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ABSTRACT 

The interaction between social structure and markets remains a central theme in the social sciences. In 

some instances, markets can build on and enhance social networks' economic role; in other contexts, 

markets appear to be in direct competition with social networks. The impact of markets on inequality and 

welfare is also varying: while markets can sometimes offer valuable outside options to marginalised 

individuals, in other situations only well connected and better off individuals can benefit from them. 

In this paper, our goal is to understand the economic mechanisms that can explain these different 

empirical patterns. 

We develop a simple model that combines social networks and a mix of network-exchange and 

market-exchange activities. The key to understanding the empirical patterns and phenomena lies in the 

relation between the two activities i.e., whether they are (strategic) complements or substitutes. Social 

connectedness facilitates the adoption of the market action if the two activities are complements; the 

converse is true in case of substitutes. Inequality in a social structure is typically reinforced by the market 

in case the two actions are complements; the converse holds true if they are substitutes. 
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Abstract
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social sciences. In some instances, markets can build on and enhance social networks’
economic role; in other contexts, markets appear to be in direct competition with social
networks. The impact of markets on inequality and welfare is also varying: while mar-
kets can sometimes o↵er valuable outside options to marginalised individuals, in other
situations only well connected and better o↵ individuals can benefit from them.

In this paper, our goal is to understand the economic mechanisms that can explain
these di↵erent empirical patterns.

We develop a simple model that combines social networks and a mix of network-
exchange and market-exchange activities. The key to understanding the empirical pat-
terns and phenomena lies in the relation between the two activities i.e., whether they
are (strategic) complements or substitutes. Social connectedness facilitates the adoption
of the market action if the two activities are complements; the converse is true in case
of substitutes. Inequality in a social structure is typically reinforced by the market in
case the two actions are complements; the converse holds true if they are substitutes.
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1 Introduction

“Commerce is a pacific system, operating to cordialise mankind, by rendering... individuals useful

to each other... The invention of commerce... is the greatest approach towards universal civilisation

that has yet been made.” (Thomas Paine, 1792: 215)

“[The] legacy [of social morality] has diminished with time and with the corrosive contact of the

active capitalist values - and more generally with the greater anonymity... of industrial society... As

individual behavior has been increasingly directed to individual advantage, habits and instincts based

on communal attitudes and objectives have lost out.” (Fred Hirsch, 1976: 117-18)

The relationship between market institutions - based on anonymous transactions and ruled by
price mechanisms - and exchange systems founded on social networks remains a central theme
in the social sciences. In some contexts, markets are associated with the erosion of traditional
institutions and indigenous cultures: for instance, market liberalization is found to erode
caste networks in India by providing women with outside economic opportunities (Munshi
and Rosenzweig, 2006). In other contexts, markets can be key to the revival of traditions
and cultures: for example, when social networks are dense, emerging tourism markets can
contribute to the revitalization of endangered languages (Kroshus Medina, 2006). The growth
of new information technologies illustrates this tension also. Mobile telephony markets, for
example, can build on and enhance social networks’ information-sharing role. Jensen (2007)
and Srinivasan and Burrell (2013) show that the large-scale adoption of mobile phones enabled
fishermen in Kerala (India) to share information about local fish markets and fishing sites
within their network of friends, relatives and business partners. On the other hand, the rise of
online social networks such as Facebook and Twitter is intimately associated with the decline
of the market for newspapers (Newman, 2009; Currah, 2009).

In this paper, our goal is to understand the economic mechanisms that can account for these
di↵erent empirical outcomes.

Our model combines social structure and a mix of network and market exchange activities.
Agents can partake in network exchange (action x) and in market exchange (action y), respec-
tively at price px > 0 and py > 0. A player’s payo↵s to action x are increasing in the number of
neighbours in the network who adopt the same action: this feature captures the personalized
nature of network-based exchange, with one’s payo↵s depending on one’s possible exchange
partners in one’s network. This feature can also be viewed as a reduced form specification for
sustained reciprocal exchange between players. In contrast, market exchange is anonymous
and short-term, and agents are price-takers: payo↵s to action y thus depend solely on its
price. The final ingredient is the relationship between the returns to the network and market
actions: we allow for both a complements and a substitutes relation. This framework allows us
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to study who adopts the network and market action, respectively, and how this choice a↵ects
aggregate welfare and inequality.

We begin by examining the trade-o↵s an individual faces. She can adopt the network action
x at price px, and the market action y at price py. To fix ideas, assume that the two activities
are perfect substitutes. Letting the (gross) returns to the market action be 1, she compares a
payo↵ of 1 � py with the payo↵ from the network action. This latter payo↵ depends on the
number of her neighbors and their choices. The choice of her neighbors in turn depend on how
many neighbors they have and how many of them adopt x. Given the prices and the returns,
suppose it takes q neighbors adopting action x to justify her choice of action x. We are then
led naturally to the notion of a set of individuals who each have q or more neighbors, whose
neighbors in turn each have q or more neighbors, and so forth. We say a q-connected club is
the maximal set of players having strictly more than q links with other players belonging to
the club. Theorem 1 shows that equilibrium behavior in our model is fully characterized by
choices in the q-connected club. The result also develops a relationship between prices and
the complements vs substitutes relation and the threshold q.

We use this characterization to study the relation between social structure and market par-
ticipation in detail. We begin with a simple question: who partake in market exchange?
Theorem 1 states that if market exchange and network exchange are substitutes, then the
members of the q-connected club adopt network action, while those outside choose the market
action (if 1 � py > 0). By contrast, in the case of complements, participation in market ex-
change goes hand in hand with social connections: the members of the q-connected club adopt
both actions, while those outside may adopt neither action. We are also able to study the
e↵ect of di↵erent social structures on behavior: an increase in social connectedness expands
the q-connected club and therefore diminishes market participation when the two actions are
substitutes; the converse is true when they are complements (Proposition 1).

We then turn to the issue of welfare. Interestingly, we show that an increase in payo↵s from the
market action always raises welfare when the actions are complements, but that it may reduce
welfare when they are substitutes (Proposition 2 and Corollary 1). The intuition behind this
result is that when individual j switches from the network action x to the market action y
when the latter’s payo↵s increase, she imposes a network externality on her neighbors who
stay with x. This network externality may be larger than the benefits j achieves by opting for
y. Conversely, in the complements case, the availability of market exchange always raises the
returns from network exchange and has thereby the potential of a positive multiplier e↵ect on
welfare.

Finally, we examine inequality. We find that an increase in the payo↵s from the market action
y typically raises inequality when the market is a complement to the network action, while
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the converse holds true when they are substitutes (Propositions 3 and 4). In the complements
case, the market action typically favors the players who are already better-o↵ i.e., players in
the q-connected club. In the substitutes case, the market action o↵ers an outside option to
players who benefit the least from the network, and as such clearly has the potential to reduce
inequality.1

The principal contribution of our paper is a model that o↵ers a parsimonious explanation for
a range of empirical phenomena pertaining to the interaction between social structure and
markets. We illustrate the scope of our model with a range of important applications. In
some applications, markets are direct substitutes to networks. This is the case for market
liberalization and caste networks in India: here markets crowd out networks by o↵ering an
outside option to poorly connected individuals. So doing, they reduce inequality, but also
reduce welfare for those who keep exchanging in the network. In the case of online social
networks and traditional media, it is the market that is crowded out by the raising payo↵s to
network exchange. Online social networks (e.g. Facebook) indeed provide individuals with op-
portunities to share information cheaply with their connections, thus making costly traditional
sources of information (e.g. newspapers) redundant. On the other hand, in other applications
(mobile telephony and fishermen in Kerala, India; tourism markets and the preservation of
local language and culture), networks and markets complement each other. Better connected
individuals are more able to take advantage of markets, which ultimately raise welfare but
also lead to greater inequality. Section 6 below elaborates on these points. There we map
these di↵erent contexts into our framework and then illustrate how our theoretical predictions
are consistent with the empirical outcomes.

Our paper contributes to a long-standing and distinguished literature concerned with the social
impact of markets and the interaction between market and non-market exchange. There is,
on the one hand, the classical doux-commerce argument, going back to the eighteenth century,
which purports that markets reinforce durable and peaceful social relations (e.g. Montesquieu,
1748; Paine, 1792; Condorcet, 1795). This argument relies on the view that markets open op-
portunities for exchange, which reinforce individuals’ incentive to cooperate with each other
to cease these opportunities. On the other hand, some scholars have argued that the ex-
pansion of markets, accompanied by wide ranging changes in attitudes and institutions, can
crowd out social ties and deplete welfare (e.g. Polanyi, 1944; Thompson, 1963; Scott, 1977;
Gudeman, 2008; for a popular recent statement close to this view, see Sandel, 2012).2 This
argument relies on the view that community-based economies, or moral economies, rest on
norms of mutual support and reciprocity that “outside options” like markets undermine. Our

1In the basic model, individuals are identical except for di↵erences in network connections. In an extension
we consider the case of heterogeneity on other dimensions, such as human capital. Our main results on the
relation between markets, networks and inequality continue to hold if this individual characteristic is positively
correlated to network connections.

2For eloquent accounts of this debate, see Hirschman (1977; 1982) and Besley (2012).

3



framework accounts for these two opposed arguments in a single model: while markets can
increase individuals’ incentives to engage in network exchange when they are complements,
the opposite occurs when they are substitutes. While welfare always increases in the former
case, it may decrease in the latter.

Our paper also draws on and contributes to the literature on the limits of markets and the
need for alternative forms of organization. Economists have explored these limits along a
number of dimensions and have highlighted the important role of institutions, in particu-
lar the firm, to mitigate transaction costs (Coase, 1937; North and Thomas, 1973; Arrow,
1974; Williamson, 1975). In a similar vein, sociologists have emphasised social networks’ role
in information dissemination, which is essential for the proper functioning of markets (e.g
.Granovetter, 1985). This idea, which suggests a complements relation between information,
networks and markets, has been formalised and applied in a number of economic situations
(e.g. Montgomery, 1991; Casella and Rauch, 2003; Calvo-Armengol and Jackson, 2004; Gale-
otti, 2010, Galeotti and Merlino, 2014). There is also a small but important body of work that
views markets and social networks as substitutes (e.g. Kranton, 1996; Munshi and Rosen-
zweig, 2006). Our paper provides a unifying framework for this body of work by incorporating
the complements/substitutes aspect of market vs network activity within a model of social
networks.3

Finally, we contribute to the theoretical study of economic behavior in social networks. In
particular, the study of games on networks is currently very active; see e.g., Ballester, Calvo-
Armengol and Zenou (2006), Bramoulle and Kranton (2007), Galeotti et al., (2010), and Goyal
and Moraga (2001). Jackson and Zenou (2014) provide a survey of this work. Interest has
centered on games with a single action and payo↵s that depend on own and neighbors’ actions.
The analysis of these games has highlighted the usefulness of the distinction between strategic
substitutes and complements in understanding the e↵ects of networks on behavior. Our paper
extends this literature by adding an anonymous market action, in addition to the network
action. This allows us to address substantive questions on the relation between networks and
markets and the implications for inequality, that lie outside the scope of the existing literature.

The rest of this paper is organized as follows. Section 2 presents the model, while section 3
provides a characterization of equilibrium. Section 4 presents the study of market participa-
tion, welfare and inequality. Section 5 studies heterogeneity with respect to human capital.
Section 6 discusses evidence from a number of empirical contexts to illustrate the scope of our
model. Section 7 concludes.

3In section 6, we illustrate how the model in Munshi and Rosenzweig (2006) may be obtained as a special
case of our framework.
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2 The Model

Consider a group of players N = {1, 2, ...n} with n � 3. A link between two players takes
on binary values: gij = 1 signifies the existence of a link, while gij = 0 indicates the absence
of a link. Denote by g the graph of links. We assume gii = 0 by convention. We define
Ni (g) = {j 2 N : gij = 1} as player i’s neighborhood and denote her degree by ki = |Ni (g) |.

Every player i chooses two actions, xi and yi, where xi 2 X ⌘ {0, 1} and yi 2 Y ⌘ {0, 1}.
Players’ action set is denoted A = X ⇥ Y and the set of all action profiles is denoted by An.
The action x is the “network exchange action”, with price px > 0. The action y is the “market
exchange action”, with price py > 0. Let p = (px, py). Player i’s payo↵s function is written
as:

⇧i (x, y|p,g) =
X

j2N
i

(g)

xjxi + yi + ✓yi
X

j2N
i

(g)

xjxi � pxxi � pyyi (1)

where ✓ captures the substitutability or complementarity between x and y.

