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ABSTRACT 
Individuals derive benefits from their connections, but these may, at the same time, transmit external 
threats. Individuals therefore invest in security to protect themselves. However, the incentives to 
invest in security depend on their network exposures. We study the problem of designing a network 
that provides the right individual incentives. 

Motivated by cybersecurity, we first study the situation where the threat to the network 
comes from an intelligent adversary. We show that, by choosing the right topology, the designer can 
bound the welfare costs of decentralized protection. Both over-investment as well as under-
investment can occur depending on the costs of security. At low costs, over-protection is important: 
this is addressed by disconnecting the network into two unequal components and sacrificing some 
nodes. At high costs, under-protection becomes salient: it is addressed by disconnecting the network 
into equal components. 

Motivated by epidemiology, we then turn to the study of random attacks. The over-protection 
problem is no longer present, whereas under-protection problems is mitigated in a diametrically 
opposite way: namely, by creating dense networks that expose the individuals to the risk of contagion.  
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Abstract

Individuals derive beneÞts from their connections, but these may, at the same

time, transmit external threats. Individuals therefore invest in security to protect

themselves. However, the incentives to invest in security depend on their network

exposures. We study the problem of designing a network that provides the right

individual incentives.

Motivated by cybersecurity, we Þrst study the situation where the threat to

the network comes from an intelligent adversary. We show that, by choosing the

right topology, the designer can bound the welfare costs of decentralized protection.

Both over-investment as well as under-investment can occur depending on the costs

of security. At low costs, over-protection is important: this is addressed by discon-

necting the network into two unequal components and sacriÞcing some nodes. At

high costs, under-protection becomes salient: it is addressed by disconnecting the

network into equal components.

Motivated by epidemiology, we then turn to the study of random attacks. The

over-protection problem is no longer present, whereas under-protection problems

is mitigated in a diametrically opposite way: namely, by creating dense networks

that expose the individuals to the risk of contagion.
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1 Introduction

Individuals derive beneÞts from being connected to others. These connections may, at the

same time, transmit external threats. The internet reßects this tension:1 connectivity

facilitates communication but is also used by hackers, hostile governments and Þrms

and ÔbotnetÕ herders to spread viruses and worms which compromise user privacy and

jeopardize the functioning of the entire system.2 Individuals are aware of these dangers

and invest in security software. The incentives to invest in protection depend on exposure

in the network and will generally depart from what is collectively desirable.

In this paper, our goal is to examine how network design can mitigate ine!ciencies

in protection.

There are (n + 2) ÔplayersÕ. The designer Þrst chooses the network over then nodes.

Given this network, each of then nodes (simultaneously) chooses whether to protect or

not; protection carries a Þxed cost. Finally, the adversary chooses a node to attack. If

the attacked node is protected, then all nodes survive the attack. If the attacked node

is not protected, then this node and all nodes with a path to the attacked node through

unprotected nodes are eliminated. Nodes are assumed to derive beneÞts from their con-

nectivity: the payo" of a node is increasing in the size of its surviving component. A

nodeÕs net payo"s are equal to its connectivity payo"s less the amount spent on pro-

tection. The designer is utilitarian: he seeks to maximize the sum of nodesÕ payo"s.

The adversary is intelligent, purposefully choosing the attacked node so as to minimize

connectivity-related payo"s.

We start with a study of the Þrst best design and defence proÞle. We show that for

low protection costs, all nodes should be protected and any connected network is optimal.

For intermediate costs of protection, the designer chooses a star network and protects its

center only. The adversary then eliminates a single spoke of the star. If protection costs

are high, the designer splits the network into equal size components and leaves all nodes

unprotected. The adversary eliminates one of these components.

This sets the stage for the study of decentralized protection. We show that if defence

is su!ciently expensive (so that no protection is Þrst best), no protection is the unique

equilibrium defence of any Þrst best network. At the other extreme, if protection is

su!ciently cheap (so that full protection is Þrst best), there exist networks that implement

the Þrst best in every equilibrium. Departures from Þrst best welfare will therefore arise

1In the United States, the Department of Homeland Security (DHS) is responsible for cybersecurity.
Its mission statement reads,ÒOur daily life, economic vitality, and national security depend on a stable,
safe, and resilient cyberspace. We rely on this vast array of networks to communicate and travel, power
our homes, run our economy, and provide government services.Ó

2Moore et al. (2009) estimate that in 2009, roughly 10 million computers were infected with malware
designed to steal online credentials. The annual damages caused by malware are very large: in the
US the annual costs of identity theft are estimated at 2.8 billion USD. These large costs have led to
the emergence of a large software security sector. Intel bought McAfee in 2010, for 7.68 billion USD
(bbc.co.uk; 19 August 2010).
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only for intermediate costs of protection; that is, when a center protected star is optimal.

