summary measures of the model, specifically, functionals of bg. These are
either behavioral parameters of interest such as the mean value of relative risk aversion (MRRA), or

parameters having values that are relevant for testing. We first apply the results of the previous sec-

tion to establish asymptotic normality of the estimatedMRRA. We then list some other functionals

of interest that can, in the same way, be shown to be asymptotically normal.

Define the MRRA functional by

γ (g) ≡ E
[
−C@g(C, V )/@c

g(C, V )

]
. (9)

The natural estimator of γ (g0) is the sample analog based on our estimator bg, i.e.

γn (bg) =
1

n

nX

i=1

−Ci@bg(Ci, Vi)/@c
bg(Ci, Vi)

.

Under the assumptions for Theorem 5 above, bg is di§erentiable and bounded away from zero with

probability tending to one, so γn (bg) is well-defined for large n. Define the class of functions

D =
{
(c, v)! −c

@ log(g(c, v))

@c
: g 2 G

}
,

and the functions

d(c, v) ≡
@ (c× f(c, v))

@c

1

f(c, v)
and χ(c, v) ≡

d(c, v)

g0(c, v)
. (10)

Also, we need to introduce some notation to be used in the asymptotic normality of γn (bg) . Assuming
χ 2 L2, define

χs = χ− hg0,χi hg0, si
−1 s. (11)

The function χs has a geometrical interpretation as the value of χ projected parallel to s on a

subspace of functions orthogonal to g0. Let L∗ denote the adjoint operator of L, and let χ∗s denote

the minimum norm solution of χs = L
∗r in r, i.e. χ∗s = argmin{krk : χs = L∗r}, which is well defined

because χs 2 N?(L) = R(L∗); see Luenberger (1997, Theorem 3, p. 157) for the latter equality.
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Here N?(L) denotes the orthogonal complement of the null space of L, see Luenberger (1997, p. 52)

for a definition.

The MRRA estimator behaves asymptotically as a sample average, with an influence function

given by

ξi = (ζ i − E [ζ i])− b0χ
∗
s(Ci, Vi)"i, (12)

where ζ i = −Ci (@g0(Ci, Vi)/@c) /g0(Ci, Vi). The second term in ξi accounts for the estimation e§ect

due to estimating g0.

Assumption A3.

1. P (bg 2 G)! 1 as n!1 and the class D is P -Donsker5.

2. S = [lc, uc]×SV , limc!lc cf(c, v) = 0 = limc!uc cf(c, v) for all v 2 SV and P (min{g0, bg} > ")!

1 for some " > 0.

3. d 2 L2, E[|ξi|
2] <1 and χ∗s 2 Cr(T ).

Assumption A3.1 is standard in the semiparametric literature, see, e.g. Chen, Linton and Van

Keilegom (2003). The following Lemma provides su¢cient conditions for an example of D satisfying

the P -Donsker property of the second part of Assumption A3.1. Its proof is a standard exercise in

empirical processes theory, and hence it is omitted.

Lemma 2. Suppose that G is a subset of Cη(T ) of functions bounded away from zero, where η >

(2 + `)/2, and that E[C2i ] <1. Then, D is P -Donsker.

Assumption A3.2 is similar to other assumptions required in estimation of average derivatives, see

Powell, Stock and Stoker (1989). This assumption guarantees that γn (bg) is well defined and regular.
Assumption A3.3 implies that the asymptotic variance of γn (bg) is finite.

Theorem 6. Let Assumptions S, C, I and A1-A3 hold. Then,

p
n (γn (bg)− γ (g0))

d! N
(
0, E

[
ξ2i
])
,

where ξi is defined in (12).

5Let Pn be the empirical measure with respect to P . Using a standard empirical process notation, define Gng =
p
n (Pn − P ). Then D is P -Donsker if Gn converges weakly to G in the space of uniformly bounded functions on D,

l1 (D), where G is a mean-zero P -Brownian bridge process with uniformly continuous sample paths with respect to

the semi-metric ρ (d, d0) defined by ρ (d, d0) =
p
V ar (d (C, V )− d0 ((C, V ))). For further details we refer the reader to

van der Vaart and Wellner (1996).
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Estimating the asymptotic variance of γn (bg) by plug-in methods would be possible but compli-
cated. In our application we use the bootstrap, which can be justified along the lines of Chen, Linton

and Van Keilegom (2003).

Now consider some other functionals of interest. The asymptotic normality of each can be es-

tablished using the same methods as Theorem 6. As with γn (bg), in our applications we will use
the bootstrap to estimate their limiting distributions. In our empirical work we consider a model

allowing for habits, where Ci = Ct+1,i and Vi = Ct,i for two time periods t and t + 1 (these time

periods may vary across individuals). For the remainder of this section we drop the i subscript for

clarity. Closely related to the MRRA are local averages defined by

ρ (q, s) = E

[
−Ct+1@g0(Ct+1, Ct)/@Ct+1

g0(Ct+1, Ct)
|Ct+1 2 Qq, Ct 2 Ss

]
, (13)

where Qq denotes the interval between the q − 1 and q quartile of Ct+1, and Ss denotes the interval

between the s− 1 and s quartile of Ct for q, s = 1, 2, 3, 4. We refer to each of these local averages of

the RRA between di§erent quartiles as a QRRA (quartile relative risk aversion).

We can use our results to construct tests of heterogeneity in risk aversion measures as follows. The

sample analogs of the QRRA parameters ρ (q, s) can be shown to be asymptotically normal under

the same conditions above used for the MRRA. That is, with the simplified notation ρ (q) ≡ ρ (q, q)

for the parameter and ρn (q) ≡ ρn (q, q) for the plug-in estimator, it can be shown

p
n (ρn (q)− ρ (q))

d! N
(
0,σ2(q)

)
,

for a suitable asymptotic variance σ2(q), q = 1, 2, 3 and 4. Moreover, by definition,
p
n (ρn (q)− ρ (q))

and
p
n (ρn (s)− ρ (s)) are asymptotically independent for q 6= s. This suggests a simple strategy

for testing heterogeneity in risk aversion by means of simple pairwise t-tests for the hypotheses, for

q 6= s,

H0qs : ρ (q) = ρ (s) vs H1qs : ρ (q) 6= ρ (s) .

The t-statistics are constructed as

tqs =

p
n (ρn (q)− ρn (s))p
σ2n(q) + σ2n(s)

,

for suitable consistent estimates σ2n(q) of the asymptotic variances σ
2(q), for q = 1, 2, 3 and 4. We

then reject H0qs when tqs is large in absolute value, using that tqs converges to a standard normal

under H0qs. We use these tests of heterogeneity in our application below.

We also construct some tests for the absence of habits, i.e.