We now discuss the key elements of the payo↵ function (1).

First, note that the network action x displays local complementarity. This specification cap-
tures an important characteristic of network-based exchange systems: one’s payo↵s depends
on the number of one’s potential exchange partners in one’s network. One may also think of
this specification as a reduced form for sustained reciprocal exchange between players: such
exchange takes place if and only if two players partake in it, and there is no free-riding in
equilibrium (e.g. Kranton, 1996). Note also that action x has fixed cost px. One may however
think of situations wherein px rises or falls with the number of neighbours partaking in x.
For example, the cost of reciprocal exchange may be fixed for each reciprocal relationship,
in which case px would rise in the number of neighbours engaging in x. Conversely, if x is
“learning a communal language”, for instance, then px may fall in opportunities to practice
that language, and hence in the number of neighbours who partake in it. Our results are
robust to such modifications

Second, the payo↵s to the market action y are exogenous, for all players. Unlike network
exchange, a player’s payo↵s from market exchange do not depend on her network. This
specification applies for large markets where market thickness is not markedly influenced by
players’ decisions.4

4Market thickness, however, could easily be accounted for by assuming that players’ payo↵s to y display
global complementarity. This would give rise to the possibility of coordination failure in market exchange.
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Third, the relation between actions x and y is captured simply by the parameter ✓. In
particular, when �1 < ✓ < 0, x and y are imperfect substitutes, while they are perfect
substitutes when ✓ = �1. When ✓ > 0, x and y are complements (and the more so the larger
✓). For simplicity we focus on and contrast the two cases ✓ = �1 and ✓ = 1. Appendix B
provides a full characterization of equilibria for any ✓ � �1.

We now describe the solution concept of the game. For a graph g, a strategy profile (x⇤, y⇤)
is an equilibrium if for every i 2 N , (x⇤

i , y
⇤
i ) maximizes ⇧i

�

(xi, yi),x⇤
�i,y

⇤
�i|g

�

. Local com-
plementarity in x creates the potential for coordination failure; it is easy to see that xi = 0
for all i 2 N is an equilibrium even in cases when all players would prefer to coordinate on
x = 1. As our interest is in the relation between networks and markets, we wish to avoid these
coordination issues. We say that a strategy profile (x, y) Pareto-dominates another profile
(x0,y0) if ⇧i (x,y|g) � ⇧i

�

x
0
,y

0 |g
�

for all i 2 N , with an inequality strict for at least one
j 2 N . An equilibrium (x⇤, y⇤) is said to be maximal if there does not exist another equilib-
rium (x0, y0) 2 An that Pareto-dominates it. We focus solely on cases of maximal equilibrium
(ME).

Furthermore, we are interested in understanding the impact of markets on social welfare.
Given a network g and a price vector p, aggregate welfare from a strategy profile (x,y) is
given by:

W (x,y|p,g) =
X

i2N

⇧i(x,y|p,g). (2)

3 Networks, prices and behavior

This section proves existence and uniqueness and then provides a characterization of the ME.
It is useful to start the analysis with the decision problem of an individual who has a pure
choice between x = 1 and x = 0. The payo↵ to xi = 1 will be the number of her neighbors
who choose x = 1 less the price px. Thus, she will choose x = 1 if and only if the number
of her neighbors choosing x = 1 is higher than px. Similarly, her neighbors will choose x = 1
if a su�cient number of their own neighbors choose x = 1. This motivates the idea of a
q-connected club, which we formally develop here.

Denote by Sq ✓ N the set of players who have strictly more than q 2 R
+

links in network g.
Define Ŝq ✓ Sq as a set of players who all have strictly more than q links with players who
belong to Ŝq. Denote by Sq the largest such set. We hereafter refer to Sq as the q-connected
club. It is immediate that for any network g and for any q 2 R

+

, there is a unique q-connected
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Figure 1: The 4-connected club

Top left: initial graph. Top right: delete all nodes with k  4. Bottom left: among the nodes remaining, delete those with

k  4. Bottom right: the 4-connected club obtains when no further iteration is possible.

club.5 We now provide an algorithm to obtain the q-connected club in any network.

Algorithm Consider any network g. To find its q-connected club (for q 2 R
+

), first delete
all the nodes (and their links) in g for which k  q . Label the residual graph g

1

. In step
2, delete all the nodes (and their links) in g

1

for which k  q. Iterate until no node with
k  q remains, which happens when g

t

= g
t+1

. The residual graph in this last step is the
q-connected club.
By way of illustration, consider the network on Figure 2. Suppose that we want to find the
4-connected club. First, find all the nodes with k  4, and delete them and their links. In
step 2, delete the nodes with 4 or less links in the residual network from step 1. Proceed
likewise unless no node with k  4 remains. The remaining nodes form the 4-connected club.

We now examine the incentives of individuals to choose di↵erent actions. Consider first
5In the complete network, S1 = S2... = Sn�2 = N , while Sn�1 = {;}. In a star network, S0 = N , while

Sk = {;} for all k > 0.
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the case where x and y are substitutes. In this case, a player will always choose either
(xi = 1, yi = 0), (xi = 0, yi = 1) or (xi = 0, yi = 0). Simple calculations reveal that for player
i to prefer xi = 1 to any other profile, she must have more than q

0

neighbours who play x = 1,
where:

q
0

=

(

1� py + px if py < 1

px if py � 1
(3)

Second, consider the case of complements. This case is a little more involved as both actions
can be chosen together. Denote by q

1

the number of links to neighbors playing x = 1 required
for player i to be indi↵erent between xi = yi = 1 and any other action profile. Formally:

q
1

=

(

p
x

2

if py < 1

max
n

py � 1, p
x

+p
y

�1

2

o

if py � 1
(4)

We are now ready to state our first main result.

Theorem 1 An equilibrium exists and is generically unique. Let (x⇤,y⇤) be the maximal
equilibrium.

• Substitutes ✓ = �1: If py < 1, then (x⇤
i , y

⇤
i ) = (1, 0) for i 2 Sq0 and (x⇤

i , y
⇤
i ) = (0, 1)

for i /2 Sq0. If py � 1, then (x⇤
i , y

⇤
i ) = (1, 0), for i 2 Sq0 and (x⇤

i , y
⇤
i ) = (0, 0) for i /2 Sq0.

• Complements ✓ = 1: If py < 1, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sq1 and (x⇤

i , y
⇤
i ) = (0, 1)

for i 2 Sq1. If py � 1, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sq1, (x

⇤
i , y

⇤
i ) = (1, 0) for i 2 Sp

x

\Sq1

and (x⇤
i , y

⇤
i ) = (0, 0) for i 2 N\Sq1 [ Sp

x

.

Proof. All proofs in Appendix A.

To illustrate the implications of Theorem 1, we examine the equilibrium in the regular network
and the core-periphery, as presented in Figure 2.6 Denote by SCP

q and SR
q the q-connected

clubs in the CP and the regular networks, respectively. Observe that the relevant level of
threshold connectivity q is determined by both p and ✓.

Example 1 Suppose that prices are given by (px, py) = (3.2, 0.5).

• Substitutes: Then, q
0

= 1 � py + px = 3.7. Since SCP
3.7 = Nc and SR

3.7 = {;}, then
at the the maximal equilibrium {xi, yi}i2N

P

= (0, 1) and {xi, yi}i2N
C

= (1, 0) in the CP
network, and {xi, yi}i2N = (0, 1) in the regular network.

• Complements: Then, q
1

= p
x

2

= 1.6. Since SCP
1.6 = Nc and SR

1.6 = N , then at the
maximal equilibrium {xi, yi}i2N

P

= (0, 1) and {xi, yi}i2N
C

= (1, 1) in the core-periphery
network, and {xi, yi}i2N = (1, 1) in the regular network.

6In a CP network, core players (with population nc) form a clique and have degree kc = nc � 1 + np/nc,
while periphery players (with population np) are only connected to a single core player (thus kp = 1). In a
regular network, ki = k � 1 for all i 2 N .
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Figure 2: Core-periphery and regular networks

To conclude this section, we briefly relate our concept of q-connected club to q-cohesiveness
discussed in Morris (2000). Morris (2000) defines a subset of players S as q-cohesive if all
players in S have at least a fraction q of their neighbors in S. The notion of q-connected
club is related to cohesiveness in the sense that it requires recursive connectivity, but there is
one important di↵erence. The concept of a q-connected club relies on an absolute number of
links, while the cohesive set is defined in terms of proportion of links. This di↵erence has a
substantive content in our context as q-connected clubs will refer to well connected individuals.
There is no such presumption in a q-cohesive set.

4 Market participation, welfare and inequality

4.1 Market participation

A central theme in the social sciences is how social structure and markets interact. We examine
the receptivity of social structures to market activity: are sparse or dense social structures
more receptive to markets? Within a society, are highly connected and central players or
poorly connected and marginalized individuals more receptive to markets?

We know from Theorem 1 that, given a network g, there generically exists a unique maximal
equilibrium (x⇤,y⇤). We define market participation, Y(p,g), as the fraction of players who
choose y = 1 in this equilibrium.

Y(p,g) ⌘
P

i2N y⇤i (p,g)

N
(5)

The following result summarizes our study of market participation.
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Proposition 1 For ✓ = �1 and any two pairs (p,g) and (p0,g0), Y(p,g) > Y(p0,g0) if
and only if |Sq0(p,g)| < |Sq0(p

0,g0)|. For ✓ = 1, and any two pairs (p,g) and (p0,g0),
Y(p,g) > Y(p0,g0) if and only if py < 1 and |Sq1(p,g)| > |Sq1(p

0,g0)|. In particular:

• Networks. Y(p,g) (weakly) decreases with the addition of a link in the network when
✓ = �1; the converse holds for ✓ = 1.

• Prices. If ✓ = �1, then Y(p,g) is (weakly) decreasing in py and (weakly) increasing in
px. If ✓ = 1, then Y(p,g) is (weakly) decreasing in both py and px.

The first part of Proposition 1 is a corollary of Theorem 1: whether a price profile and social
structure facilitates or hinders market participation depends on the q-connected club. In
case of substitutes, the smaller this club, the deeper market participation; the converse holds
true for complements. A first observation is thus that the e↵ect of adding links on market
participation will depend on whether x and y are complements or substitutes. Indeed, since
adding links has the direct e↵ect of weakly expanding the size of the q-connected club for any
q, it will make y less attractive if ✓ = �1, but will foster its adoption if ✓ = 1.

We now examine more closely the relation between prices and networks, on the one hand, and
the size of the q-connected club, on the other hand. It is useful to first observe the ways in
which network architecture and location within a network a↵ects market participation. To get
an impression of the issues involved, consider the core-periphery (CP) and regular networks
introduced in Figure 2. Denote by Y

�

p,gCP
�

and Y
�

p,gR
�

the market participation at
the maximal equilibrium in the CP network and the regular network, respectively. We now
compare market penetration in these two networks: to fix ideas, let us consider the case of
substitutes, and fix py = 0.5. Note that adopting the action y brings 1 � py = 0.5 to any
player. When px < 0.5, then q

0

= 0.5 + px < 1, and so all players in both the regular and
the CP networks strictly prefer x to y. Hence, Y

�

p,gR
�

= Y
�

p,gCP
�

= 0. If px lies in
the range 0.5  px < 2.5, 1 < q

0

< 3, and so periphery players prefer to switch to y while
core players and players in the regular networks strictly prefer to stick to x. As a result,
Y
�

p,gR
�

= 0 < Y
�

p,gCP
�

= n
p

n
. If px lies in the range 2.5  px < 3.5, then 3 < q

0

< 4,
and all players in the regular network now strictly prefer to switch to y = 1, while only the
core players prefer to stick to x. Consequently, market participation in the regular network is
then higher than in the CP network, with Y

�

p,gR
�

= 1 > v = n
p

n
. Finally, when 3.5  px,

then all players strictly prefer y in both networks, and so Y
�

p,gR
�

= Y
�

p,gCP
�

= 1. Figure
3 summarizes these results.

Proposition 1 analyses market penetration in networks where there is no coordination failure
on x. The next remark summarize the e↵ects on Y(p,g) of a failure to coordinate on the ME.