The designer cannot attain Þrst best payo"s in equilibrium, as the only equilibria on star

networks are those where either all or no node protects. In our main result (Theorem 1),

we show that the designer can bound the welfare costs of decentralization by choosing

the right topology.

We then consider the optimal design problem in more detail. When a center pro-

tected star is Þrst best but all nodes protect in equilibrium, protection decisions involve

negative externalities and exhibit strategic complementarities. Nodes have incentives to

protect and divert the adversaryÕs attack to other parts of the network. How can the

designer induce some nodes to be eliminated in equilibrium? We show that connected

networks are suboptimal to address the over-protection problem. When a connected net-

work has an equilibrium achieving higher welfare than full protection, there always exists

a disconnected network that welfare-dominates it. Thus, if the designer is to avoid the

over-protection problem, he must disconnect the network and sacriÞce some nodes.

The analysis summarized so far assumes that individual coordinate on equilibria that

achieve maximum equilibrium welfare. In general, however, some of these networks may

feature multiple equilibria that achieve vastly di"erent welfare levels. How can the de-

signer tackle potential coordination problems? To illustrate the issue, suppose that the

costs of protection are such that maximum equilibrium welfare is achieved via full pro-

tection on a connected network. The network where nodes are arranged on a cycle has

a full protection equilibrium. However, if the cost of protection outweighs the beneÞts

of surviving in isolation, there is another equilibrium on this network where no node

protects and the adversary brings down the entire network. We provide a necessary and

a su!cient condition for a network to induce full protection in any equilibrium. Such

networks aresparse in the following sense: they must feature a node that can block the

adversaryÕs attack, thus saving a large part of the network.

Epidemics of diseases such as inßuenza, AIDS and tuberculosis, have enormous costs

in terms of human su"ering.3 In the case of diseases, it is more natural to suppose that

ÔattackÕ on the social network is random. We show that in the Þrst best scenario, op-

timal network structures do not change with the nature of the external threat if some

level of protection is optimal. That is, the designer chooses either a connected network

with all nodes protected (if security is su!ciently cheap), or a center-protected star (for

intermediate values of protection costs). When protection is expensive, the optimal un-

protected network depends on the value of connectivity. For very convex value functions,

the designer may Ôrisk itÕ by creating a very large component, an option that is obviously

suboptimal under intelligent threats.

3There are 3 to 5 million cases of acute inßuenza and between 250,000 and 500,000 deaths are at-
tributed to this infection, annually. In 2012, over 8.5 million people were infected with tuberculosis and
1.3 million deaths were attributed to it. In the same year, 2.3 million new cases of AIDS were reported
and over 1.5 million people died due to the disease; over 36 million people have died due to HIV/AIDS
so far (WHO (2013, 2014a, 2014b)).
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The solution to the design problem with decentralized security stands in sharp contrast

with the case of intelligent attack. First, the over-protection problem is no longer present.

Secondly, the under-protection problem may need to be addressed in a diametrically op-

posite way. Facing an intelligent adversary, security choices exhibit complementarities,

and to avoid an equilibrium where nobody protects the designer must choose relatively

sparse networks. Under random attack, security choices feature both strategic comple-

mentarities (due to the value of being connected to surviving individuals) and substitutes

Ð a node will simply not protect unless it is su!ciently exposed to the risk of contagion.

Since a node must be exposed to potential contagion in order to protect, the designer

may need to choose dense networks to induce protection.

The contribution of the paper lies at the intersection of economics and computer sci-

ence literature. For an early contribution in the study of decentralized defence, see Kun-

reuther and Heal (2003). Aspnes et al. (2006) studies security choices by nodes in a Þxed

network when nodes only care about their own survival, attack is random, and both pro-

tection as well as contagion are perfect. The focus is on computing the Nash equilibria of

the game. They provide approximation algorithms for Þnding the equilibria. In a recent

paper, Acemoglu et al. (2013) study the incentives for protection in a setting when both

defence and contagion are imperfect.4 The present paper provides, to the best of our

knowledge, the Þrst systematic study of the problem of optimal network design when the

nodes invest to protect themselves against attacks.