@g0(Ct+1, Ct)

@Ct
= 0.
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Our tests are based on the functional

δ (g) = E

[
@g(Ct+1, Ct)

@Ct
τ(Ct+1, Ct)

]
,

for various positive functions τ(·). When there is no habit e§ect δ (g0) = 0 for any choice of τ . As

with γ (g0), for each choice of function τ we estimate δ (g0) by plugging in bg for g0 and replacing the
expectation with a sample average. The asymptotic normality of this estimator and its bootstrap

approximation is then used for inference, analogous to our analysis of γ (g0).

7 Monte Carlo Experiment

In this section we illustrate the finite-sample performance of our estimator described in the previous

sections based on a CRRA utility function so that g0 (c, v) = c−η0, where η0 in this case equals the

MRRA. The model is then given by the Euler equation

b0E
h
C
−η0
t+1 Rt+1|Ct

i
= C

−η0
t .

We set b0 = 0.95 and η0 = 0.5. We draw a random sample of (Ct, Ct+1) from the distribution

(logCt, logCt+1) ∼ N

 
0,

 
0.25 0.1

0.1 0.25

!!
,

and construct Rt+1 = b−10 (1 + ϵt) (Ct+1/Ct)
η0, where ϵt is distributed uniformly on [−0.5, 0.5] and

drawn independently of (Ct, Ct+1). This design was chosen to generate data that satisfies the Euler

equation model, has realistic parameter values and consumption distribution, and avoids the ap-

proximation and other numerical errors that would result from solving each individual’s dynamic

optimization problem numerically.

To save space we only report simulation results for two experiments, each with sample sizes

n = 500 and n = 2000. The number of bootstrap replications used in each simulation is 200, and

we repeat each simulation 1000 times. We compute our proposed nonparametric estimators and

compare them to the method of moments estimator defined using the correctly specified CRRA

utility function with a constant and Ct as instruments. So while our estimator attempts to recover

the constant b0 and the entire function g0, this alternative just estimates the two constants b0 and

η0, using two moments of the data. In our tables estimates from this correctly specified parametric

functional form are labeled CRRA.

We consider two nonparametric estimators. The first one, which we label NP − 1, correctly

conditions on just Ct (since our choice of g0 (c, v) does not depend on v), and so only entails estimation

of a one-dimensional marginal utility function. In anticipation of our empirical application in the next
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section, the second nonparametric estimator, denoted NP − 2, uses both Ct and Vt as conditioning

variables, where Vt = Ct−1 is in this case an irrelevant habit variable. We simulate Ct−1 by drawing

from a N (1, 1) distribution that is independent of (Ct, Ct+1).

We compute our estimates using the procedure described in Section 4 that incorporates the

transformation suggested in equation (7). While not necessary in theory, we find that estimates of g0
fit better in the tails using this transformation than not, though the di§erences in overall integrated

mean square errors and other measures of fit are small. In order to apply the transformation, note

that equation (7) can be re-written as

bE[g∗(Ct+1, Vt+1)R
∗
t+1 | Ct, Vt] = g

∗(Ct, Vt),

where g∗(Ct+1, Vt+1) ≡ Ct+1g(Ct+1, Vt+1), g∗(Ct, Vt) ≡ Ctg (Ct, Vt) and R∗t+1 ≡ (Ct/Ct+1)Rt+1. With

these definitions the procedure remains as described in Section 4 after redefining the return variable,

from Rt+1 to R∗t+1. The procedure then yields an estimate of g
∗, from which the marginal utility

function g is then recovered using the relation g (c, v) = g∗(c, v)/c. Throughout we set the bandwidth

to be 1.06sn−1/3.5, where s is the sample standard deviation of Ct. This is essentially Silverman’s

rule applied to the rate n−1/3.5. All of our estimators for g0 are normalized to have a unit norm with

respect to the empirical L2−norm.

For each finite-dimensional parameter and summary measure we consider, we report the mean,

standard deviation, 2.5th percentile, 97.5th percentile, 95% coverage probability based on normal

distribution, their bootstrap counterparts and the root mean square error.6 Table 1 reports estimates

of the discount factor from our three estimators, CRRA, NP − 1, and NP − 2. Table 2 reports

estimates of the MRRA, which for the CRRA model is just the estimated constant η0, while for

the nonparametric estimators the MRRA is γ (g0) defined by equation (9). Table 1 shows that all

of the estimators succeed in estimating the discount factor b very accurately. This is in contrast

to many macro models, which often calibrate the discount factor due to the di¢culty in estimating

it accurately. Table 2 shows somewhat more di¢culty in estimating the MRRA, but the relative

accuracy of our nonparametric estimates to the parametric alternative is similar. In both tables the

root mean squared errors of our nonparametric estimates are seen to shrink with sample size and

increase with dimensionality at rates that are generally consistent with asymptotic theory.

Figures 1 and 2 show plots of the one-dimensional nonparametric (i.e., NP−1) estimated marginal

utility function g0 as a function of Ct. Figure 1 is n = 500 while Figure 2 is n = 2000. For each

figure, the solid line denotes the mean, the dotted line denotes the 95% confidence interval, and the

dashed line is the true. One can see from these figures that NP − 1 quite accurately tracks the true
6The normal coverage probability is constructed ex-post using the true (simulated) standard deviation.
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function. The precision of these fits can also be summarized by their integrated mean square error

(weighted with respect to the true density), which is 0.0014 for n = 500 and 0.0005 for n = 2000.

Not surprisingly, estimates of the two-dimensional NP − 2 are noisier, since by design the second

conditioning variable Vt is irrelevant. The results for NP − 2 can be summarized by their implied

quartile averages QRRA. Table 3 reports estimates of each QRRA, ρ (q, s) for all quartiles q and

s having |q − s| ≤ 1.7 Table 3 shows that estimates of QRRA have generally about an order of

magnitude larger root mean squared error than MRRA, which is not surprising since each ρ (q, s) is

obtained by averaging over 1/16 as much data (one quartile of current consumption and one quartile

of lagged consumption observations) as MRRA.

One unexpected finding is that estimates of ρ (q, s) display substantially larger biases and root

mean squared errors for larger values of q and s than for smaller values, suggesting that our NP − 2

estimates of the marginal utility function tend to be less accurate at higher consumption levels. This

can also be seen for NP−1 in Figure 1, where the standard error bands widen at higher consumption

levels.

In Table 4 we report estimates of δ (g0) that can be used to test for the presence of habits in

g0. In our experiments estimates of δ (g0) do not di§er significantly from zero as expected, since our

specification of g0 does not have any habit e§ect. Generally, all of our parameter estimates and test

statistics appear to have distributions across simulations that are reasonably well approximated by

the bootstrap, e.g., biases are relatively small, bootstrap standard errors are generally close to the

standard deviations across simulations, and bootstrap confidence intervals are generally close to the

true. Both coverage probabilities based on the normal approximation and the bootstrap generally

are relatively close to the nominal.