Remark 1 Suppose that players coordinate on an equilibrium (x̂, ŷ) which is not the ME.
Denote by Ŷ(p,g) the market participation at that equilibrium. Then, if ✓ = �1, Ŷ(p,g) �
Y(p,g); conversely, if ✓ = 1, Ŷ(p,g)  Y(p,g).
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Figure 3: Market participation in the CP and regular networks
The case of substitutes

Remark 1 states that coordination failure will foster (hamper) market participation when x
and y are substitutes (complements). When x and y are substitutes, a failure to coordinate
on x (weakly) reduces the value of action x to players. This makes action y all the more
attractive as an outside option. Conversely, when x and y are complements, coordination
failures will make action x less profitable, which will reduce players’ demand for y.

4.2 Aggregate welfare

This section studies the impact of markets on aggregate welfare. To do so, we compare welfare
in a society prior to and after the introduction of the market action, y. Let W (p,g) denote
the aggregate welfare in the maximal equilibrium (x⇤,y⇤), with:

W (p,g) = W (x⇤,y⇤|p,g). (6)

Given (p,g), we say that an outcome (x, y) is e�cient if W (x,y|p,g) � W (x0,y0|p,g), for all
(x0, y0) 2 An.
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We begin our study with the following result on aggregate welfare.

Proposition 2 Aggregate welfare W (p,g) (weakly) increases with the size of the q-connected
club, for any q. In particular:

• Networks. In a regular network, the unique maximal equilibrium is e�cient; in non-
regular networks, it may be ine�cient. Moreover, adding a link to a network (weakly)
increases W (p,g).

• Prices. When ✓ = �1, W (p,g) is (weakly) decreasing in px and non-monotonic in py.
When ✓ = 1, W (p,g) is (weakly) decreasing in both px and py.

The first statement in the Proposition 2 follows from the observation that a bigger q-connected
club always o↵ers a larger potential for social earnings; therefore, it weakly raises aggregate
welfare.

Since the network action o↵ers local complementarities, players do not fully internalize the
positive (social) payo↵s of playing x = 1. There is thus a risk of under-provision of x compared
to the social optimum. In regular networks, however, under-provision is avoided. Indeed,
suppose that xi = 1 for all i 2 N is the e�cient outcome. Consider player j with k neighbours
who are all playing x = 1. If j decides to play x = 0, it is necessarily because x is not profitable
to her even if she fully enjoys the local benefits of her neighbours playing x = 1. Since the
network is regular, what is true for j is true for all other players, which means that the actions
x and y are undertaken in regular networks if and only if they maximize the welfare of all
players. This reasoning clearly does not hold in non-regular networks. For instance, periphery
players in CP networks may under-provide x relative to the e�cient outcome.

We move now to the e↵ects of additional network links on aggregate welfare. Proposition 2
establishes that aggregate payo↵s are monotonically increasing in links. The intuition behind
this result is straightforward. In the case of complements, an additional link weakly raises the
marginal returns from action x and expands the q-connected club, for any q. In turn, greater
adoption of action x weakly raises the marginal returns from action y. Thus, individual payo↵s
must weakly increase with additional links; this also holds true at the maximal equilibrium.
In the case of substitutes, the result follows from the above reasoning and from noting that
the payo↵s to action y are independent of others’ choices.

We now briefly study the role of network heterogeneity on aggregate welfare. Our analysis
once again suggests that network heterogeneities have complex e↵ects on aggregate payo↵s:
this notably stems from the complex patterns of market participation. To illustrate these
e↵ects, we compare again a regular network with a CP network. Denote by W

�

p,gR
�

and
W

�

p,gCP
�

the aggregate welfare at the maximal equilibrium in the regular network and in
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Figure 4: Aggregate welfare in a regular network and a CP network
n = 10, l = 225 and px = 1.5

the CP network, respectively. Suppose that x and y are complements and fix px = 1.5. Figure
4 plots the aggregate welfare attained in these networks as a function of py.

If py � 6, then y is too costly to be adopted in either network. All players in the regular
network choose x = 1, while only core players choose x = 1 in the CP network. Even
though the latter derive individually more payo↵s than any player in the regular network,
they are few, and so W

�

p,gR
�

> W
�

p,gCP
�

. If py is raised to 4  py < 5, y becomes cheap
enough for core players in the CP network, but remains too costly for all other players. For any
4  py < 4.5, higher market participation in the CP network entails W

�

p,gR
�

< W
�

p,gCP
�

.
If 1.5  py < 4, then y becomes cheap enough for players in the regular network. This entails
full market participation in the regular network, leading to a welfare reversal again with
W

�

p,gR
�

> W
�

p,gCP
�

for any 1.5  py < 3.5. Finally, if py < 1.5, then all players in both
networks choose x = y = 1 and W

�

p,gR
�

= W
�

p,gCP
�

.

The last part of Proposition 2 describes the welfare impact of px and py. Note first that
players’ utility is always weakly increasing in the number of their neighbors who choose x = 1.
Therefore, a falling px always increases their utility either directly (since x becomes cheaper)
or indirectly (if more of their neighbors decide to engage in x). The e↵ect of py on welfare is
however more intricate. Clearly, when ✓ = 1, welfare increases when py falls. However, when
✓ = �1, two e↵ects may oppose each other. On the one hand, a falling py entails a direct
increase in the utility of players who play y = 1. On the other hand, a falling py may push
certain players to switch from x to y, entailing a decrease in the payo↵s of their neighbors
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who play x = 1. The net e↵ect of a decrease in py on welfare may thus be either negative or
positive.

A long-lasting and important concern in the social sciences has been the potentially deleterious
welfare e↵ects of markets on welfare. Our framework allows an explicit examination of the
circumstances under which the introduction of markets is welfare-enhancing. The following
result summarizes our analysis.

Corollary 1 In the case of complements, the introduction of the market action always (weakly)
increases aggregate welfare. In the case of substitutes, the introduction of the market action
may lower aggregate welfare.

Observe first that in the case of complements, the introduction of y can indeed at best foster
players’ adoption of the network action x or, at worse, leave it unchanged. In that case, the
introduction of y implies (weakly) larger individual payo↵s, and hence also a larger aggregate
welfare. However, if x and y are substitutes, the introduction of y is not generally welfare-
enhancing due to network externalities. We provide an example to illustrate this possibility.

Consider the CP network on Figure 1, and suppose that px < 1. Prior to the introduction
of y, all players necessarily choose x = 1. Suppose now that the market action y becomes
available. If py > px, clearly no player desires to switch from x = 1 to y = 1. However, when
0 < py < px < 1, then all periphery players switch to y = 1, while core players stick to x = 1.
On the one hand, periphery players increase their payo↵s by px�py < 1 following their switch.
On the other hand, a periphery player’s switch entails a decrease in the benefits of the core
player she is connected to of exactly 1. The net e↵ect is thus always strictly negative. Hence,
in any CP network, the introduction of the market action y lowers aggregate welfare whenever
0 < py < px < 1.

The above example motivates a closer examination of the nature of networks where markets
lower welfare. Are there networks for which markets always raise welfare even when markets
are a substitute for network actions? Proposition 2 provides us with a first response to
this question. In particular, our analysis suggests that it is the heterogeneity in the social
structure that may cause the aggregate welfare to fall with the introduction of markets (as the
equilibrium in regular networks is always e�cient and weakly increasing with the introduction
of markets).

4.3 Inequality

We now turn to the impact of markets on inequality. The measurement of inequality is a vast
subject and the literature has developed a wide and sophisticated set of measures over time
(see e.g. Sen, 1997). In order to appreciate the key factors at work, we begin our analysis with
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a simple measure that captures the inequalities between the extremes of a payo↵ distribution;
we then move to a much-used measure that is sensitive to the whole payo↵ distribution (Gini
coe�cient).

First, we examine the ratio of the highest payo↵s to the lowest payo↵s in the maximal equi-
librium. Given network g and prices p, this ratio is denoted by R(g,p) and is defined as
follows:

R (p,g) ⌘
1 + max {⇡i (x, y)}i2N
1 + min {⇡i(x, y)}i2N

(7)

Note that a rising R (p,g) implies increasing inequality. Let R0 (p,g) denote the inequality
prior to the introduction of y, and R1 (p,g) its level after.

The ratioR (p,g) captures relative changes in the payo↵s of the “wealthiest” players compared
to those of the “poorest”. It is close in spirit to other traditional metrics of inequality, including
the range, the 20:20 ratio or the Palma ratio. The range consists in the di↵erence between the
payo↵s of the wealthiest and the poorest individuals of a population. The 20:20 ratio and the
Palma ratio consist respectively in the income ratio of the wealthiest 20% to the poorest 20%
and in the income ratio of the wealthiest 10% to the poorest 40%. While R (p,g) has the same
structure as these two measures, it requires less information about the income distribution
and the network structure.

Proposition 3 When ✓ = �1, the introduction of the market action y (weakly) decreases
R (p,g). When ✓ = 1, it (weakly) increases R (p,g) except when Sq1 = N ; in this case its
e↵ect is ambiguous.

In the case of substitutes, individuals choose either x or y. It is players who are most disad-
vantaged in the traditional social structure who find action y to be an especially attractive
outside option. Thus, the introduction of y has the potential of raising the payo↵s of the
players at the bottom of the income distribution. The payo↵s of players at the top of the
distribution, on the other hand, can only decline as some of their neighbors may switch from
x to y. Putting together these two forces yields the result that markets unambiguously lower
inequality in the case where the market and the network actions are substitutes.

When x and y are complements, the e↵ect on inequality depends on the social structure and
the prices of the two actions. This is because unlike the substitutes case, the lowest and highest
payo↵s may both increase with the introduction of markets. Therefore, the e↵ect on inequality
will depend on the relative magnitude of these increases. In spite of this complication, we show
that so long as not everyone adopts both x and y, markets unambiguously increase inequality.

We sketch an outline of how inequality can be worsened by introducing a market for the case
where py  1. In this case, all players adopt y in the post-market equilibrium. Suppose
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however that no one adopts x: in that case, as x and y are complements, it must be the case
that no one adopts x in the pre-market situation. For all individuals, payo↵s equal 0 prior to
and 1 � py after the introduction of the market action. Inequality thus remains unchanged.
Suppose now that in the post-market equilibrium, some (but not all) players do adopt x.
While the payo↵s of x-adopters increase of at least 1� py + q

1

/2, the payo↵s of non-adopters
increase of only 1 � py. Hence, inequality increases. Similar arguments can be used to show
that inequality worsens in case py > 1, so long as not everyone adopts both x and y. When
all players adopt both x and y, however, matters are more complicated and the e↵ect on
inequality may go in either direction. The intuition is that the worst-o↵ players may benefit
relatively more or less than the best-o↵ players from the newly available y, depending on
prices. The following example illustrates this possibility.

Example 2 Consider the example of the core-periphery network in Figure 1; suppose px =
1.1. Note that R0 (p,g) = 3.9. Suppose y is introduced at py = 0.05. Then, R1 (p,g) = 3.81,
which indicates a falling R (p,g). Conversely, suppose y becomes available at py = 0.5. then
R1 (p,g) = 5.21. This indicates an increasing R (p,g).

Proposition 3 provides a clear-cut prediction with regard to the impact of markets. While
the result is sharp, it neglects all but the extreme payo↵s of the distribution. To address this
concern, we examine the e↵ects of markets on inequality as measured by the Gini coe�cient.
The Gini coe�cient, in addition to taking into consideration the poorest and the wealthiest
individuals, fully accounts for those in between. Given (p,g), we denote the Gini-coe�cient in
the maximal equilibrium by G(g,p). The following result summarizes the impact of markets
on inequality, as measured by the Gini-Coe�cient.

Proposition 4 When ✓ = �1, the introduction of the market action y (weakly) decreases
G (p,g), except if it decreases W (p,g) and Y (p,g) < 1. In that case, its e↵ect on G (p,g)
is ambiguous. When ✓ = 1, the introduction of y (weakly) increases G (p,g), except if: (i)
py < 1; or (ii) py � 1, Sp

x

\ Sq1 = {;} and Sq1 6= {;}. In these two cases, the e↵ect of y on
G (p,g) is ambiguous.

The first thing to note about Proposition 4 is its similarity to Proposition 3. Indeed, a quick
comparison between Propositions 3 and 4 shows that the e↵ect of the introduction of markets
on G (p,g) and R (p,g) typically goes in the same direction in most cases.