Our paper is related to a recent literature on network design. Goyal and Vigier (2014)

study the problem of security in a setting where security and network design are both

chosen by a single player. The results in the present paper highlight the large e"ects of

decentralized defence for optimal design. In Goyal and Vigier (2014) the optimal design

is a star network and optimal allocation of resources is exclusively on the central node.

By contrast, when individual nodes choose security, the optimal design has to address

problems of too much as well as too little protection. This best way to tackle over-

protection is by disconnecting the network and sacriÞcing some nodes. Potential under-

protection problems are addressed by creating equal components. Finally, coordination

problems in security are mitigated through the creation of ÔsparseÕ networks that contain

critical nodes.5

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

presents the Þrst best solution. Section 4 presents our main result on the welfare costs of

decentralization. Section 5 discusses optimal design. In Section 6 we consider the case of

random attack. We conclude in Section 7. All proofs are in the Appendix.

4There is also a very active research programme in Þnancial contagion, see e.g., Blume et al. (2013),
Acemoglu et al. (2015), Cabrales et al. (2013), and Elliot et al. (2014)).

5Baccara and Bar-Isaac (2008) study the optimal cross-holding of incriminating information in a
criminal organization, exploring the tradeo! between cooperation enforcement and potential detection
by an external authority. However, no protection technology is available to agents; the choice of security
is central to our study.
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2 The model

Let N = { 1, . . . , n} , n " 2, be the Þnite set ofnodes. A link is a two-element subset of

N . A network G is a set of links,G # { ij : i, j $ N, i %= j} , where ij is short for { i, j} .

The set of all networks over the set of nodesN is denoted byG(N ). Given a set of nodes

U # N , G[U ] = { ij $ G : i, j $ U } is the subnetwork ofG induced byU . Additionally,

given a set of nodesX # N , G & X = G[N \ X] is the network obtained fromG by

removing all nodes fromX together with the adjacent links. A path in G between nodes

i, j $ N is a sequence of nodesi
0

, . . . , i
m

$ N such that i
0

= i, i
m

= j, m " 2, and

i
k�1

i
k

$ G for all k = 1 , . . . ,m. Node j is reachable from node i in G if i = j or there is

a path between them inG. We denote this fact byi G'( j. A component is a maximal set

of nodesC # N such that for all i, j $ C, i %= j, we havei G'( j. The set of components

of G is denoted byC(G). We will abuse the terminology and use the term ÔcomponentÕ

to refer to the subnetworkG[C] induced by a componentC, as well. Given networkG

and nodei $ N , C
i

(G) denotes the componentC $ C(G) such that i $ C. Network G is

connected if |C(G)| = 1.

A network value function (NVF) is a function that reßects how good the network is

in the given context. We consider the following network value function:

�(G) =
X

C2C(G)

f (|C|),

where f : R ( R is strictly increasing, strictly convex, andf (0) = 0. This form of

network value functions is in line with MetcalfeÕs law, where the value of a connected

network overx nodes is equal tox2, as well as ReedÕs law, where the value of a connected

network over x nodes is of exponential order with respect to the number of nodes (e.g.

2x & 1). It reßects the idea that each node derives additional utility from every node it

can reach in the network.

Players. There are (n + 2) players: the designer (D), the n nodes, and the adversary

(A).

The timing. There are three rounds of the game:

1. D chooses the networkG $ G(N ).

2. Nodes fromN observeG and choose, simultaneously and independently, whether

to protect (1) or not (0). This determines the set of protected nodes #.

3. A observes the protected network (G, #) and chooses nodex $ N to infect. The

infection eliminates all the unprotected nodes reachable fromx in G & #. Thus

the set of eliminated nodes isE
x

(G|#) = { i $ N : x
G��'&( i} , if x /$ #, and

E
x

(G|#) = ?, otherwise. This leads to theresidual network G & E
x

(G|#).
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Payo!s. Payo"s to the players are based on the value of the residual network and costs

of defence. Thegross payo↵ to node i $ N in network G is equal tof (|C
i

(G)|)/|C
i

(G)|,

i.e. each node gets the equal share of the value of its component. The net payo" of a node

is equal to the gross payo" minus defence spending. The protection has costsc $ R
++

.