7We only report pairs of quartiles i and j where |q − w| ≤ 1, because a value that violates this inequality, like

ρ (4, 1), corresponds to individuals who’s consumption jumps from the fourth to the first quartile, and in real data the

number of such individuals who make this jump would be too small to reliably estimate their QRRA.
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b0 Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 CRRA 0.000 0.012 0.926 0.975 0.946 0.012 0.926 0.974 0.940 0.012

NP − 1 0.006 0.027 0.917 0.971 0.984 0.018 0.915 0.980 0.929 0.028

NP − 2 0.009 0.041 0.808 0.983 0.963 0.031 0.895 1.012 0.932 0.042

n = 2000 CRRA 0.000 0.006 0.938 0.961 0.960 0.006 0.938 0.962 0.950 0.006

NP − 1 0.004 0.020 0.936 0.960 0.992 0.009 0.932 0.965 0.924 0.020

NP − 2 0.005 0.028 0.862 0.965 0.974 0.021 0.922 0.994 0.946 0.028
Table 1: Summary statistics of Monte Carlo estimates of the discount factor b0. The true is

b0 = 0.95. CRRA, NP − 1 and NP − 2 refer respectively to the parametric, one-dimensional

nonparametric, and two-dimensional nonparametric estimators.

MRRA Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 CRRA 0.000 0.046 0.420 0.590 0.956 0.046 0.411 0.592 0.944 0.046

NP − 1 -0.058 0.107 0.431 0.714 0.961 0.101 0.359 0.751 0.906 0.122

NP − 2 -0.096 0.194 0.277 0.888 0.952 0.194 0.209 0.986 0.930 0.217

n = 2000 CRRA 0.001 0.023 0.456 0.545 0.950 0.023 0.454 0.544 0.952 0.023

NP − 1 -0.032 0.077 0.470 0.610 0.988 0.052 0.430 0.628 0.914 0.083

NP − 2 -0.067 0.092 0.412 0.716 0.934 0.109 0.355 0.782 0.906 0.114
Table 2: Summary statistics of Monte Carlo estimates of the MRRA, which is η0 for the parametric

and γ (g0) for the nonparametric estimators. The true is MRRA = 0.5. CRRA, NP − 1 and

NP − 2 refer respectively to the parametric, one-dimensional nonparametric, and two-dimensional

nonparametric estimators.
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QRRA Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 ρ (1, 1) -0.158 0.205 0.273 1.068 0.910 0.242 0.115 1.068 0.878 0.259

ρ (1, 2) -0.068 0.366 -0.049 1.167 0.969 0.358 -0.137 1.287 0.969 0.372

ρ (2, 1) -0.149 0.222 0.242 1.060 0.932 0.246 0.145 1.118 0.904 0.267

ρ (2, 2) -0.055 0.327 0.000 1.151 0.961 0.355 -0.137 1.274 0.965 0.331

ρ (2, 3) -0.010 0.450 -0.240 1.187 0.973 0.480 -0.433 1.477 0.973 0.450

ρ (3, 2) -0.053 0.326 -0.014 1.081 0.969 0.351 -0.121 1.275 0.966 0.330

ρ (3, 3) 0.009 0.457 -0.279 1.180 0.972 0.460 -0.408 1.428 0.966 0.457

ρ (3, 4) -0.102 0.785 -0.850 1.972 0.963 0.933 -1.320 2.452 0.972 0.792

ρ (4, 3) -0.029 0.400 -0.137 1.181 0.969 0.470 -0.345 1.515 0.978 0.401

ρ (4, 4) -0.281 0.980 -0.957 2.378 0.954 1.079 -1.486 2.876 0.955 1.019

n = 2000 ρ (1, 1) -0.104 0.179 0.350 0.825 0.978 0.158 0.280 0.889 0.888 0.206

ρ (1, 2) -0.023 0.272 0.125 0.903 0.984 0.249 0.048 1.027 0.954 0.273

ρ (2, 1) -0.087 0.146 0.330 0.859 0.938 0.171 0.245 0.910 0.912 0.170

ρ (2, 2) -0.018 0.214 0.151 0.882 0.964 0.251 0.031 1.030 0.968 0.214

ρ (2, 3) -0.007 0.319 0.004 1.019 0.988 0.314 -0.104 1.133 0.956 0.319

ρ (3, 2) -0.009 0.274 0.078 0.871 0.980 0.254 0.024 1.013 0.954 0.274

ρ (3, 3) -0.016 0.376 0.095 0.956 0.986 0.310 -0.067 1.153 0.962 0.377

ρ (3, 4) -0.078 0.388 -0.136 1.322 0.952 0.573 -0.583 1.722 0.970 0.396

ρ (4, 3) -0.002 0.385 0.129 0.913 0.980 0.302 -0.054 1.123 0.964 0.385

ρ (4, 4) -0.244 0.476 0.053 1.641 0.940 0.624 -0.571 1.948 0.958 0.535
Table 3: Summary statistics of Monte Carlo estimates of QRRA, which is ρ (q, s) from NP − 2.

The true is ρ (q, s) = 0.5 for all q and s.
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τ (Ct+1, Ct) Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 Ct+1 -0.002 0.111 -0.111 0.132 0.975 0.118 -0.255 0.200 0.975 0.111

Ct -0.006 0.097 -0.128 0.125 0.975 0.118 -0.245 0.209 0.980 0.097

C2t+1 -0.010 0.289 -0.249 0.252 0.977 0.262 -0.567 0.438 0.965 0.290

C2t -0.030 0.237 -0.331 0.270 0.967 0.269 -0.531 0.502 0.977 0.238

Ct+1Ct -0.015 0.229 -0.209 0.190 0.972 0.220 -0.463 0.370 0.973 0.230

n = 2000 Ct+1 -0.005 0.078 -0.070 0.072 0.978 0.077 -0.154 0.131 0.978 0.079

Ct -0.009 0.080 -0.084 0.072 0.982 0.077 -0.154 0.132 0.978 0.081

C2t+1 -0.013 0.229 -0.176 0.149 0.986 0.188 -0.374 0.319 0.968 0.229

C2t -0.036 0.244 -0.270 0.150 0.986 0.195 -0.382 0.344 0.966 0.247

Ct+1Ct -0.016 0.222 -0.146 0.107 0.984 0.160 -0.313 0.268 0.970 0.223
Table 4: Summary statistics of Monte Carlo estimates of δ (g0), used to test for the presence of

habit e§ects. The true value of each δ (g0) is zero. The τ (Ct+1, Ct) column lists the functions that

are used to define δ (g0).

26



Figure 1: Estimates of the marginal utility function g0 using simulated data with n = 500. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% confidence

interval, and the true.