To illustrate the e↵ect of markets on inequality as measured by Gini-coe�cient, consider the
network presented in Figure 4. Figure 5 plots the changes to the Lorenz curve brough by the
introduction of y, for both the cases where ✓ = 1 and ✓ = �1 and for specific p. The Lorenz
curve represents the cumulative distribution of payo↵s.7 Let L

0

(i|p,g) denote the Lorenz
curve prior to the introduction of y, and L

1

(i|p,g) the Lorenz curve after. Note that the first
7Note that the Gini-Coe�cient is simply the ratio of the area between the Lorenz curve and the 45-degree

line to the total area below the 45-degree line.
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Figure 5: A three-layer society

third of the population on the x axis comprises the poorest players of the network on Figure 4
(always players 11 to 15). The second third and the last third always comprise, respectively,
players 6 to 10 and 1 to 5.

The e↵ect of markets on G (p,g) is explained as follows. Suppose px = 2.2. At the maximal
equilibrium, before the introduction of y, players 1 to 10 play x = 1 while players 11 to 15
play x = 0. Players 1 to 5, 6 to 10 and 11 to 15, respectively, thus have payo↵s of 2.8, 0.8
and 0, for a total aggregate welfare of W

0

(p,g) = 18. First consider the case of substitutes
(✓ = �1) and suppose y is introduced at py = 0.4. While players 1 to 10 do not change their
strategy, players 1 to 5 now play y = 1, which brings them payo↵s of 0.6. The new aggregate
welfare is W

1

(p,g) = 21. Since the payo↵s of players 1 to 10 have not changed but total
welfare has increased, the share of aggregate welfare going to players 1 to 10 falls. On the
other hand, the payo↵s of players 11 to 15 rises from 0 to 0.6, and so their share of aggregate
welfare increases. As a result, the Lorenz curve after the introduction of y, L

1

(i|p,g), lies
above L

0

(i|p,g), as shown on the left graph of Figure 5. This means that the Gini-coe�cient
falls after the introduction of y.

Next consider the case of complements (✓ = 1) and suppose that y is introduced at py = 4.1.
While players 6 to 15 do not change their strategy, players 1 to 5 adopt y as they enjoy
su�ciently large benefits from complementarity. The payo↵s to players 6 to 15 do not change,
but those of players 1 to 5 rise to 4.7. The aggregate welfare rises to W

1

(p,g) = 27.5. As a
result, the share of aggregate welfare going to players 6 to 15 falls, while that of players 1 to 5
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rises. The Lorenz curve after the introduction of y, L
1

(i|p,g), is completely below L
0

(i|p,g),
as shown on the right graph of Figure 5. Therefore, G (p,g) must have increased after the
introduction of y.

We finally turn to the case where the e↵ects of markets on inequality di↵er depending on
the measure of inequality we pick. The first di↵erence occurs when ✓ = �1: when W (p,g)
decreases and Y (p,g) 2 (0, 1), the e↵ect of the introduction of y on G (p,g) can go either
way, while it always weakly decreases R (p,g). The reason is that while the worst-o↵ players
always see their payo↵s increase comparatively to those of the best-o↵ players when markets
are introduced, the latter may nevertheless see their “share of the pie” increase if W (p,g)
decreases su�ciently. This may happen whenever the payo↵s of players in between fall sharply.
The following example illustrates this argument. Consider again the graph on Figure 5, and
fix px = 0.75. Before the introduction of y, the individual payo↵s of players 1 to 5, 6 to 10
and 11 to 15, respectively, amount to 4.25, 3.25 and 0.25, entailing W

0

(p,g) = 38.75 and
G
0

(p,g) = 0.3441. Now suppose that y is introduced at a price py = 0.7. The individual
payo↵s of players 1 to 5, 6 to 10 and 11 to 15, respectively, then amount to 4.25, 2.25 and
0.3. While the payo↵s of players 11 to 15 increase in comparison to those of players 1 to 5
(entailing a falling R (p,g)), the payo↵s of the latter clearly increase in proportion of W (p,g)
due to the important fall in the payo↵s of players 6 to 10. As a result, W

1

(p,g) = 34
and G

1

(p,g) = 0.3873, indicating a rising G (p,g). Now suppose that py = 0.2. Then,
W

1

(p,g) = 36.5 and G
1

(p,g) = 0.3150, indicating a falling G (p,g) compared the situation
without y.

The second di↵erence occurs when ✓ = 1. The e↵ect of the introduction of y on R (p,g) is
always weakly positive, except when players are all playing x = y = 1 after the introduction
of y, in which case it is ambiguous. The e↵ect on G (p,g) will naturally be ambiguous too
in this case, but will be ambiguous whenever some (but not all) players who were playing
x = 0 before the introduction of y play x = y = 1 after its introduction. The intuition is that
while the payo↵s of the best-o↵ players obviously increase compared to those of the worst-o↵
players, what the final distribution of payo↵s looks like is not clear. For example, if the worst-
o↵ players (playing x = y = 0, for instance) are few but the introduction of y enables a large
number of players to change their strategy from x = 0 to x = y = 1 after the introduction
of y, then the final distribution may improve in comparison to the initial one. Conversely, if
most players who player x = y = 1 after the introduction of y were also playing x = 1 before
its introduction, then clearly y is likely to aggravate inequality.

5 Extension: Heterogeneous agents

While the framework developed so far highlights the consequences of network heterogeneity,
individuals may be heterogeneous in other dimensions that a↵ect the extent to which they can
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benefit from markets. For example, individuals may di↵er in their levels of human capital or
initial wealth. Individuals with more human capital may be able to benefit more from market
opportunities than others. Likewise wealthy individuals may find the opportunity cost of the
market action y smaller than poorer peers. This motivates a study of the combined e↵ect of
network heterogeneity with other types of heterogeneity.

In the following analysis, we assume that players are also heterogeneous with respect to their
human capital. Player i’s human capital is captured by the parameter hi 2 [0, 1]. Ceteris
paribus, a higher hi enables player i to derive greater benefits from the market action y.
Taking into account this new parameter, player i’s payo↵s function is rewritten as:

⇧i (x, y|p,g) =
X

j2N
i

(g)

xjxi + hiyi + ✓yi
X

j2N
i

(g)

xjxi � pxxi � pyyi (8)

We next redefine the threshold quantities that are used in our characterization of maximal
equilibrium. Let q

0,i be the number of links to neighbours playing x = 1 required for player i
to be indi↵erent between xi = 1 and xi = 0 when x and y are substitutes, with:

q
0,i =

(

hi � py + px if py < hi

px if py � hi

(9)

When x and y are complements, denote by q
1,i the number of links to neighbours playing

x = 1 required for player i to be indi↵erent between xi = yi = 1 and any other action profile.
Formally:

q
1,i =

(

p
x

2

if py < hi

max
n

py � hi,
p
x

+p
y

�h
i

2

o

if py � hi

(10)

We next adapt the definition of the q-connected club introduced earlier. Consider a vector
q = {qi}i2N ascribing value qi to each player in N . Denote by Sq

i

the set of players who have
a degree strictly larger than their ascribed value. Hence, i 2 Sq

i

if and only if ki > qi, for all
i 2 N . Define Ŝq

i

✓ Sq
i

as a set of players who each have strictly more than links than their
ascribed value qi with players who belong to Ŝq

i

. Denote by Sq
i

the largest such set, which is
unique. We hereafter refer to Sq

i

as the qi-connected club.

Example 3 Consider the arbitrary graph presented on Figure 7. Suppose now that players
are either “high” or “low”. Ascribe the value 2 to high types, and 5 to low types; hence,
qi = qH = 2 i↵ i = H and qi = qL = 5 i↵ i = L. To find the qi-connected club, find all nodes
with ki  qi and delete them and their links. Then, repeat the previous step for the nodes in
the remaining sub-graph. Repeat until no node with ki  qi remains. The remaining nodes
form the qi-connected club.
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Theorem 2 A maximal equilibrium exists and is generically unique. Let (x⇤,y⇤) be the max-
imal equilibrium.

• Substitutes (✓ = �1): If py < hi, then (x⇤
i , y

⇤
i ) = (1, 0) for i 2 Sq0,i and (x⇤

i , y
⇤
i ) =

(0, 1) for i /2 Sq0,i. If py � hi, then (x⇤
i , y

⇤
i ) = (1, 0), for i 2 Sq0,i and (x⇤

i , y
⇤
i ) = (0, 0)

for i /2 Sq0,i.

• Complements (✓ = 1): If py < hi, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sq1,i and (x⇤

i , y
⇤
i ) =

(0, 1) for i 2 Sq1,i. If py � hi, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sq1,i, (x

⇤
i , y

⇤
i ) = (1, 0) for

i 2 Sp
x

\Sq1,i and (x⇤
i , y

⇤
i ) = (0, 0) for i 2 N\Sq1,i [ Sp

x

.

Note that the results presented in Propositions 1, 2 and 3 are all robust to heterogeneity in
human capital (with the exception of e�ciency in regular networks: the maximal equilibrium
is no longer necessarily e�cient). The results on inequality, however, may change substantially
if human capital is negatively related to membership in the q-connected club. To see why,
consider the CP network presented of Figure 2. Suppose that core and periphery players have
human capital hc = 1 and hp = 10, respectively. Suppose first that ✓ = �1 and that px = 3.
Before the introduction of y, only core players play x = 1, which brings them payo↵s of 1
each. As a result, W

0

(p,g) = 5 and R
0

(p,g) = 2. Now suppose that the market action y is
introduced at py = 2. While core players stick to x = 1, periphery players now play y = 1,
which brings them payo↵s of 8. Consequently,W

1

(p,g) = 45 andR
0

(p,g) = 8. This example
thus shows that when ✓ = �1, R (p,g) may in fact increase following the introduction of y.

6 Applications

This section illustrates the scope of our framework through a discussion of number of empirical
phenomena. We show that variations in ✓ and social structure account for the disparate
outcomes on market adoption, welfare and inequality in these situations.

6.1 Language and Local Cultures

In this sub-section, we discuss the relation between markets, culture and languages. The
empirical record is mixed: extensive studies show that markets and globalization are associated
with both cultural change and persistence (Inglehart and Welzel, 2005; Inglehart and Baker,
2000). We illustrate how social structure and the strategic relation between markets and local
cultures help explaining the di↵erent outcomes.

6.1.1 Caste Networks, Globalization and English Language Schooling

Munshi and Rosenzweig (2006) (henceforth MR) explore the impacts of market forces on
traditional institutions. The economic liberalization of the Indian economy in the 1990s
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entailed a shift toward the corporate and finance sectors, which increased the returns to
white-collar jobs for which knowledge of English was necessary. MR estimate that in the city
of Mumbai, the liberalization of the economy increased the premium to English education
(comparative to education in Marathi) by roughly 25% over the 1990s. However, they show
that boys of working-class and heavily networked sub-castes (jatis) took much less advantage
of the opportunities of the new economy than their female counterparts. As a result, while
the gap in English education between girls of high and low castes disappeared, the gap for
boys remained (roughly) intact. These educational di↵erences have important implications
for occupational choices: indeed, MR show that education in English prepares children for
white-collar jobs,while education in Marathi channels them into blue-collar jobs.

We first map this empirical setting onto our model. Parents choose to send their child to an
English school or to a Marathi school. The returns to English education are simply a function
of the child’s ability and the (exogenously given) premium to education in English. Let
“English education” be the market action y, with exogenous benefits and cost py. The returns
to education in Marathi, in contrast, depend on how many in the sub-caste also choose it:
MR report in some parts of Bombay, 68% of the men in working-class jobs found employment
through a relative or a member of the community.8 There is thus a positive externality
associated with participation in the network, and hence with the traditional occupational
choice in the jati. Let “Marathi education” be the network action x, which exhibits local
complementarity and has cost px. Observe that the choices of English or Marathi education
are mutually exclusive; this is consistent with our assumption that ✓ = �1. Finally, following
the discussion in MR, we assume that men are connected to other men within a sub-caste,
while girls have very few job connections. Finally, following the discussion in MR, we assume
that while men are connected to other men within a sub-caste, girls cannot make significant
use of these networks and have thus very few connections.