A removed node gets payo" 0. NodeiÕs payo" in networkG with defended nodes # and

attack x is then equal to:

U i(G, # , x) =

8
><

>:

f(|C
i

(G�E

x

(G|�))|)
|C

i

(G�E

x

(G|�))| & c if i $ #

0 if i $ E
x

(G|#) \ #
f(|C

i

(G�E

x

(G|�))|)
|C

i

(G�E

x

(G|�))| otherwise.

(1)

The designer aims to maximize social welfare, i.e. the sum of nodesÕ utilities, which is

equal to the value of the residual network minus total costs of defence. Formally, the

designerÕs payo"s are equal to:

UD(G, # , x) = W (G, # , x) =
X

i2V

U i(G, # , x) =

0

@
X

C2C(G�E

x

(G|�))

f (|C|)

1

A & |# |c. (2)

The adversary is intelligent and aims to minimize gross welfare, i.e. the sum of nodesÕ

gross payo"s, equal to the value of the residual network:

UA(G, # , x) = &
X

C2C(g�E

x

(g|�))

f (|C|). (3)

The game. The model described above leads to game $ =)P, (%
i

)
i2P , (Si

)
i2P *. The set

of players isP = N + { D,A} . The set of strategies of playerD is SD = G(N ). A strategy

of each nodei is a function �
i

: G(N ) ( { 0, 1} which, given networkG $ G(N ), provides

the protection decision�
i

(G) of the node. The set of strategies of each nodei $ N is

S
i

= 2G(N). A proÞle of individual strategies of the nodes determine, given a networkG,

the set of defended nodes #(G) = { i $ N : �
i

(G) = 1 } . The set of strategies of playerA

is a function x : G(N ) , 2N ( N which, given networkG $ G(N ) and set of protected

nodes # # N , provides the attacked nodex(G, #). The set of strategies of playerA is

SA = NG(N)⇥2

N

. A strategy proÞle is a tuple (G, # , x) with the strategy choices of each

of the players.6 The outcome of strategy proÞle (G, # , x) is (G, #( G), x(G, #( G))). The

preferences of playersD and A are determined by their utilities from the outcomes of

strategy proÞles. In the case of nodes we make an additional tie breaking assumption

that in the case of utilities being equal, each node prefers to stay uninfected.

Equilibrium. We are interested in subgame perfect equilibria of game $, called equi-

libria, for short. Throughout the paper we will also refer to the subgame ensuing after

6We will represent the strategies of the nodes with the function providing the set of defended nodes,
for short.
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network G is chosen. We will denote this subgame by $(G). We will abuse the notation

by using the same letters to denote the strategies in $(G) and in $ (we will indicate

whenever it is not clear from the context which game is considered).

It is important to note that, for the problem to be well deÞned, for any networkG

the subgame $(G) must have an equilibrium. This is established by the following lemma.

Lemma 1. For any network G $ G(N ), $(G) has an equilibrium.

An immediate corollary of Lemma 1 is that the game $ has an equilibrium.

3 First best outcomes

We start the analysis by characterizing the optimal choice if the designer can choose the

protection proÞle as well as the network. Before we state the proposition characterizing

the Þrst best, we deÞne the following set. Givenn $ N, let

Q⇤(n) = arg max
q2{1,...,n}(q & 2)f

✓�
n

q & 1

⌫◆
+ f (n mod (q & 1)). (4)

As will be clear in the next result, for su!ciently high protection cost the Þrst best

involves no protection. For a given network value function, elements in the setQ⇤(n) are

related to the maximum number of components in the optimal unprotected network.

Proposition 1. Suppose the designer chooses protection and design. Then

(1) if c - min{ c
1

(n), c
2

(n)} , the network is connected and all nodes are protected,

(2) if c
1

(n) < c - c
3

(n), the network is a star and only the centre is protected,

(3) if c > max(c
2

(n), c
3

(n)) , the network is unprotected and has q & 1 components of size

. n

q�1

/ and one component of size n mod (q & 1) (if n mod (q & 1) > 0),

where

c
1

(n) =
f (n) & f (n & 1)

n & 1
, (5)

c
2

(n) =
f (n) & (q & 2)f

⇣j
n

q�1

k⌘
& f (n mod (q & 1))

n
, (6)

c
3

(n) = f (n & 1) & (q & 2)f
✓�

n

q & 1

⌫◆
& f (n mod (q & 1)), (7)

with q $ Q⇤(n).