Figure 2: Estimates of the marginal utility function g0 using simulated data with n = 2000. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% confidence

interval, and the true.
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8 Empirical Application

In this section, we apply our framework to a real world consumption data set. Specifically, we use

quarterly US Consumer Expenditure Survey (CEX) household-level data for households sampled

between 1980Q1 and 2012Q4. Our consumption data Cti,i (for household i in period ti) is total

expenditures on nondurables that we convert from nominal to real by deflating using the US consumer

price index (with year 2000 as base). We also deflate by household size to get real expenditures per

capita within the household. To avoid including additional demographic regressors we focus on a

relatively homogenous sample by including only urban households, with each head of household being

between 30 and 50 years of age and an education level of high school diploma or higher. We only

consider households that report four consecutive quarters of consumption, and removed as outliers

households that displayed extreme variation in consumption, defined as a greater than 50% change

in consumption from one quarter to the next. The resulting dataset contains 18912 households. We

construct two types of asset returns Rt, one risk free and the other is risky. The risk free return is

based on 1-month US treasury bills. The risky return is based on the Wilshire 5000 stock index,

with dividends reinvested. Both asset returns are converted into real terms computed on a quarterly

basis. We provide some summary statistics of the data in Table 5.

Mean Std 10th 25th 50th 75th 90th

Consumption Cti−1,i 3048.128 1438.924 1565.728 2066.940 2765.843 3712.934 4827.351

Cti,i 2991.451 1419.682 1529.328 2025.249 2715.915 3631.024 4765.924

Cti+1,i 2938.243 1401.901 1503.810 1989.552 2664.001 3574.610 4655.104

Risk free Rt+1 1.040 0.031 0.999 1.015 1.040 1.055 1.080

Risky Rt+1 1.016 0.068 0.938 0.986 1.024 1.065 1.091

Table 5: Summary statistics of the quarterly CEX and return data in real terms (year 2000 as

base), containing the sample mean, standard deviation and various percentiles of the variables.

Using this CEX data, we apply the same estimators as in the Monte Carlo study, that is, the

parametric CRRA, the one-dimensional (NP − 1) nonparametric estimator that assumes no habit

is present, and the two-dimensional (NP − 2) nonparametric estimator. These three estimators

are each implemented twice; once using the riskless returns, and a second time using the risky

returns. Note that if the model is correctly specified, both assets should result in roughly the

same estimates of b0 and g0. We employ the bandwidth h = 1.06sn−1/4, where s is the sample

standard deviation of consumption.8 Standard errors and confidence intervals are computed using
8This is a slightly larger rate for Silverman’s rule than we used in the Monte Carlo. We chose this rate by an

informal comparison of a few alternatives, choosing the one that by eye appeared least erratic. We speculate that

28



nonparametric bootstrap, in the same way as with the simulated data.

The estimates for the discount factor b0 and MRRA are reported in Tables 6 and 7 respectively,

and the QRRA’s are in Table 8. Table 9 reports p-values from the t-statistics constructed from

the normalized pairwise di§erences between estimates of ρ (q) and ρ (s), as suggested at the end

of Section 6, which can be used to detect heterogeneity of risk aversions in di§erent parts of the

population. The tests for habits can be found in Table 10. Using the risk free asset, Figure 3 plots

the NP − 1 estimate of g0, while figures 4, 5 and 6 plot the NP − 2 estimates of g0 conditioning on

the lag consumption level at the first, second and third quartiles respectively. Figures 7 to 10 are

analogous plots using the risky asset.

As in the simulations, we find the estimates of the discount factor b0 to be quite similar across all

estimators, though their estimated standard errors seem surprisingly low even with a large sample.

Likewise, the nonparametric model error bands in Figures 4 to 10 seem very tight, given some of

the peculiar shapes seen at higher consumption levels, and given the modest di§erences seen in the

two assets. The estimates of the MRRA are rather low compared to the literature, however, the

QRRA show larger values for at least some ranges of consumption. For the nonparametric models

we generally find similar estimates for the riskless and risky asset, which provides evidence that the

pricing model is appropriate.

One motivation for estimating marginal utility nonparametrically is to look for evidence on

whether standard parametric alternatives are correctly specified, or whether there is some feature

of the data that parametric models may have missed. Looking across these estimates, one can see

evidence that the popular CRRA parametric model is misspecified. The CRRA estimate of MRRA

is essentially zero, and indeed changes sign across the riskless and risky asset. As the name im-

plies, CRRA assumes relative risk aversion is constant across consumption levels. In contrast, the

QRRA estimates show variation in risk aversion, depending both on current and on last period’s

consumption level. Generally, the estimates show levels of risk aversion that decrease as individual’s

consumption levels increase. Formal testing based on pairwise t-statistics also confirms that some

variation exists. Moreover, the shapes seen in the Figures 4 to 6 and 8 to 10 suggest that utility may

depend in more complicated ways on past consumption than typical habit models permit, including

even semiparametric habit models like Chen and Ludvigson (2009) or Chen, Chernozhukov, Lee and

Newey (2014). Figures 3 and 7 show that, if one ignores or averages over past consumption, the

departures from CRRA become smaller, which suggests that standard models may to some extent

obscure the complexity of habit a§ects by averaging. The overall estimated average values of risk

aversion (the MRRA) in the nonparametric models are still rather low (see Table 7), but are not

measurement error in Ci,ti may be causing increased noisiness in the estimates, requiring greater smoothing than in

our simulated data.
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nearly as implausibly close to zero as the CRRA model.

The test results for habits in Tables 9 are mixed. On one hand, some of the point estimates of δ (g0)

are very far from zero, suggesting that utility may well possess habits. However, the standard errors

and confidence bands for these statistics are also very wide, so most of these departures, particularly

with the risk-free rate, while numerically large, are not statistically significant. However, for the

risky asset almost all specifications of δ (g0) do significantly reject the assumption of no habits.

We end this section with some caveats regarding our estimates, and our model in general. First,

CEX data are known to be quite noisy, often varying substantially from quarter to quarter. Indeed,

for this reason most applications of CEX data aggregate up to the annual level, thereby removing the

short panel component of the data that we exploit. However, we require data in which households are

observed for a few periods in a row (to construct a Cti+1,i, Cti,i, and Cti−1,i for each household i), and

we also require data that covers a long span of time (in this case 129 quarters) to observe significant

variation in asset returns. This greatly limits our choices for possible data sets. Still, interpretation of

our results should recognize that our data may su§er from rather substantial amounts of measurement

error. See Gayle and Khorunzhina (2014) for evidence on the potential e§ects of measurement error

in consumption Euler equations with habits.

Another limitation of our results is that we do not model unobserved preference heterogeneity.

The vector Vti,i can in theory include observable characteristics of consumers that a§ects preferences,

such as demographic characteristics, stocks of previously purchased durables, past consumption, etc.