Given this mapping, Proposition 1 predicts that the adoption of y should ceteris paribus be
higher for girls than for boys in working-class sub-castes. This prediction is clearly consistent
with MR’s findings.9 Proposition 2 predicts that while the payo↵s of girls should increase,
the payo↵s of boys who choose education in Marathi should (weakly) decrease due to boys
“leaving” the network. While no direct evidence is provided on this, MR recognize this
possibility and suggest that caste networks “might place tacit restrictions on the occupational

8In particular, they note that in a household survey conducted between 1982 and 2001, 62% of parents
who chose education in Marathi reported “closer community ties” as a factor (while “career opportunities”
was the most important factor for parents’ decision to send their child to schools in English).

9In our basic model, in a regular network, all players should choose the same action. However, the authors
argue that the boys of sub-castes networks who adopted English education are those who were more talented.
This heterogeneity in outcomes is easily accounted for if we extend our model to human capital. With human
capital (or “ability”) the payo↵s to English education can be written as hi � py. Note that in this extended
model, the adoption of y by more talented (higher hi) individuals should leave the players who retain action
x worse-o↵. This is exactly what is reported in MR.
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mobility of their members to preserve the integrity of the network” and enhance welfare
(MR: 1230). Lastly, Proposition 3 predicts that income inequality between girls and boys
in working-class sub-castes should decrease. This is consistent with MR’s finding that a
previously disadvantaged group (girls) surpasses boys in educational attainment in the most
heavily networked sub-castes. This is exactly what MR report: “while it is generally believed
that the benefits of market liberalisation have accrued disproportionately to the elites in
developing countries... we find, instead, that a previously disadvantaged group (girls) might
surpass boys in educational attainment” (MR, 2006: 1250-51).

6.1.2 Tourism and the Preservation of Identity

The revival and preservation of endangered local cultures and languages is a major theme in
social anthropology. Kroshus Medina’s (2003) ethnographic work in the village of Succotz,
situated next to the Mayan ruins of Xunantunich in Belize, illustrates how tourism markets
may be instrumental in revitalizing and preserving local cultures and languages. She argues
that since archaeological work made the site of Xunantunich available, tourism has presented

... new possibilities for Succotzenos to claim or reclaim Maya identity and culture...
Tourism to Xunantunich has had a broader e↵ect on local ethnic hierarchies: as
tourists demonstrate interest in ancient Maya culture by generating demand for
goods that reflect that culture, positive value attaches to the Maya label. Villagers
are very cognizant of this fact. (Kroshus Medina, 2003: 361)

Tourism, she explains, has enhanced the value of traditional Maya knowledge – language and
handicrafts – that most young Succotzenos lacked. De Azeredo Grunewald’s (2002) anthro-
pological study of the Pataxo Indians in Porto Seguro, Brazil, o↵ers a very similar account.
Tourist demands, he claims, “have sponsored a cultural revival process”. In addition to hand-
icraft, this cultural revitalization is particularly visible in the use of indigenous languages,
which had disappeared: “With tourism, indigenous names began to be used to reinforce craft
work sale identity... The introduction of “words in the indigenous language” is another strat-
egy for crafts sale, or for interacting with tourists, or authorities. Therefore, the language
undergoes a continuous process of revival” (De Azeredo Grunwald, 2002: 1013-14).

We now map this evidence onto our mode. Let y stand for “tourism activity” (e.g. selling
handicraft) and x stand for “cultural activity” (e.g. learning indigenous language). The re-
turns to x depend on the number of neighbours who adopt it: for instance, the returns to
learning a local language depend on the number of people in one’s network one can speak the
local language with. In contrast, the returns to y depend on (exogenous) market opportuni-
ties. As discussed above, x and y may reinforce each other: cultural activities expand tourism
activities (due to tourists’ cultural demand), and tourism activities increase the benefits of
engaging in cultural activities (e.g. through increased status of local cultures, increased busi-
ness opportunities). This corresponds in our model to the situation where ✓ = 1. Proposition
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1 predicts that an increase in market opportunities raises the returns and hence the viability
of local culture and language. This is consistent with the evidence.

A common finding in sociolinguistics points to the importance of social structure in the preser-
vation and revitalization of local cultures and especially languages (e.g. Milroy and Milroy,
1985, 1999; Fishman, 1990, 1991; Milroy, 2002). In particular, close-knit social networks are
necessary for language revitalization while the loosening of social networks may well be a
factor in language erosion (Sallabank, 2010). The reason is that speakers of a local language
require other speakers to interact with, who themselves require local language speakers to in-
teract with, and so forth. Close-knit social networks thus provide the necessary opportunities
to interact with other speakers and learn (Sallabank, 2010; Hulsen et al., 2002). This finding
is consistent with the key role of the q-connected club in sustaining action X, in our model
(Theorem 1 and Proposition 1).

6.2 Information Technology

The development and spread of modern information and communication technologies has had
large economic e↵ects. We now illustrate how our model helps to explain important empirical
phenomena associated with these technologies.

6.2.1 Online Social Networks and The Decline of Traditional Media

The explosive growth of online social networks is a the defining features of the last decade.
Some of these social networks (e.g. Facebook) have, overtime, become prominent platforms
for news sharing. The Reuters Institute for the Study of Journalism (RISJ) reports that more
than half of the population of many countries (e.g. Brazil, Spain, Italy and Finland) use
Facebook for news purposes, and roughly 60% of Facebook users find, share or discuss news
every week (RISJ, 2014). The use of online social networks is strongly related to age: in
the countries it surveyed, the RISJ reports that roughly 40% of 18 � 24 year-olds find news
via online social networks, as opposed to only 17% for people aged over 55. Online sources
(including social networks) are already, by far, the most important sources of news for younger
individuals. This rise of online news exchange in the last few years has been parallel to a sharp
decline of traditional media such as print newspapers (Newman, 2009; Currah, 2009).

These sweeping changes in the media can be analysed through the lens of our model. Suppose
that to access the news, individuals can either exchange information among neighbours in their
network (e.g. join Facebook and share news: action x) or exchange in the market (e.g. buy
print newspapers or a subscription to TV channels: action y). The returns to x for a player i
depend on how many of i’s friends exchange and discuss news in the network, while the returns
to y are exogenous. We denote by px the time cost of exchanging information with friends
(e.g. sharing articles or “posting” information on Facebook), while py represents the price of
marketed media, such as print newspapers. Since the same news can be accessed from both
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sources, traditional media and social networks are substitutes (✓ = �1). This relationship is
even clearer in the case of online social networks: indeed, within all age cohorts, online news
consumption and traditional media consumption (i.e. print and TV) are strongly negatively
correlated (RISJ, 2014: 45).

The key point here is the dramatic fall in price of exchanging information within networks
brought about by online social networks such as Facebook. Theorem 1 and Proposition 1
predict that with a fall in px, ’better connected’ individuals (i.e. individuals in the q

0

-connected
club) will switch from the market action y to the network action. Wrzus et al. (2013) and
others have shown that individuals’ network size falls with age: ceteris paribus our model thus
predicts that exchanging in networks should be particularly popular among young people. This
is strongly consistent with the empirical evidence (see e.g. RISJ, 2014).

Propositions 2 and 3 predict that a rise in aggregate welfare and inequality should accompany
a decrease in px. Here the available evidence is suggestive: online social networks users
have access to a much wider range of news and information sources than individuals using
only traditional media (Currah, 2009; RIJS, 2014). Given the size of the online community,
aggregate welfare (measured by access to information and news) has probably gone up, but
the disparities in participation on online media also suggest that inequality in information
access has increased.

6.2.2 The Digital Provide: Networks and Mobile Phones

The widespread adoption of mobile telephones in developing countries has been extensively
studied (see e.g. Aker and Mbiti, 2010). Jensen (2007) studies their economic e↵ects on fish-
ermen in Kerala, India. Prior to the introduction of cellphones in 1997, fishermen fished and
sold their catch almost exclusively within their local catchment zone, which led to high levels
of waste and price discrepancies between di↵erent markets on the coast. The introduction
of cellphones, however, changed this state of a↵airs. With phones, fishermen can exchange
information with buyers directly while at sea, therefore obtaining precious information about
the demand in di↵erent markets.10 In addition to buyers, fishermen also use their phone to
share information about prices, demand and supply with auctioneers they are connected to,11

as well as information about fishing sites with friends and relatives (Srinivasan and Burrell,
2013). By 2001, more than 65% of all fishing boats in Kerala owned a cellphone. Jensen

10Jensen notes in that respect that fishermen with cellphones “often carry lists with the numbers of dozens
or even hundreds of potential buyers” (p.891) whom they know personally.

11For an extensive discussion of this point, see Srinivasan and Burrell (2013). In their ethnographic study
of fishermen of Kerala, the authors note indeed that private investors, necessary to fund most boats, would
appoint an anctioneer to auction fishermen’s catch on the beach market. Many fishermen would thus choose
investors located in di↵erent markets so as to have an auctioneer at their disposal in di↵erent markets. With
the arrival of mobile phones, boat owners could directly“call their auctioneers at di↵erent landing sites to
ascertain prices... as soon as they get within range” (Srinivasan and Burrell, 2013: 6).
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(2007) also finds that mobile phones significantly increased daily profits of all fishermen but
also increased economic inequality between them.

We map this empirical setting onto our model. Suppose that players are located on a bipartite
network, with buyers on one side and sellers on the other: for simplicity, we focus on fishermen
(sellers). Fishermen’ payo↵s are given by the value of their (expected) sales in fish markets.
Ceteris paribus, better information about prices and fishing sites increases fishermen’ expected
payo↵s as it allows them to sell their catch where the demand is higher. Let the network action
x stand for “information sharing” (e.g. information about prices, the local demand or fishing
sites). The payo↵s to x for a fisherman i depends positively on the number of i’s neighbours
(e.g. buyers, auctioneers and friends) who also exchange information. Let the market action
y stand for “owning a cellphone”. Without a cellphone, sharing information (x) yields very
low returns as it is impossible for fishermen to learn precisely where to fish or where to sell
their catch while at sea or before going at sea, without a mobile phone.12 Owning a cellphone,
however, increases the returns to x, and vice-versa: “sharing information” and “owning a
cellphone” are complements, i.e., ✓ = 1.13

Given this mapping, Proposition 1 predicts that for py not too large, x may become profitable
when combined with y for better connected fishermen. This prediction is in direct line with
Jensen’s (2007) finding that bigger and better-connected boats adopted mobile phones the
most.14 Further, Proposition 2 predicts that for ✓ = 1, markets lead to an unambiguous
increase in aggregate welfare. This is in line with Jensen’s (2007: 913) finding of “net welfare
gains [for both buyers and sellers], due to more e�cient allocation of fish”. Finally, Proposition
3 suggests that the introduction of cellphones should lead to an increase in inequality between
owners and non-owners of cellphones. This is in line with Jensen’s finding that owners of
cellphones increased their payo↵s substantially more than non-owners, which led to an increase
in inequality.

12Note that our model captures the network externalities entailed by mobile phones. Indeed, observe that
players play x = 1 if and only if in combination with y = 1, since sharing information without mobile phones
is not possible. Player i’s decision to play xi = yi = 1 will thus depend on how many of i’s neighbours also
choose x = y = 1; hence, i’s decision to buy a mobile phone is intrinsically linked to i’s neighbours decision to
buy a mobile phone.

13Note however that the payo↵s to y are not all contingent to the network. Mobile banking is an example
of mobile phone use that does not necessarily depend on one’s connections.

14Srinivasan and Burrell (2013) explain well why bigger boats are also better connected. They explain that
bigger boats (ring-seine), due to their cost, typically require multiple investors. Since each investor comes with
an appointed auctioneer, ring-seine owners end up with multiple auctioneers (in many di↵erent markets on the
coast, strategically chosen) that they can call to obtain price- and demand-related information. In contrast,
smaller boats (gillnet) would have one or few investors. Note finally that bigger boats, independently of their
connections, might derive more benefits from mobile phones compared to smaller boats (e.g. their typically
much larger catch make them more sensitive to price di↵erences): this heterogeneity is captured in our extended
model and does not change the predictions of the basic model in terms of welfare and inequality.
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7 Concluding remarks

The interaction between social structure and markets remains a central theme in the social
sciences. Individuals’ personal relationships (or network) provide opportunities for interaction
and economic exchange. Individuals also obtain goods and services from other sources that
lie outside these relations: these include the state and markets. Some social scientists have
argued that the expansion of markets, accompanied by wide ranging changes in attitudes and
institutions, can crowd out social ties and aggravate inequality. There is also a distinguished
school of thought, going back to the eighteenth century, that asserts that markets enhance
welfare and reinforce reciprocity. These conflicting views find an echo in the varieties of
empirical experience. This paper develops a theoretical framework in an attempt to account
for the empirical evidence.