The response of the adversary to each of these networks and defence proÞles is as

follows. The adversary attacks any node in case (1), eliminates a spoke in case (2), and

targets a node in a component of size. n

q�1

/ in case (3).
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When defence is su!ciently cheap all nodes will be protected, and the maximum gross

payo" of f (n) will be achieved through any connected network. For intermediate values

of c, protecting all nodes is too costly but the damage caused by the adversary can be

brought to a minimum with a center-protected star. When the cost of protection is large,

no node is protected and an undefended network is optimal.

Consider, for example, the case of MetcalfeÕs Law (i.e.f (y) = y2) with n = 30 nodes.

If c - 2.03, Þrst best is achieved through a connected and fully protected network. If

2.03 < c - 616, then a centre protected star is optimal. Finally, ifc > 616, then the

designer chooses a network consisting of two components of 15 nodes.7

4 The price of decentralization

What are the welfare implications of decentralized protection decisions? We will use two

measures: the price of stability and the price of anarchy.

The price of stability is deÞned as the fraction of payo" to the designer in the Þrst

best over the maximal payo" to the designer that can be attained in equilibrium of $ (for

the given costs of protectionc):

PoS(n, c) =
W (Gfb, # fb, xfb)

max
(G,�,x)2E(c) W (G, #( G), x(G, #( G)))

, (8)

where (Gfb, # fb) is a Þrst best network and defence proÞle andxfb is a best response

to it by the adversary. The price of anarchy is deÞned as the fraction of payo" to the

designer in the Þrst best over the minimal payo" to the designer that can be attained in

equilibrium of $ (for the given costs of protectionc):

PoA(n, c) =
W (Gfb, # fb, xfb)

min
(G,�,x)2E(c) W (G, #( G), x(G, #( G)))

. (9)

It is easy to see that these measures provide, respectively, lower and upper bounds on

the welfare costs of decentralization.

The following additional quantity will be used in the analysis of decentralized equi-

libria:

c
0

(n) =
f (n & 1)
n & 1

. (10)

We start by noting that there is no cost of decentralization if protection is su!ciently

expensive or su!ciently cheap.

7The optimal number of components of an undefended network depends on the convexity of the
value function. For f (y) = y2 and n /$ { 9, 15} , it consists of two large equal-size components and (if
n is odd) an isolated node. Forn = 9, the network with three equal-size components is the unique
optimal undefended network; for n = 15, there are two optimal undefended networks: three equal-size
components, and two size-7 components and an isolated node. Formally, we have that under this network
value function Q! (9) = { 4} , Q! (15) = { 3, 4} , and Q! (n) = { 3} for any n /$ { 9, 15} .
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Lemma 2. If c - min { c
0

(n), c
1

(n), c
2

(n)} or c > max{ c
2

(n), c
3

(n)} , then there exists

network G such that the designer attains first best payo↵s in every equilibrium of $(G).

Suppose that c > max{ c
2

(n), c
3

(n)} , so that the Þrst best consists of an unpro-

tected network G with the largest components being of size
j

n

q�1

k
, where q $ Q⇤(n).

If protection is costly enough for the Þrst best to be an optimal undefended network

G, then in such a network any potential gains from connectivity are outweighed by the

cost of protection.8 No protection is the unique equilibrium defence proÞle of $(G). If

c - min{ c
1

(n), c
2

(n)} , the Þrst best consists of a connected networkG with all nodes

protected. If, in addition, c - c
0

(n), then while there exist connected networks with

equilibria involving less than full protection, there always exist networks such that all

nodes protect in every equilibrium.

Lemma 2 therefore establishes that departures from Þrst best may arise for two di"er-

ent reasons. Firstly, if the cost of protection is such thatc
0

(n) < c - min{ c
1

(n), c
2

(n)} .

In this case, Þrst best welfare is attained through full protection, butany network has

an equilibrium where no node protects. Such a situation may only arise if the network

value function features exponential growth, sincec
0

(n) < c
1

(n) requires that the value

of a network overn nodes is at least twice as large as the value of a network overn & 1

nodes.