For simplicity, rather than including such variables (other than past consumption), we focused on

a relatively homogeneous subset of households. It should be noted, however, than an o§setting

advantage of our model is that we do not impose the restrictions on preferences that are generally

needed to estimate asset pricing models. In particular, pricing models are generally estimated using

aggregate consumption data, and so impose strong homogeneity restrictions on preferences, and hence

on the functional form of g, to allow aggregation of marginal utility functions across consumers. An

alternative approach that allows for unobserved heterogeneity in parametric Euler equation models

is explored in Hoderlein, Nesheim and Simoni (2012), but this approach is very di§erent from ours

and cannot be readily extended to our nonparametric framework.

A more subtle issue is the potential role of aggregate shocks. To illustrate, suppose all of our

consumers had been observed in the same two time periods, and a large negative macro shock had

occurred in the second of these periods. Then second period consumption would on average have

been lower than expected for most consumers, and as a result the observed joint distribution of con-

sumption across the two periods would not equal the joint distribution that first period consumption

was based upon. In our model, this potential source of estimation bias is mitigated by our choice of

data. Each household is observed for at most four periods, but we draw data over 129 time periods
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(quarters), so some households are observed in the 1980’s and others as late as 2012. As a result,

the impacts on our estimates of potential bias due to negative aggregate shocks in some periods is

should be largely o§set by positive aggregate shocks in other periods. However, although our point

estimates should therefore be largely una§ected by aggregate shocks, our asymptotic theory assumes

independence across households, and aggregate shocks could cause dependence across consumers that

happen to be observed in the same time period. Our asymptotic theory could be modified to allow

for some dependence using uniform rate results from Andrews (1995).

b0 Est Ste Lpc Upc

Risk free CRRA 0.966 0.000 0.966 0.967

NP − 1 0.961 0.001 0.960 0.963

NP − 2 0.961 0.001 0.960 0.963

Risky CRRA 0.986 0.001 0.985 0.987

NP − 1 0.979 0.001 0.978 0.981

NP − 2 0.978 0.001 0.976 0.982

Table 6: Summary statistics of CEX data estimates of the discount factor b0. CRRA, NP −1 and

NP − 2 refer respectively to the parametric, one-dimensional nonparametric, and two-dimensional

nonparametric estimators.

MRRA Est Ste Lpc Upc

Risk free CRRA -0.004 0.003 -0.010 0.002

NP − 1 0.133 0.052 0.096 0.168

NP − 2 0.194 0.026 0.133 0.237

Risky CRRA 0.006 0.007 -0.009 0.018

NP − 1 0.196 0.020 0.150 0.231

NP − 2 0.281 0.032 0.202 0.325

Table 7: Summary statistics of CEX data estimates of theMRRA, which is η0 for the parametric

and γ (g0) for the nonparametric estimators. CRRA, NP − 1 and NP − 2 refer respectively to the

parametric, one-dimensional nonparametric, and two-dimensional nonparametric estimators.

31



QRRA Est Ste Lpc Upc

Risk free ρ (1, 1) 0.342 0.047 0.219 0.417

ρ (1, 2) 0.154 0.028 0.082 0.201

ρ (2, 1) 0.253 0.035 0.169 0.311

ρ (2, 2) 0.139 0.022 0.086 0.175

ρ (2, 3) 0.076 0.018 0.038 0.106

ρ (3, 2) 0.147 0.023 0.093 0.189

ρ (3, 3) 0.063 0.016 0.024 0.091

ρ (3, 4) 0.098 0.018 0.049 0.125

ρ (4, 3) 0.050 0.026 -0.003 0.108

ρ (4, 4) 0.296 0.084 0.119 0.467

Risky ρ (1, 1) 0.436 0.059 0.311 0.540

ρ (1, 2) 0.257 0.040 0.165 0.316

ρ (2, 1) 0.358 0.049 0.249 0.436

ρ (2, 2) 0.237 0.032 0.157 0.285

ρ (2, 3) 0.184 0.028 0.125 0.229

ρ (3, 2) 0.242 0.034 0.156 0.297

ρ (3, 3) 0.145 0.027 0.082 0.187

ρ (3, 4) 0.190 0.032 0.118 0.248

ρ (4, 3) 0.177 0.039 0.086 0.252

ρ (4, 4) 0.336 0.084 0.170 0.495
Table 8: Summary statistics of CEX data estimates of QRRA, which is ρ (q, s) from NP − 2.
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p-values q/s 1 2 3 4

Risk free 1 – 0.000 0.000 0.632

2 – – 0.005 0.070

3 – – – 0.006

Risky 1 – 0.003 0.000 0.325

2 – – 0.028 0.271

3 – – – 0.030
Table 9: Summary statistics of CEX data for the p-values of a pairwise t-statistics base on QRRA

to test the null hypothesis that estimates of ρ (q) = ρ (s) for q 6= s.

τ (Ct+1, Ct) Est Ste Lpc Upc

Risk free Cti+1,i -0.012 0.011 -0.028 0.017

Cti,i -0.018 0.012 -0.034 0.014

C2ti+1,i -95.52 63.55 -189.2 76.19

C2ti,i -162.5 80.65 -273.0 60.12

Cti+1,iCti,i -118.4 65.43 -209.6 62.80

Risky Cti+1,i -0.041 0.013 -0.060 -0.006

Cti,i -0.046 0.014 -0.064 -0.007

C2ti+1,i -163.7 63.45 -261.4 -2.332

C2ti,i -217.2 78.51 -328.1 0.956

Cti+1,iCti,i -178.7 64.29 -266.5 -4.279

Table 10: Summary statistics of CEX data estimates of δ (g0), used to test for the presence of

habit e§ects. The τ (Ct+1, Ct) column lists the functions that are used to define δ (g0).
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Figure 3: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI and CRRA represent respectively the one-dimensional nonparametric estimate, its 95%

confidence interval, and the parametric estimate.

Figure 4: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the first quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.
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Figure 5: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the second quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.

Figure 6: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the third quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.
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Figure 7: Estimates of the marginal utility function g0 using CEX data with the risky returns.

Est, CI and CRRA represent respectively the one-dimensional nonparametric estimate, its 95%

confidence interval, and the parametric estimate.

Figure 8: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the first quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.
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Figure 9: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the second quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.

Figure 10: Estimates of the marginal utility function g0 using CEX data with the risk free returns.