We develop a model where individuals located in a social network choose a network action
and a market action. We show that the key to understanding the diverse empirical patterns
lies in the relation between the network action and the market action, i.e., whether they are
(strategic) complements or substitutes.

Social connectedness facilitates adoption of market action if the two activities are comple-
ments; the converse is true in case of substitutes. Inequality in a social structure is typically
reinforced by the market in case the two actions are complements; the converse holds true if
they are substitutes.
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Appendix A

Proof to Theorem 1 Existence of equilibrium follows from standard considerations: if
py < 1, then xi = 0 and yi = 1 for all i 2 N is always an equilibrium. If py � 1 then
xi = yi = 0 for all i 2 N is always equilibrium. Existence of maximal equilibrium now follows
from noting that the set of strategies and hence the set of equilibria is finite.

We turn next to the issue of uniqueness. Suppose that there exist two distinct profiles (x, y)
and (x0,y0) that are both maximal equilibria. Observe that for generic values of parameters
px and py, there must exist players i and j such that i does strictly better under (x,y), while j
fares strictly better under (x0,y0). Consider first the case of complements (✓ = 1). Construct
a profile (x̂, ŷ), where x̂i = max{xi, x

0
i, x

⇤
i } and ŷi = max{yi, y0i, y⇤i } for all i, where x⇤

i and
y⇤i are i’s best-response in x and y, respectively, to the strategy profile (x̂�i, ŷ�i). It is easily
verified that (x̂, ŷ) constitutes an equilibrium. As ✓ = 1, it also follows that in the equilibrium
(x̂, ŷ), payo↵s of all individuals are weakly higher than their payo↵ in either equilibrium (x,y)
or (x0,y0). As there is a strict inequality for at least a pair of agents, it follows that (x̂, ŷ)
Pareto-dominates (x,y) and (x0,y0). This contradicts the hypothesis that (x,y) and (x0,y0)
are maximal equilibria.

Next consider the case of substitutes (✓ = �1). Construct a profile (x̂, ŷ), where x̂i =
max{xi, x

0
i, x

⇤
i } and yi = min{yi, y0i, y⇤i } for all i. It is easily verified that (x̂, ŷ) constitutes

an equilibrium. As the number of players choosing x = 1 has weakly grown from both (x,y)
and (x0,y0) to (x̂, ŷ), the payo↵s of every individual choosing x = 1 under (x̂, ŷ) must be
weakly larger. Moreover, an individual k switches from yk = 1 or y0k = 1 to ŷk = 0 only if
min{yk, y0k, y⇤k} = 0. As payo↵s from y are independent of others’ choices, this must entail a
weak increase in player k’s payo↵s. As there is a strict inequality for at least a pair of agents, i
and j, we have shown that (x̂, ŷ) Pareto-dominates (x,y) and (x0,y0). This again contradicts
the hypothesis that (x,y) and (x0,y0) are maximal equilibria. The parameter conditions for
di↵erent types of maximal equilibrium are straightforward, given the definitions of q

0

and q
1

.
⌅
Proof to Proposition 1 The first part of Proposition 1 along with the part on Networks

are corollaries to Theorem 1; the proof is thus omitted.

Prices . Consider first the case where ✓ = �1. We know that Y(p,g) = 0 whenever py � 1.
When py < 1, then Y(p,g) depends negatively on the size of the q

0

-connected club. Hence,
whenever q

0

increases, then the size of Sq0 weakly decreases, entailing a weakly larger Y(p,g).
Since q

0

weakly decreases with py and weakly increases with px, then it follows straightfor-
wardly that Y(p,g) weakly decreases with py and weakly increases with px. Consider second
the case where ✓ = 1. We know that Y(p,g) = 1 whenever py < 1. When py � 1, then Y(p,g)
depends positively on the size of the q

1

-connected club. Hence, whenever q
1

increases, then
the size of Sq1 weakly decreases, entailing a weakly smaller Y(p,g). Since q

1

weakly decreases
with py and px, then it follows straightforwardly that Y(p,g) weakly decreases with py and
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px. ⌅

Proof to Proposition 2 For any q, W (p,g) weakly increases with the size of the q-connected
club. Adding a link to a network always (weakly) increases W (p,g).

Observe first that the payo↵s of players outside the q-connected club, for the threshold values
q
0

, q
1

, and px, are always independent of the size of the q-connected club. Thus, expanding
the size of the latter leaves the payo↵s of those players unchanged. However, observe that the
payo↵s of players inside the q-connected club are always weakly increasing in its size. Hence,
increasing the size of the q-connected club always weakly enhances aggregate welfare.

In a regular network, the maximal equilibrium is e�cient . We first show that
the maximal equilibrium in any regular network is always e�cient. First observe that in a
regular network, from Theorem 1, all players always adopt the same strategy at the maximal
equilibrium. Consider the following Lemma.

Lemma 1 In a regular network, the e�cient outcome is generically symmetric.

Proof. Suppose a contrario that at the e�cient outcome (x⇤,y⇤), there is (at least) one player
j and one player i such that (x⇤

i , y
⇤
i ) 6=

�

x⇤
j , y

⇤
j

�

. For generic p, either i or j must be strictly
better o↵; assume without loss of generality that player i is actually the best-o↵ player in N
and j the worst-o↵. This implies notably that

Q

i (x
⇤,y⇤) >

Q

j (x
⇤,y⇤).

Suppose first that ✓ = �1, and py � 1. Since
Q

i (x
⇤,y⇤) >

Q

j (x
⇤,y⇤), then necessarily

x⇤
i = 1, while y⇤i = y⇤j = 0. Construct a profile (x̂, ŷ), where x̂l = 1 and ŷl = 0 for all

l 2 N . Note first that player i must be weakly better o↵ in (x̂, ŷ) than in (x⇤,y⇤) as the
number of her neighbours playing x = 1 has weakly grown; hence,

Q

i (x̂, ŷ) �
Q

i (x
⇤,y⇤).

Note further that player j is necessarily strictly better o↵ as since the network is regular,
then

Q

j (x̂, ŷ) =
Q

i (x̂, ŷ) �
Q

i (x
⇤,y⇤) >

Q

j (x
⇤,y⇤). All players in between i and j are

also trivially weakly better-o↵. It follows necessarily that W (x⇤,y⇤|p,g) < W (x̂, ŷ|p,g).
This contradicts the hypothesis that (x⇤,y⇤) is the e�cient outcome. The argument trivially
extends for cases where ✓ = �1 and py < 1, and so the proof for these cases is omitted.

Suppose second that ✓ = 1 and py < 1. Since
Q

i (x
⇤,y⇤) >

Q

j (x
⇤,y⇤), then necessarily

x⇤
i = 1 > x⇤

j = 0, while y⇤i = y⇤j = 1. Construct a profile (x̂, ŷ), where x̂l = 1 and ŷl = 1
for all l 2 N . Note first that player i must be weakly better o↵ in (x̂, ŷ) than in (x⇤,y⇤) as
the number of her neighbours playing x = 1 has weakly grown. Note further that player j
is necessarily strictly better o↵ as

Q

j (x̂, ŷ) =
Q

i (x̂, ŷ) �
Q

i (x
⇤,y⇤) >

Q

j (x
⇤,y⇤). Since

this is true for all players, then necessarily W (x⇤,y⇤|p,g) < W (x̂, ŷ|p,g). This contradicts
the hypothesis that (x⇤,y⇤) is the e�cient outcome. The argument trivially extends for cases
where ✓ = 1 and py � 1, and so the proof for these cases is omitted. This completes the proof
to Lemma 1. ⌅

28



Lemma 2 In a regular network, the e�cient outcome is an equilibrium.

Proof. We prove by contradiction that if the e�cient outcome is not an equilibrium in a
regular network, then it is not the e�cient outcome. Suppose first that ✓ = �1 and py � 1.
Trivially, yi = 0 for all i 2 N , both at equilibrium and at the e�cient outcome. Suppose
that the e�cient outcome (x⇤,0) is not an equilibrium. Then, there must be some player j
who wants to deviate from

�

x⇤
j , 0

�

to
�

1� x⇤
j , 0

�

. If x⇤
i = 0 for all i 2 N , then clearly j does

not want to deviate to xj = 1 as none of her neighbours plays x = 1 (entailing that playing
x = 1 would only impose a cost px on j, without any benefit). If x⇤

i = 1 for all i 2 N , then
j wants to deviate to xj = 0 if and only if 0 >

Q

j (x
⇤,0). However, if this is the case for j,

then all players can strictly improve their payo↵s by playing x = y = 0, which contradicts
the hypothesis that (x⇤,0) is the e�cient outcome. The argument trivially extends for cases
where ✓ = �1 and py < 1, and so the proof for these cases is omitted.

Suppose second that ✓ = 1 and py < 1. Trivially, yi = 1 for all i 2 N , both at equilibrium
and at the e�cient outcome. Suppose that the e�cient outcome (x⇤,1) is not an equilibrium.
Then, there must be some player j who wants to deviate from

�

x⇤
j , 0

�

to
�

1� x⇤
j , 0

�

. If x⇤
i = 0

for all i 2 N , then clearly j does not want to deviate to xj = 1 as none of her neighbours plays
x = 1 (entailing that playing x = 1 would only impose a cost px on j, without any benefit).
If x⇤

i = 1 for all i 2 N , then j wants to deviate to xj = 0 if and only if 1 � py >
Q

j (x
⇤,1).

However, if this is the case for j, then all players can strictly improve their payo↵s by playing
x = 0 and y = 1, which contradicts the hypothesis that (x⇤,1) is the e�cient outcome. The
argument trivially extends for cases where ✓ = 1 and py � 1, and so the proof for these cases
is omitted. ⌅

We conclude the proof by showing that the e�cient outcome is the maximal equilibrium. We
have already shown that the e�cient outcome (x⇤,y⇤) is always an equilibrium. Suppose by
contradiction that it is not a maximal equilibrium. Then, there exists another profile (x0, y0)
such that

Q

i (x
0, y0) �

Q

i (x
⇤, y⇤) for all i 2 N , with inequality strict for at least one j.

This in turn entails that W (x⇤,y⇤|p,g) < W (x0,y0|p,g), which contradicts the hypothesis
that (x⇤,y⇤) is the e�cient outcome. Hence, the e�cient outcome is always the maximal
equilibrium. Since both are (generically) unique, this also entails that the maximal equiibrium
is e�cient in regular networks. ⌅

In an irregular network, the maximal equilibrium may be ine�cient. We now
prove by construction that in irregular networks, the maximal equilibrium is not generically
unique. Consider the CP network in Figure 1. Suppose first that ✓ = �1, and suppose that
py < px < 1. Then, at the maximal equilibrium, players in the periphery play x = 0 and
y = 1, while players in the core play x = 1 and y = 0, entailing that W (p,g) = 25�5px�5py.
Now construct a profile (x̂, ŷ), where x̂i = 1 and ŷi = 0 for all i 2 N . The resulting aggregate
welfare amounts toW (x̂, ŷ|p,g) = 30�10px. SinceW (x̂, ŷ|p,g)�W (p,g) = 5�5px+5py > 0,
then the maximal equilibrium is clearly not e�cient. It can finally be easily shown that if
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px < py < 1, then xi = 1 and yi = 0 for all i 2 N at the maximal equilibrium, and the latter
is e�cient. ⌅

Adding a link to a network always (weakly) increases W (p,g). Finally, since adding
a link to the network always weakly expand the q-connected club for any q, then clearly adding
a link always weakly enhances welfare.

Prices have two e↵ects on welfare. The first (direct) e↵ect is the cost e↵ect : players have to
pay more for x and y respectively when px and py increase. Trivially, increasing px and py
have both a negative cost e↵ect on welfare.