Secondly, there will be departures from Þrst best if the latter consists of a centre-

protected star. This requires that the network value functionf and the network sizen

be such that c
1

(n) < c
3

(n).9 Then, for c
1

(n) < c - c
3

(n) Þrst best is a centre-protected

star, but this cannot be attained in equilibrium, as the only equilibria on star networks

are those where either all or no node protects.

Lemma 3. Let G be a star network. In any equilibrium of $(G), either all nodes protect

or no node protects.

For largen, decentralization of protection cannot be problematic if lim
y!1

f(y)�f(y�1)

y�1

=

+ 0 . In this case, for su!ciently large n, c < min{ c
0

(n), c
1

(n)} and therefore the price

of anarchy equals one.10 If, on the other hand, lim
y!1

f(y)�f(y�1)

y�1

is bounded, then the

wedge between Þrst best and decentralized welfare will not vanish asn increases. Our

main Þnding is that, for any network value function, the ability to choose the network

topology allows to bound the welfare costs of decentralization. This is summarized by

the theorem below.

8Formally, we have that c3(n) >
f (. n

q ! 1 / )
. n

q ! 1 / .
9Note, for example, that c1(n) > c 3(n) for any n if f (y) = yy .

10This follows from the fact that if c0(n) is bounded then c1(n) is bounded. The condition
limy"#

f (y)$ f (y$ 1)
y$ 1 = + 0 is satisÞed, e.g., forf (y) = y! and ! > 2, or f (y) = ! y & 1 and ! > 1. These

functions are su"ciently convex so that, for any Þnite protection cost, there exist a su"ciently large n
such that a connected fully protected network is Þrst bestand there exist networks with full protection
in any equilibrium.
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Theorem 1. For cost of protection c and network size n:

(1) If c < min(c
0

(n), c
1

(n), c
2

(n)) or c > max(c
2

(n), c
3

(n)) , then PoA(n, c) = PoS( n, c) = 1 .

(2) Suppose thatc
1

(n) is bounded andmin(c
0

(n), c
1

(n), c
2

(n)) < c < max(c
2

(n), c
3

(n)) . Then:

(a) lim
n!1 PoA(n, c) = lim

n!1 PoS(n, c) = 1 , if f(n)

n

is unbounded.

(b) lim
n!1 PoA(n, c), lim

n!1 PoS(n, c) - p

p�c

, if lim
n!1

f(n)

n

= p < + 0 with p > c.

(c) lim
n!1 PoA(n, c), lim

n!1 PoS(n, c) - p

f(1)

, if lim
n!1

f(n)

n

= p " c.

To gain intuition for point 2 in Theorem 1, it is useful to consider examples. Suppose

that f (y) = y2. Note that c
1

(n) is bounded, lim
n!1 c

1

(n) = 2. Moreover, f(n)

n

is

unbounded. Hence, this network value function corresponds to case 2a. Sincef(n)

n

is

unbounded, for any costc there exists a network sizen such that f(n�1)

n�1

" c. In this case,

the designer can enforce full protection by choosing the right topology. Moreover, since

f (n) grows faster thann, the welfare implications of over-protection by (n& 1) nodes are

negligible compared to connectivity payo"s.

In cases 2b and 2c,f(n)
n

is bounded. The value of connections becomes approximately

linear as the network size increases. Consider, for example,f (y) = y & ln(y + 1), so that

lim
n!1

f(n)

n

= 1. If c < 1, then for su!ciently large n the designer can choose a connected

network where all nodes protect. The average payo" across nodes in the Þrst best is
f(n�1)

n

& c

n

( 1, while in decentralized equilibrium with overprotectionf(n)

n

& c ( 1 & c.

Hence the price of anarchy is bounded above by1
1�c

. If c " 1, then the designer can

choose the empty network, and the price of decentralization is at mostf(n�1)�c

(n�1)f(1)

( 1

f(1)

.

5 Decentralized security and optimal design

Our main result (Theorem 1) states that the welfare implications of decentralization can

be bounded by choosing the network topology. In this section we turn the attention to

the optimal design problem.

When protection decisions are decentralized, ine!ciencies stem from two distinct

sources: pure-externality problems and coordination problems. To illustrate the inef-

Þciencies associated with pure-externality problems, letf (y) = y2. Suppose that the

Þrst best is a centre-protected star (i.e.c
1

(n) < c - c
3

(n)). If c > (n�1)

2

n�1

and no spoke

protects, the centre of the star strictly prefers not to protect. This is the underprotection

problem due to positive externalities. Ifc < n & 1, there is a unique equilibrium where

all nodes protect. This is the overprotection problem due to negative externalities.