Est, CI, CRRA and NP − 1 represent respectively the two-dimensional nonparametric estimate

conditioning on the lag consumption level at the third quartile, its 95% confidence interval, the

parametric estimate, and the one-dimensional nonparametric estimate.
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9 Conclusions

We investigate nonparametric identification and estimation of marginal utilities and discount fac-

tors in consumption-based asset pricing Euler equations. The main features of our nonparametric

identification results are: (i) the decomposition of the pricing kernel into its marginal utility and

discount factor components, cast in the form equation (1), and (ii) the use of shape restrictions

(positive marginal utilities). Together, these allow us to establish nonparametric global point iden-

tification of the model. Based on our identification arguments, we propose a new nonparametric

estimator for marginal utilities and the discount factor that combines standard kernel estimation

with the computation of a (finite-dimensional) matrix eigenvalue-eigenvector problem. No numerical

integration or optimization is involved. The estimator is based on a sample analogue of (1) and is

easy to implement, since no numerical searches are required. We establish a useful expansion for the

marginal utility (suitably normalized), and limiting distribution theory for the discount factor and

associated functionals of the marginal utility like the mean level of relative risk aversion. Due to the

well posedness of equation (1), our estimator converges at comparable rates to ordinary nonparamet-

ric regression and does not su§er from issues associated with nonparametric instrumental variables

estimation.

We apply our nonparametric methods to household-level CEX data and find evidence against the

common assumption of constant relative risk aversion across consumers. Our estimates are fairly

insensitive to the choice of asset used (risk-free vs risky), which supports our nonparametric model.

We find empirical evidence for the presence of habits, and evidence that risk aversion varies across

current and lagged consumption levels in ways that are not fully captured by standard parametric

or even semiparametric specifications of habits in asset pricing models.

10 Appendix

10.1 Euler Equation Derivation

To encompass a large class of existing Euler equation and asset pricing models, consider utility

functions that in addition to ordinary consumption, may include both durables and habit e§ects.

Let U be a time homogeneous period utility function, b is the one period subjective discount factor,

Ct is expenditures on consumption, Dt is a stock of durables, and Zt is a vector of other variables

that a§ect utility and are known at time t. Let Vt denote the vector of all variables other than Ct
that a§ect utility in time t. In particular, Vt contains Zt, Vt contains Dt if durables matter, and Vt
contains lagged consumption Ct−1, Ct−2 and so on if habits matter.
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The consumer’s time separable utility function is

max
{Ct,Dt}1t=1

E

"
1X

t=0

btU(Ct, Vt)

#
.

The consumer saves by owning durables and by owning quantities of risky assets Ajt, j = 1, . . . , J .

Letting Ct be the numeraire, let Pt be the price of durables Dt at time t and let Rjt be the gross

return in time period t of owning one unit of asset j in period t − 1. Assume the depreciation rate

of durables is δ. Then without frictions the consumer’s budget constraint can be written as, for each

period t,

Ct + (Dt − δDt−1)Pt +
JX

j=1

Ajt ≤
JX

j=1

Ajt−1Rjt

We may interpret this model either as a representative consumer model, or a model of individual

agents which may vary by their initial endowments of durables and assets and by {Zt}1t=0. The

Lagrangean is

E

"
TX

t=0

btU(Ct, Vt)−

 
Ct + (Dt − δDt−1)Pt +

JX

j=1

(Ajt − Ajt−1Rjt)

!
λt

#
(14)

with Lagrange multipliers {λt}1t=0.

Consider the roles of durables and habits. For durables, define

gd(Ct, Vt) =
@U(Ct, Vt)

@Dt

which will be nonzero only if Vt contains Dt. For habits, we must handle the possibility of both

internal or external habits. Habits are defined to be internal (or internalized) if the consumer

considers both the direct e§ects of current consumption on future utility through habit as well as

through the budget constraint. In the above notation, habits are internal if the consumer takes into

account the fact that, due to habits, changing Ct will directly change Vt+1, Vt+2 etc. Otherwise, if

the consumer ignores this e§ect when maximizing, then habits called external.

If habits are external or if there are no habit e§ects at all, then define the marginal utility function

g by

g(Ct, Vt) =
@U(Ct, Vt)

@Ct

If habits exist and are internal then define the function eg by

eg(It) =
LX

`=0

b`E

[
@U(Ct+`, Vt+`)

@Ct
| It
]
.
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where L is such that Vt contains Ct−1, Ct−2, . . . , Ct−L, and It is all information known or determined

by the consumer at time t (including Ct and Vt). For external habits, we can write eg(It) = g(Ct, Vt),
while for internal habits define

g(Ct, Vt) = E [eg(It) | Ct, Vt] .

With this notation, regardless of whether habits are internal or external, we may write the first order

conditions associated with the Lagrangean (14) as

λt = bteg(It)

λt = E [λt+1Rjt+1 | It] j = 1, . . . , J

λtPt = btgd(Ct, Vt)− δE [λt+1Pt+1 | It]

Using the consumption equation λt = bteg(It) to remove the Lagrangeans in the assets and durables
first order conditions gives

bteg(It) = E
[
bt+1eg(It+1)Rjt+1 | It

]
j = 1, . . . , J

bteg(It)Pt = btgd(Ct, Vt)− δE
[
bt+1eg(It+1)Pt+1 | It

]
.

Taking the conditional expectation of the asset equations, conditioning on Ct, Vt, yields the Euler

equations for asset j

g(Ct, Vt) = bE [g(Ct+1, Vt+1)Rjt+1 | Ct, Vt] j = 1, . . . , J, (15)

for all t. Therefore, given the pair (U, b) of utility function and discounting factor the optimal decision

satisfies the Euler equations for all asset j.

10.2 Preliminary Lemmas

The following lemma draws heavily on Einmahl and Mason (2005). We denote by  ≡ (', c, v) a

generic element of the set Ψ ≡ G × T . Let f (c, v) denote the density of (C, V ) evaluated at (c, v).

Define the regression function m( ) ≡ E['(C 0, V 0)R0|C = c, V = v]. Then, an estimator for m( ) is

given by

bmh( ) =
1

nh` bf (c, v)

nX

i=1

' (C 0i, V
0
i )R

0
iK

(
c− Ci
h

) `1Y

j=1

K

(
vj − Vji
h

)
≡
bTh( )
bf (c, v)

.

Henceforth, we abstract from measurability issues that may arise in supg2G:kgk≤1
∥∥∥ bAg − Ag

∥∥∥ (see van
der Vaart and Wellner (1996) for ways to deal with lack of measurability).
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Lemma B1. Suppose that Assumption A1 holds. Then,

sup
ln≤h≤un

sup
 2Ψ

|bmh( )−m( )| = oP (1) . (16)

If, in addition, A2 holds, then

sup
ln≤h≤un

sup
 2Ψ

|bmh( )−m( )| = OP

 s
lnn

nl`n
+ urn

!
. (17)

Proof. By the Triangle inequality

|bmh( )−m( )|

≤

∣∣∣∣∣ bmh( )−
E[bTh( )]
E[ bf (c, v)]

∣∣∣∣∣+

∣∣∣∣∣
E[bTh( )]
E[ bf (c, v)]

−m( )

∣∣∣∣∣

≤
1∣∣∣ bf (c, v)

∣∣∣

∣∣∣ bTh( )− E[bTh( )]
∣∣∣+

∣∣∣E[bTh( )]
∣∣∣

∣∣∣ bf (c, v)E[ bf (c, v)]
∣∣∣

∣∣∣ bf (c, v)− E[ bf (c, v)]
∣∣∣

+
1∣∣∣E[ bf (c, v)]

∣∣∣

∣∣∣E[bTh( )]− T ( )
∣∣∣+

|T ( )|∣∣∣E[ bf (c, v)]f (c, v)
∣∣∣

∣∣∣E[ bf (c, v)]− f (c, v)
∣∣∣ .