The second (indirect) e↵ect is the q-connected club e↵ect : recall that aggregate welfare always
depends positively on the size of the q-connected club at the threshold values q

0

, q
1

, and px,
and that these values depend on p. Note first that all of these threshold values are increasing
in px; hence, an increasing px will always weakly reduce the size of the q-connected club for
any of these threshold values. Hence, since the cost e↵ect and the q- connected club e↵ect
of an increasing px on W (p,g) are both negative, then clearly W (p,g) decreases in px.
Second, when ✓ = 1, then an increasing py always has a weakly negative q-connected club
e↵ect (since px is independent of py, while q1 decreases in py). In that case, the cost e↵ect and
the q-connected club e↵ect of an increasing py on W (p,g) are both weakly negative, and so
W (p,g) decreases in py. However, when ✓ = �1, then q

0

weakly increases with py. Hence, the
cost e↵ect and the q-connected club e↵ect oppose each other. The net e↵ect of an increasing
py on W (p,g) is thus ambiguous when ✓ = �1.

Proof to Proposition 3: We first take up the case of substitutes. Observe that an individual
never adopts both x or y. Moreover, yi = 0, for all i 2 N , if py > 1. So in this case choice
and hence inequality is una↵ected by markets. The interesting case therefore is py < 1. There
are three possible outcomes with respect to action y: one, where no one adopts it, two, where
some adopt it while others do not adopt it, and three, where everyone adopts it. Let us take
up these cases in turn.

If no one adopts y then the market does not have any impact on choice; so, inequality is
una↵ected.

Next consider the case where, in a maximal equilibrium, some individuals adopt y while others
do not adopt it. Since some individuals do not choose y, and y yields a positive payo↵, they
must choose x. Observe that everyone choosing x must earn weakly more than 1 � py, as
choosing y is always an option. Thus mini2N {⇡1

i (p,g)} = 1� py, while maxi2N {⇡1

i (p,g)} is
earned by someone who chooses x. Now observe that in a maximal equilibrium the neighbors
of any individual choosing x must weakly decline, after the introduction of y. Hence max-
imum payo↵ of someone choosing x and hence the maximum payo↵ (weakly) falls with the
introduction of the market. Finally, observe that minimum payo↵ must weakly increase as
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the market simply o↵ers an outside option with a positive payo↵. Thus, the inequality level
R() must weakly fall.

Finally in case three, if everyone adopts y then the equilibrium inequality level R1(p,g) = 1;
as this is the minimum level possible, inequality must (weakly) decrease, in comparison to the
pre-market situation.

We next take up the case of complements. Let us start with the case where py  1. Everyone
must choose yi = 1 in any equilibrium. There are three cases to consider: one, where no one
chooses x, two, where some individuals choose x while others don’t choose x, and three, where
everyone chooses x. Let us taken them up in turn.

If no one chooses x, then given that x and y are complementary, and we are considering
maximal equilibrium, it must be the case that no one must choose x in the pre-market max-
imal equilibrium. Thus in the pre-market equilibrium, there is no inequality, R0(p,g) = 1.
Inequality must (weakly) increase with markets.

If some individuals choose x, while others don’t then there are two possible scenarios in the
pre-market maximal equilibrium. One, where no one adopts x and two, with partial adoption.
If no one adopts x then inequality ratio in pre-market equilibrium is 1. Inequality can only
rise in the post market world. In the latter case, assume without loss of generality that player
i has in fact the highest payo↵s before the introduction of y. Then, R

0

(p,g) can be written
at length as follows:

R
0

(p,g) =
1 +mi � px

1 + mini2N {⇡0

i (p,g)}
= 1 +mi � px (11)

where mi is the number of i’s neighbours who play x = 1 before the introduction of y. Since
the number of i’s neighbours playing x = 1 weakly grows after the introduction of y, the
following inequality must hold true:

R
1

(p,g) � 2 + 2mi � px � py
1 + mini2N {⇡1

i (p,g)}
=

2(1 +mi)� px � py
2� py

(12)

Combining equation (11) with inequality (12), and noting that the last expression in 12 is
rising in py, we obtain the following expression:

R
0

(p,g) = 1 +mi � px <
2(1 +mi)� px � py

2� py
 R

1

(p,g) . (13)

Thus inequality strictly increases with the introduction of a market in this case.

Finally, in case everyone chooses x, we know from the discussion in the main text that the
e↵ects of markets on inequality are ambiguous.
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We turn next to the case where py > 1. If the maximal equilibrium entails yi = 0, for all
i 2 N , then the market has no e↵ect on choice and on inequality. Consider next the other
limiting case, where yi = 1, for all i 2 N . Given that py > 1, this must mean that xi = 1, for
all i 2 N . We have already taken up this case in the main text, via example. The impact of
markets on inequality is ambiguous in this case.

We turn finally to the case of partial adoption of the market action, y, in a maximal equi-
librium. In this equilibrium, everyone who chooses y must also choose x (as py > 1). From
Theorem 1, when py � 1, players can be partitioned into three strategy groups, namely Sq1 ,
Sp

x

\ Sq1 and N \ {Sq1 [ Sp
x

}. Label these groups A, B and C, respectively. Hence, for any
i 2 A, x1

i,A = 1 and yi,A = 1; for any j 2 B, x1

j,B = 1 and yj,B = 0; while for any l 2 C,
x1

l,C = yl,C = 0.

We take up first the case where A, B and C are all non-empty. We will show that R (p,g)
strictly increases. If both A and B are non-empty, then q

1

> px. If this were not the case
then everyone doing x would prefer to do x and y and B would be empty. Next, note that
all players in Sp

x

must find the adoption of x profitable before the introduction of y. This
is because every player in B has strictly more than px links to other players in Sp

x

; she can
therefore attain positive payo↵s if all others in Sp

x

also choose x. So in a maximal equilibrium,
x0

i,A = x0

j,B = 1.

Furthermore, players in A have more links to other players in Sp
x

than do players in B. If
not then there is a player j 2 B with more links to other players in Sp

x

than a player i 2 A.
But then j has more neighbors choosing x and expects a higher return from action y than
do players in Sq0 . But then she should optimally choose a and y and must belong to A. A
contradiction.

Since players in A clearly have strictly more links to other players in Sp
x

than players in B, it
follows immediately that ⇡1

i,A (p,g) > ⇡1

j,B (p,g) and ⇡0

i,A (p,g) > ⇡0

j,B (p,g). Hence, we ob-
tain that maxi2N {⇡1

i (p,g)} 2 {⇡1

i (p,g) : i 2 A}, and maxi2N {⇡0

i (p,g)} 2 {⇡0

i (p,g) : i 2 A}.
Since every player in A strictly increases her payo↵s with the introduction of y, clearly
maxi2N {⇡1

i (p,g)} > maxi2N {⇡0

i (p,g)}.

Lastly, note that since the introduction of y can only weakly foster the adoption of x, x1

l,C = 0
implies that x0

l,C = 0 too for all l 2 C. Since x1

l,C = x0

l,C = yl,C = 0 for all l 2 C, it
immediately follows that ⇡1

l,C (p,g) = ⇡0

l,C (p,g) = 0 for all l 2 C. Hence, it follows that
mini2N {⇡1

i (p,g)} = mini2N {⇡0

i (p,g)} = 0.

The proof that inequality strictly increases with the introduction of y when py � 1 and A, B
and C are all non-empty immediately now follows since we have shown that maximum earnings
increase while the minimum payo↵s remain constant with the introduction of market.
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We next examine cases where one of A, B or C is empty. Suppose first that A is empty. Then,
yi = 0 for all i 2 N , which entails that R (p,g) is left unchanged. If B is empty, then N can
be partitioned into 2 groups, namely A and C. The proof that R (p,g) strictly increases in
this case is analogous to the case where py < 1. Next suppose that only C is empty. We know
that (i) xi = 1 for all i 2 N and (ii) ⇡1

i,A (p,g) > ⇡1

j,B (p,g) and ⇡0

i,A (p,g) > ⇡0

j,B (p,g), for
any i 2 A and j 2 B. Since the payo↵s of players in B are left unchanged by the introduction
of y (since yj,B = 0 for all j 2 B), then it follows that mini2N {⇡1

i (p,g)} = mini2N {⇡0

i (p,g)}.
However, as the payo↵s of players in A strictly increase (since yi,A = 1 for all i 2 A), then
we know that maxi2N {⇡1

i (p,g)} > maxi2N {⇡0

i (p,g)}, which means that R (p,g) strictly
increases.

We turn finally to the case where two out of A, B and C are empty. If C = N , then the
introduction of y does not a↵ect choice or inequality. A similar argument applies when B = N .
Finally, we prove by example that if A = N , then R (p,g) may increase or decrease following
the introduction of y. Consider indeed the network on Figure 8.

Fix px = 4.1. In such case, the best-o↵ players before the introduction of y are players 1 to
6 with payo↵s of 0.9, while all other players have payo↵s of 0. In such case, R

0

(p,g) = 1.9.
Now suppose that y is introduced at a price py = 1.05, such that A = N . Then, the payo↵s to
players 1, 7 and 3 to 6 amount to 5.85, while those of player 2 and players 8 to 11, respectively,
amount to 7.85 and 3.85. Consequently, R

1

(p,g) = 1.825, which indicates a falling R (p,g).
Now suppose that py = 2. Then, the payo↵s to players 1, 7 and 3 to 6 amount to 4.9, while
those of player 2 and players 8 to 11, respectively, amount to 6.9 and 2.9. Consequently,
R

1

(p,g) = 2.026, which shows a rising R (p,g). This completes the proof. ⌅

Proof to Proposition 4: Denote by L (i|p,g) the Lorenz curve at the maximal equilibrium.
Consider the sequence of players (1, 2...i, ...n) such that

Q

j (p,g)  ⇡i (p,g) for all j < i.15

Then, the Lorenz curve, at a given player i, takes the following value:

L (i|p,g) =
P

j<i ⇡j (p,g) + ⇡i (p,g)

W (p,g)
(14)

Hence, L (0|p,g) = 0 and L (n|p,g) = 1, by definition. We denote by �L (i|p,g) the slope of
the Lorenz curve at a player i, with

�L (i|p,g) = ⇡i (p,g)

W (p,g)
(15)

Given the ordering of individuals from lowest to highest, the Lorenz curve is increasing and
convex: this means that �L (i|p,g)  �L (j|p,g) if and only if i < j in the support.

We say that a Lorenz curve A, LA (i|p,g), dominates a Lorenz curve B, LB (i|p,g), if
LA (i|p,g) � LB (i|p,g) for all i 2 N , with inequality strict for at least one i. Denote

15As multiple players can have the same payo↵s, this sequence may not be unique.
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by L
0

(i|p,g) and by L
1

(i|p,g) the Lorenz curve before and after the introduction of y, re-
spectively, and define G

0

(p,g) and G
1

(p,g) analogously. Observe that it is su�cient to show
L

0

(i|p,g) dominates (is dominated by) L
1

(i|p,g) to prove that G
0

(p,g)  G
1

(p,g) (>).

Case A: Proof for ✓ = �1:
From Theorem 1, note that players can be partitioned into two strategy groups, namely Sq0

and N \ Sq0 . Label the former group A and the latter group B. Denote by LA (i|p,g) and
LB (i|p,g) the Lorenz curve over the support segments A and B, respectively. Recall from
the proof of Proposition 3 that ⇡1

i,A (p,g) > ⇡1

j,B (p,g) for any i 2 A and j 2 B. Hence,
LB

0

(i|p,g) > LA
0

(j|p,g) and �LA
1

(i|p,g) > �LB
1

(j|p,g) for any i 2 A and j 2 B. In
other words, LB

1

(i|p,g) is the (left) portion of the Lorenz curve (with LB (0|p,g) = 0), while
LA

1

(i|p,g) is the right portion (with LA (n|p,g) = 1). Note that by definition, LB (nB|p,g) =
LA (0|p,g), where nB = |B|.

(i) Y (p,g) 2 {0, 1} and/or W
1

(p,g) � W
0

(p,g) Observe that if Y = 0 then clearly the
introduction of y has no impact on inequality. Next consider the case Y = 1. We show that
G (p,g) must weakly decrease. If Y (p,g) = 1, then ⇡1

i (p,g) = ⇡1

j (p,g) = 1 � py for any
i, j 2 N . Hence, G

1

(p,g) = 0. The proof follows.