The second source of ine!ciencies are coordination problems. Letf (y) = y2, and sup-

pose that the Þrst best is a connected and fully protected network (i.e.c - min{ c
1

(n), c
2

(n)} ).

Consider a clique, i.e. a network where there is a link between any pair of nodes. There

are two possible equilibrium outcomes. One where all nodes protect (attaining the social

optimum), and another one where no node protects. The latter is due to the fact that it

10



is not proÞtable for a node to protect if no other node survives in the network. Protection

in this setting has features of threshold public goods: it is only proÞtable for the nodes

to protect if there are su!ciently many other nodes protecting in the network.

In this section we analyze how the designer can mitigate the decentralization problems

by choosing the right network topology. Given that, depending on the network, the

subgame $(G) may feature multiple equilibria, we will consider two polar cases. For

any network G, the equilibrium of the subgame $(G) that will be selected will be either

welfare-maximising or welfare-minimising. Formally, for a given networkG $ G(N ), let

E(c|G) denote the set of all equilibria of $(G) under costs of protectionc. An equilibrium

(# , x) is welfare-maximising if

(# , x) $ arg max
(�

!
,x

!
)2E(c|G)

W (G, # , x(#)) . (11)

An equilibrium (# , x) is welfare-minimising if

(# , x) $ arg min
(�

!
,x

!
)2E(c|G)

W (G, # , x(#)) . (12)

Let E(c) denote the set of equilibria of the game $. An equilibrium (G, # , x) $ E(c) is

welfare maximising if

(G, # , x) $ arg max
(G,�

!
,x

!
)2E(c)W (G, #( G), x(G, #)) , (13)

and welfare minimising if

(G, # , x) $ arg min
(G,�

!
,x

!
)2E(c)W (G, #( G), x(G, #)) . (14)

Consider potential di"erences between design under centralized and decentralized pro-

tection. Any discrepancy between Þrst best design and design under welfare maximising

equilibria will reßect a pure-externality problem. Di"erences between design under wel-

fare maximising and welfare minimising equilibria reßect coordination problems.

5.1 MetcalfeÕs Law

In this section we present the characterization of optimal networks for the case of Met-

calfeÕs Law, that is, whenf (y) = y2. This functional form can be motivated, for example,

by assuming that each individual in a component of sizey has a piece of information that

has a value of 1 to everyone (including herself). Thus, every node in a surviving com-

ponent of sizey receives a gross payo" ofy, and the designerÕs gross payo" from this

component is equal toy2.

We Þnd that three classes of networks are optimal under MetcalfeÕs law in a welfare

maximising equilibrium. When protection costs are low, the designer keeps the network

connected, and in the welfare maximizing equilibrium all nodes protect. As protection

costs increase, the designer needs to construct a network such that not all nodes protect.

To do so, s/he Þnds it optimal to save on protection at the expense of connectivity.

11



In particular, by creating a relatively large star component, and a smaller component.

In equilibrium, only the center of the star protects and the smaller component remains

unprotected and is eliminated. For large protection costs, the designer chooses the optimal

unprotected network, where in decentralized equilibrium no node protects.

The following two quantities correspond to the sizes of the star and unprotected

component of the network with partial protection:

s(n) =
j
(n + 1) &

1
2n
k
,

u(n) =

(
n & s(n) & 1 if (n & s(n) & 1)2 " 2s(n) & 1

n & s(n) otherwise
.

Proposition 2. Assume f (y) = y2 and n " 20. If (G, # , x) is a welfare maximising

equilibrium, then

(1) if 0 < c - min{ c
D

(n), c
U

(n)} or s(n) < c - c
U

(n), G is connected and all nodes

protect,

(2) if c
D

(n) < c - s(n), G features a star of size s(n) and a component of size u(n), and

only the hub of the star protects,

(3) if c > max{ c
U

(n), s(n)} , G features two components of size .n/2/ and no node pro-

tects,

where

c
U

(n) =
n2 & [.n/2/ 2 + n mod 2]

n
,

c
D

(n) =
n2 & [s2(n) + ( n & s(n) & u(n))]

n & 1
.