We shall apply a variation of Theorem 4 in Einmahl and Mason (2005) to obtain uniform rates for
bTh( ) − E[bTh( )]; the rates for bf (c, v) − E[ bf (c, v)] follow analogously and are simpler to obtain

(see their Theorem 1, 1.3). Our conditions A1.2 and A1.4 imply the assumptions needed for their

Theorem 4, where the bracketing conditions replace their covering conditions (see their Remark 3

and Lemma B.4 in Escanciano, Jacho-Chávez and Lewbel (2014)). Then, we conclude

sup
ln≤h≤un

sup
 2Ψ

∣∣∣ bTh( )− E
h
bTh( )

i∣∣∣ = OP

 s
lnn

nl`n

!
.

On the other hand, Lemma 2 in Einmahl and Mason (2005) and the uniform equicontinuity of M

in Assumption A2.2 yield

sup
ln≤h≤un

sup
 2Ψ

∣∣∣E
h
bTh( )

i
− T ( )

∣∣∣ = o (1) ,

where T ( ) ≡ m( )f (c, v) , and likewise for the density bias term. This together with the above

expansion for bmh −m completes the proof of (16).

To obtain rates for the bias terms we need the smoothness conditions of Assumption A2. A stan-

dard Taylor expansion argument, the higher-order property of the kernel and the uniform equiconti-

nuity of the r − th derivative of the classM imply that

sup
ln≤h≤un

sup
 2Ψ

∣∣∣E
h
bTh( )

i
− T ( )

∣∣∣ = O (urn) ,

41



and similarly for the density bias term. The proof is completed by standard arguments using the

boundedness away from zero of f (c, v) over the domain. !

Lemma B2. Suppose that Assumption A1 holds. Then, as n!1:
∥∥∥ bA− A

∥∥∥ = sup
g2G:kgk≤1

∥∥∥ bAg − Ag
∥∥∥ = oP (1) .

Proof. Follows from the definition of bA and the first part of Lemma B1. !

We introduce a useful class of functions:

Definition 4. Let L2(r) be the class of functions ' 2 L2 such that Σ' ≡ E ['2i "2i ] < 1 and ' is

r−times continuously di§erentiable.

Lemma B3. Suppose that Assumptions A1 and A2 hold. Then, for any ' 2 L2(r), it holds that

p
n
D(
bA− A

)
g0,'

E
d! N (0,Σ') .

Proof. Define
bTg0 (c, v) =

1

n

nX

i=1

g00iR
0
iKhi (c, v) ,

with g00i ≡ g0 (C
0
i, V

0
i ) and note that bAg0 (c, v) = bTg0 (c, v) / bf (c, v). Using standard arguments, we

write (
bA− A

)
g0 (c, v) = an (c, v) + rn(c, v),

where

an (c, v) = f
−1 (c, v)

(
bTg0 (c, v)− Tg0 (c, v)− Ag0 (c, v)

(
bf (c, v)− f (c, v)

))
,

T g0 (c, v) ≡ f (c, v)Ag0 (c, v) , bTg0 (c, v) ≡ bf (c, v) bAg0 (c, v) and

rn(c, v) ≡ −
bf (c, v)− f (c, v)

bf (c, v)
an(c, v).

Lemma B1 and our conditions on the bandwidth imply krnk = oP (n
−1/2). It then follows thatD(

bA− A
)
g0,'

E
has the following expansion

Z
'(c, v)[bTg0(c, v)− Tg0(c, v)]dcdv (18)

−
Z
'(c, v)Ag0 (c, v) [ bf(c, v)− f(c, v)]dcdv (19)

+ oP (n
−1/2).
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We now look at terms (18)-(19). Firstly, it follows from standard arguments and A2.5 that the

di§erence between Tg0(c, v) and E[bTg0(c, v)] is OP (urn) = oP (n
−1/2) by the condition nu2rn ! 0.

Hence,
Z
'(c, v)[bTg0(c, v)− Tg0(c, v)]dcdv =

Z
'(c, v)[bTg0(c, v)− E(bTg0(c, v))]dcdv + oP (n−1/2)

=
1

n

nX

i=1

g00iR
0
i

Z
'(c, v)Khi (c, v) dcdv −

Z
'(c, v)E(g00R

0
iKhi (c, v))dcdv + oP (n

−1/2),

=
1

n

nX

i=1

'(Ci, Vi)g
0
0iR

0
i − E[' (Ci, Vi)Ag0 (Ci, Vi)] + oP (n

−1/2),

where the last equality follows from the standard change of variables argument and our Assumption

A2. Likewise, the term (19) becomes n−1/2
Pn

i=1 '(Ci, Vi)Ag0 (Ci, Vi) − E[' (Ci, Vi)Ag0 (Ci, Vi)] +

oP (n
−1/2). In conclusion, we have

p
n
D(
bA− A

)
g0,'

E
=

1
p
n

nX

i=1

'(Ci, Vi)"i + oP (n
−1/2).

Then, the result follows from a standard central limit theorem, since {'(Ci, Vi)"i}ni=1 is iid with zero

mean and finite variance. !

For a generic function r 2 L2, define

rs = r − hg0, ri hg0, si
−1 s.

Also for r 2 N?(L) = R(L∗) denote by r∗ the unique minimum norm solution of r = L∗r∗. Note

that for r 2 R(L∗), r∗s does not depend on the solution r∗ considered of r = L∗r∗ (whether or not is

minimum norm). This follows because under our conditions N (L∗) is the linear span generated by

s.

Lemma B4. Let Assumptions S, C, I and A1-A2 hold. If ' 2 N?(L), so ' = L∗'∗ for some '∗,

and if '∗s 2 L2(r), then

p
n hbg − g0,'i

d! N
(
0, b20Σ'∗s

)
.

Proof. Note that by (20) below and the adjoint property

p
n hbg − g0,'i =

p
n hbg − g0, L∗'∗i

=
p
n hL(bg − g0),'∗i

= −
p
n
(
bb− b0

)
b−10 hg0,'∗i − b0

p
n
D
( bA− A)g0,'∗

E
+ oP (1).
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Then, by the proof of Theorem 4, this can be further simplified to

b0
p
n
D(
bA− A

)
g0, s hg0,'∗i − '∗

E
= −b0

p
n
D(
bA− A

)
g0,'

∗
s

E
+ oP (1).

Then, the result follows from the last display and Lemma B3. !