Now we turn to the situation where Y 2 (0, 1). We take up the case where y weakly in-
creases W (p,g). We show that that either L

0

(i|p,g) dominates L
1

(i|p,g) or L
0

(i|p,g) =
L

1

(i|p,g).16 Recall from the proof to Proposition 3 that ⇡1

i,A (p,g)  ⇡0

i,A (p,g). Since
W

1

(p,g) � W
0

(p,g), then (i)�LA
1

(i|p,g)  �LA
0

(i|p,g) for any i 2 A and (ii)WA
1

(p,g) /W
1

(p,g) <
WA

0

(p,g) /W
0

(p,g), whereWA
1

(p,g) =
P

i2A ⇡i (p,g). The latter also implies thatWB
1

(p,g) /W
1

(p,g) >
WB

0

(p,g) /W
0

(p,g), and so LB
1

(nB|p,g) = LA
1

(0|p,g) > LB
0

(nB|p,g) = LA
0

(0|p,g).

It further follows from points (i) and (ii) above that LA
1

(i|p,g) dominates LA
0

(i|p,g). To
see why, suppose a contrario that there exists a j 2 A such that LA

0

(j|p,g) > LA
1

(j|p,g).
Remark that LA

0

(n|p,g) = LA
1

(n|p,g) by definition. Since both LA
0

(0|p,g) and LA
1

(0|p,g)
are continuous and strictly increasing, LA

0

(j|p,g) > LA
1

(j|p,g) implies there there is at least
one l 2 A such that �L

1

(l|p,g) > �L
0

(l|p,g). This entails that there is at least one l 2 A
such that ⇡1

l (p,g) > ⇡0

l (p,g), which is a contradiction.

We now show that if the introduction of y weakly increases W (p,g), then LB
1

(i|p,g) dom-
inates LB

0

(i|p,g) too. To see why, suppose a contrario that there exists a j 2 B such that
LA

0

(B|p,g) > LA
1

(B|p,g). Recall first that LB
0

(i|p,g) is convex by definition. Further,
since ⇡1

j (p,g) = 1 � py for all j 2 B, then �L
1

(j|p,g) is the same for all j 2 B. In other

16For this proof, suppose that the ordering of players does not change (hence, suppose that the support
of L0 is the same as for L1). While the resulting L1 is not the “true” Lorenz curve as players are not
necessarily ordered by payo↵s, the resulting G1 is the right one, and hence this assumption is made without
loss of generality. Furthermore, since the proof for Y (p,g) = 0 is immediate, we focus on the case that
Y (p,g) 2 (0, 1) for the remainder of the proof for Case A.
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words, LB
1

(j|p,g) is a straight line from (0, 0) to
�

nB,LB
1

(nB|p,g)
�

. Since LB
1

(j|p,g) is a
straight line, LB

0

(j|p,g) is convex, LB
1

(0|p,g) = LB
1

(0|p,g) and there exists a j such that
LA

0

(j|p,g) > LA
1

(j|p,g), then that LB
0

(nB|p,g) > LB
1

(nB|p,g). However, this contradicts
the hypothesis that LB

0

(nB|p,g) < LB
1

(nB|p,g).

Hence, we have shown that LA
1

(i|p,g) dominates LA
0

(i|p,g) and that LB
1

(i|p,g) dominates
LB

0

(i|p,g) when W
1

(p,g) � W
0

(p,g) and Y (p,g) 2 (0, 1).
(ii). Y (p,g) /2 {0, 1} and W

1

(p,g) < W
0

(p,g)
The example given in the text proves by construction this part of the proposition.

Case B: Proof for ✓ = 1:
(i) py < 1: The proof proceeds through an example. G (p,g) can either increase or decrease
following the introduction of y. Consider the graph on Figure 9, and assume that ✓ = 1. Fix
py = 0.5 in what follows.

1. Let px = 7.1: Before the introduction of y, all players’ payo↵s amount to 0 (as all players
play x = 0), and so W

0

(p,g) = 0 and G
0

(p,g) = 0. After the introduction of y, the
individual payo↵s of players 9 to 16 rise to 7.3 (as they now play x = y = 1), while those
of all other players rise to 0.5. As a result, W

1

(p,g) = 63.2 and G
1

(p,g) = 0.4367,
indicating a rising G (p,g).

2. Let px = 3.5: Prior to introduction of y, players 9 to 16 play x = 1, while all others
play x = 0. As a result, W

0

(p,g) = 28 and G
1

(p,g) = 0.5. After the introduction of y,
payo↵s of players 9 to 16, 1 to 4 and 5 to 8 are respectively 11, 3 and 0.5. As a result,
W

1

(p,g) = 102 and G
1

(p,g) = 0.3873, indicating a falling G (p,g).

(ii): py � 1, Sp
x

\ Sm2 = {;} and Sm2 6= {;}
From Theorem 1, when py � 1, players can be partitioned into three strategy groups, namely
Sm2 , Sp

x

\ Sm2and N \ {Sm2 [ Sp
x

}. Label these groups A, B and C, respectively. Hence, for
any i 2 A, x1

i,A = 1 and yi,A = 1; for any j 2 B, x1

j,B = 1 and yj,B = 0; while for any l 2 C,
x0

l,C = yl,C = 0.

Note that if B = {;} and A 6= {;}, then players can be partitioned into two groups only,
A and C. The introduction of y has an ambiguous e↵ect on G (p,g). To see this, consider
indeed Figure 9 again and fix py = 1.5.

1. px = 7.1: Before the introduction of y, all players’ payo↵s amount to 0 (as all players
play x = 0), and so W

0

(p,g) = 0 and G
0

(p,g) = 0. After the introduction of y,
only players 9 to 16 adopt both x and y, while all other players play x = y = 0. The
individual payo↵s of players 9 to 16 thus rise to 6.4, while those of all other players
remain unchanged. As a result, W

1

(p,g) = 51.2 and G
1

(p,g) = 0.5, indicating a rising
G (p,g).
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2. px = 3.5: Before the introduction of y, players 9 to 16 play x = 1, while all others play
x = 0. As a result, W

0

(p,g) = 28 and G
1

(p,g) = 0.5. After the introduction of y,
players 1 to 4 and 9 to 16 all play x = y = 1, while players 5 to 8 stick to x = y = 0.
The individual payo↵s of players 9 to 16, 1 to 4 and 5 to 8 then are respectively 10, 2
and 0. As a result, W

1

(p,g) = 88 and G
1

(p,g) = 0.4318, indicating a falling G (p,g).

(iii): py � 1 and (i) Sm2 = {;}; or (ii) Sm2 6= {;}, Sp
x

\Sm2 6= {;} and N \ {Sm2 [ Sp
x

} 6=
{;}.
First, note that whenever py � 1 and Sm2 = {;}, then yi = 0 for all i 2 N . In this case, the
Gini coe�cient is left unchanged by the introduction of y.

Suppose now that py � 1 and that the three sets A, B and C are non-empty. Clearly,
since ⇡1

l,C (p,g) = ⇡0

l,C (p,g) = 0 for all l 2 C, LC
0

(l|p,g) = LC
1

(l|p,g) = 0 for all l 2 C.
Likewise, we know that ⇡1

j,B (p,g) = ⇡0

j,B (p,g) for all j 2 B. This is true because the the
set of individuals who adopt x = 1 remains unchanged after the introduction of y (because
q
1

> px.) Finally, since we know that W
1

(p,g) > W
0

(p,g) from Proposition 2, then it follows
immediately that LB

0

(j|p,g) > LB
1

(j|p,g) for all j 2 B.

We lastly prove that LA
0

(i|p,g) dominates LA
1

(i|p,g). First note that since LB
0

(j|p,g) >
LB

1

(j|p,g), then LA
0

(0|p,g) > LA
1

(0|p,g) by definition. Further, note that the support of
LA

0

(i|p,g) is the same as for LA
1

(i|p,g) since the order of players by payo↵s does not change.
Indeed, for any i 2 A with mi links to other players in Sp

x

, we can write the payo↵s before and
after the introduction of y respectively as ⇡0

i,A (p,g) = mi�px and ⇡1

i,A (p,g) = 2mi+1�py�px.
Hence,⇡0

i,A (p,g) > ⇡0

j,A (p,g) , ⇡1

i,A (p,g) > ⇡1

i,A (p,g).

The next step is to show that �LA
1

(i|p,g) > �LA
0

(i|p,g) for one i 2 A, then �LA
1

(l|p,g) >
�LA

0

(l|p,g) for all l > i. Observe that �LA
1

(i|p,g) > �LA
0

(i|p,g) implies

2mi + 1� px � py
W

1

(p,g)
>

mi � px
W

0

(p,g)
(16)

which in turns implies that

2mi + 1� px � py
mi � px

>
W

1

(p,g)

W
0

(p,g)
(17)

Since W1(p,g)
W0(p,g)

is a constant and 2m
i

+1�p
x

�p
y

m
i

�p
x

is strictly increasing in mi, this inequality must
hold fo all l > i since ml > mi.

Finally, suppose a contrario that LA
0

(i|p,g) does not dominate LA
1

(i|p,g), such that there
is a i such that LA

0

(i|p,g) < LA
1

(i|p,g). Since LA
0

(0|p,g) > LA
1

(0|p,g) and LA
0

(n|p,g) =
LA

1

(n|p,g) and both LA
0

(i|p,g) and LA
1

(i|p,g) are convex by definition, then there must exist
one l 2 A and one j 2 A such that j > l and �LA

1

(l|p,g) > �LA
0

(l|p,g) and �LA
1

(j|p,g) <
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�LA
0

(j|p,g). This contradicts the above step. We have thus proved that LA
0

(i|p,g) dominates
LA

1

(i|p,g). ⌅

Appendix B

We now provide a complete characterization of the unique maximal equilibrium for ✓ > �1.
We distinguish between the cases of (imperfect) substitutes (✓ 2 (�1, 0)) and complements
(✓ � 0).
Consider first the case of substitutes. Consider the following thresholds values:

s
1

= 1�p
y

�✓

s
2

= p
x

1+✓

(18)

The threshold value s
1

represents the minimum number of links to neighbours playing x = 1
for the adoption of y to incur a loss larger than the nominal gains. The threshold s

2

represents
the minimum number of links to neighbours playing x = 1 for the adoption of x to be profitable
even when y = 1.

Consider next the case of complements. As for Theorem 1, denote by c
1

the number of links
to neighbours playing x = 1 required for player i to be indi↵erent between xi = yi = 1 and
any other action profile, as follows:

c
1

=

(

p
x

1+✓
if py < 1

max
n

p
y

�1

✓
, p

x

+p
y

�1

1+✓

o

if py � 1
(19)

Theorem 3 A maximal equilibrium exists and is generically unique. Let (x⇤,y⇤) be the max-
imal equilibrium.

• Substitutes (✓ 2 (�1, 0)): If py < 1, then (x⇤
i , y

⇤
i ) = (1, 0) if i 2 S

max{p
x

,s1}; (x
⇤
i , y

⇤
i ) =

(1, 1) if i 2 {Ss2 \ Ss1}; (x⇤
i , y

⇤
i ) = (0, 1) if i /2 S

max{s1,s2}; and (x⇤
i , y

⇤
i ) = (0, 0) otherwise.

If py � 1, then (x⇤
i , y

⇤
i ) = (1, 0), for i 2 Sp

x

and (x⇤
i , y

⇤
i ) = (0, 0) for i /2 Sp

x

.

• Complements (✓ � 0): If py < 1, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sc1 and (x⇤

i , y
⇤
i ) =

(0, 1) for i 2 Sc1. If py � 1, then (x⇤
i , y

⇤
i ) = (1, 1) for i 2 Sc1, (x

⇤
i , y

⇤
i ) = (1, 0) for

i 2 Sp
x

\Sc1 and (x⇤
i , y

⇤
i ) = (0, 0) for i 2 N\Sc1 [ Sp

x

.
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Figure 6: The Gini-Coe�cient
(Left graph: ✓ = �1, px = 2.2 and py = 0.4; Right graph: ✓ = 1, px = 2.2 and py = 4.1)
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Figure 7: The qi-connected club in an arbitrary network, with qH = 2 and qL = 5

Top left: initial graph. Top right: delete all L nodes with k  5 and H nodes with k  2. Bottom left: among the nodes

remaining, delete all L nodes with k  5 and H nodes with k  2. Bottom right: the q
i

-connected club obtains when no

further iteration is possible.

Figure 8: The Ambiguous E↵ect of y on R (p,g) when ✓ = 1: An Example
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Figure 9:
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