10.3 Main Proofs

With some abuse of notation, denote by k·k the usual norm for linear bounded operators,

kBk = sup
g2G:kgk≤1

kBgk .

The spectral radius ρ (T ) of a linear continuous operator T on a Banach space X is defined as

supλ2σ(T ) |λ|, where σ (T ) ⊂ C denotes the spectrum of T . Any compact operator T has a discrete

spectrum, so that σ (T ) is simply the set of eigenvalues of T . For more definitions and further details

see Kress (1999, Chapter 3.2). The operator B is called positive if Bg 2 P when g 2 P.

Proof of Theorem 1. By Assumption C the set of countable eigenvalues of A has zero as a limit

point, and thus, the set of eigenvalues λ with λ−1 2 (0, 1) is a finite set. By Theorem 3.1 in Kress

(1999) for each such eigenvalue there is a finite-dimensional eigenvector space. !

Proof of Theorem 2. Let A∗ denote the adjoint of A, which is also compact and positive by well

known results in functional analysis. Assumption S implies that ρ(A) > 0. Also notice that the

eigenvalues of A∗ are complex conjugates of those of A (in particular, ρ(A) = ρ(A∗)). Then, by the

Krein-Rutman’s theorem (see Theorem 7.10 in Abramovich and Aliprantis, 2002) the spectral radius

ρ(A) is an eigenvalue of A∗ having a strictly positive eigenfunction s(·). But hg, si = b hAg, si =

b hg, A∗si = bρ(A) hg, si. Hence, since g is nonnegative and s strictly positive, hg, si 6= 0, and then

b = ρ−1(A). Assumption I implies that A is strongly expanding, using the terminology of Abramovich

and Aliprantis (2002, Chapter 9)), and hence irreducible by Theorem 9.6 in the latter reference. Now,

identification of g follows from Theorem V.5.2(i) in Schaefer (1974, p. 329) applied to T = bA. !

Proof of Lemma 1. It is well known that in a complete metric space a set is relatively compact if

and only if is totally bounded. Then, the compactness of A follows if we show that R(A) is totally

bounded. Let [lj, uj] be "-brackets, j = 1, . . . , N" ≡ N[·](",G, k·k), covering G with respect to k·k .

Assume without loss of generality that the kernel k ≥ 0. Then, [Alj, Auj], j = 1, . . . , N", forms a set

of kAk "-brackets covering R(A). Since kAk <1 it follows that R(A) is totally bounded. !

Proof of Theorem 3. From well known inequalities (see e.g. Bosq, 2000, p. 103-104) we obtain:
∣∣∣bb−1 − b−10

∣∣∣ ≤
∥∥∥ bA− A

∥∥∥
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kbg − egk ≤ C
∥∥∥ bA− A

∥∥∥ ,

where C is a real positive number that depends only on b0, eg = sgn (hbg, g0i) g0/ kg0kn (sgn is the
sign function, i.e., sgn(x) = 1(x > 0) − 1(x < 0)). By Lemma B2,

∥∥∥ bA− A
∥∥∥ = oP (1). Then, by the

continuous mapping theorem |bb− b0| = oP (1). By Assumption A1.1, for large n, eg = g0/ kg0kn, and
by the Law of Large Numbers and the normalization kg0k = 1, it holds keg − g0k = oP (1). Hence, by
the triangle inequality, kbg − g0k = oP (1). !

Proof of Theorem 4. By definition

bb bAbg − b0Ag0 = bg − g0.

Write the left hand side of the last display as

(
bb− b0

)
Abg + b0

(
bA− A

)
g0 + b0A(bg − g0) + bR,

where bR =
(
bb− b0

)(
bA− Ao

)
bg+ b0

(
bA− A

)
(bg− g0). Then, after noticing that (by definition of s),

hb0A(bg − g0), si = hbg − g0, si ,

we obtain (
bb− b0

)
b−10 hbg, si+ b0

D(
bA− A

)
g0, s

E
+
D
bR, s
E
= 0.

Assumption A2.5, Lemma B1, and Cauchy-Schwarz inequality yield
∣∣∣
D
bR, s
E∣∣∣ ≤

∥∥∥ bR
∥∥∥ ksk

= OP

(∥∥∥ bA− A
∥∥∥
2
)

= oP (n
−1/2).

Then, by continuity of the inner product, hbg, si !p hg0, si ≡ 1, and by Slutzky Theorem

p
n
(
bb− b0

)
= −

p
nb20

D(
bA− A

)
g0, s

E
+ oP (1).

Hence, the result follows from Lemma B3. !

Proof of Theorem 5. Define the operators L = b0A− I, and its estimator bL = bb bA− I. Then, by
definition

0 = bLbg − Lg0
= L(bg − g0) + (bL− L)g0 + (bL− L)(bg − g0). (20)
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First, from previous results it is straightforward to show that
∥∥∥(bL− L)(bg − g0)

∥∥∥ = oP
(p

nh`n

)

and ∥∥∥(bL− L)g0 − b0( bA− A)g0
∥∥∥ = oP

(p
nh`n

)
.

Hence, in L2,

p
nh`nL(bg − g0) = −

p
nh`nb0( bA− A)g0 + oP (1)

= −
p
nh`nb0∆n + oP (1).

!

Proof of Theorem 6. Set bζ(Ci, Vi) = −Ci@bg(Ci, Vi)/@c/bg(Ci, Vi), which estimates consistently
ζ(Ci, Vi) = −Ci (@g0(Ci, Vi)/@c) /g0(Ci, Vi). Then, using standard empirical processes notation, write

p
n (γn (bg)− γ (g0)) =

p
n
(
Pnbζ − Pbζ

)
+
p
n
(
Pbζ − P ζ

)
.

By the P -Donsker property of D, P (bg 2 G)! 1 and the consistency of bg,

p
n
(
Pnbζ − Pbζ

)
=
p
n (Pnζ − P ζ) + oP (1).

Since bg − g0 is bounded with probability tending to one, we can apply integration by parts and use
Assumption A3 to write

p
n
(
Pbζ − P ζ

)
=

p
n hlog(bg)− log(g0), di+ oP (1)

=
p
n hbg − g0,χi+ oP (1),

where the last equality follows from the Mean Value Theorem and the lower bounds on g and bg.
Note that χ 2 N?(L), since hg0,χi = E[d(C, V )] = 0. Then, by Lemma B4

p
n
(
Pbζ − P ζ

)
=
−b0p
n

nX

i=1

χ∗s(Ci, Vi)"i + oP (1),

and therefore

p
n (γn (bg)− γ (g0)) =

1
p
n

nX

i=1

(ζ(Ci, Vi)− P ζ)− b0χ∗s(Ci, Vi)"i + oP (1).

The result then follows from the Lindeberg-Levy central limit theorem and E["i|Ci, Vi] = 0. !
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