The response of the adversary to each of these networks and defence proÞles is as

follows. The adversary attacks any node in (1), eliminatesu(n) nodes in case (2), and

eliminates a component of size.n/2/ in case (3).11

Figure 1 illustrates the result forn = 30. If c - 2.03, full protection in a connected

network is Þrst best, and this can be attained in equilibrium on any such network. If the

cost of protection is betweenc = 2 .03 and c = 616, a center-protected star is Þrst best.

However, only two equilibria are possible on a star network: full protection (ifc - 30)

and no protection (if c > 29). Since no network can induce protection for costs above 30,

the interest is in what the designer should choose ifc $ (2.03, 30].

If 2.03< c - 13, over protection implies a departure from Þrst best but the designer

Þnds it optimal to keep the network connected and have all nodes protect in equilibrium.

11The condition n " 20 is su"cient for the adversary not to attack a partially protected component in
equilibrium. Within the Þnite number of cases not covered (i.e. forn < 20), we could not Þnd a network
such that this takes place on the equilibrium path.
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Figure 1: Optimal design as a function of protection costc: f (y) = y2 and n = 30.

For c > 13, the welfare costs of over-protection are severe enough to merit disconnecting

the network to avoid it. The optimal network consists of a star of size 23 and a component

of size 7. In equilibrium, only the center of the star protects and the adversary eliminates

the component of size 7. While several nodes are compromised, many more save on

protection.

For c > 23, however, the center of the star no longer Þnds it proÞtable to protect.

Therefore, if c $ (23, 30] the designer faces two options: either connecting all nodes

and inducing full protection, or splitting the network and inducing no protection. De-

fence is su!ciently costly for the designer to prefer splitting the network into equal-size

components and losing half of the nodes to the attack.

What networks are optimal if, for any network, a welfare minimizing equilibrium is

chosen? Consider again the case withn = 30 nodes. For costs of protection above 23,

the designer chooses the optimal unprotected network that consists of two components

of size 15. Sincec > 23> 15, not to protect is a strictly dominant strategy for any node.

Clearly, all equilibria on this network achieve the same level of welfare. Thus, in this case

the set of optimal networks under welfare minimizing equilibria is the same as the one

under welfare maximizing equilibria.

A similar argument extends to the case wherec $ [13, 23]. That is, the optimal

network under welfare maximizing equilibria attains the same welfare in any equilibrium.

To see this, note Þrst that a node in the small component of size 7< c would never

protect. Furthermore, if the center of the star does not protect, then the adversary would

attack it, even if all spokes of the star protect. By eliminating the center of the star,
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the adversary causes a damage of at least 232 & 22á1.12 This is vastly larger than the

damage of 72 caused by attacking the unprotected component. Therefore, the center of

the star protects in every equilibrium, and the adversary prefers to attack the unprotected

component to eliminating an unprotected spoke.

Finally, if c - 13, the optimal network under welfare minimizing equilibria is con-

nected and fully protected. In this range of costs, any connected network has a full

protection equilibrium, but some of them have equilibria where not all nodes protect.

However, for anyc - 13 the designer can always choose a network that secures full pro-

tection in every equilibrium. This can be achieved, for example, by choosing the star

network.

Formally, for a set of nodesN and a cost of protectionc, let us denote withGfull(N, c)

the set of connected networks such that all nodes protect in any equilibrium. That is,

Gfull(N, c) = {G $ G(N ) : G is connected and # =N for any (# , x) $ E(c|G)} .

The following result establishes that this set of networks is not empty when in the welfare

maximizing case the designer prefers full protection.13

Lemma 4. Assume f (y) = y2 and n " 4. If c - c
U

(n), then there exists a network

where all nodes protect in every equilibrium.

It follows from this result that, by choosing the right topology, in the welfare min-

imizing case the designer can avoid coordination problems and attain the same payo"s

as in the welfare maximizing case. In terms of the price of decentralization, this means

that the price of anarchy is equal to the price of stability. We summarize the welfare

minimizing case in the following proposition.14

Proposition 3. Assume f (y) = y2 and n " 4. If (G, # , x) is a welfare minimizing

equilibrium, then

(1) if 0 < c - min{ öc
D

(n), c
U

(n)} or ös(n) < c - c
U

(n), G is in Gfull(N, c) and all nodes

protect,

(2) if öc
D

(n) < c - ös(n), G features a star of size ös(n) and a component of size u(n), and

only the hub of the star protects,

(3) if c > max{ c
U

(n), ös(n)} , G features two components of size .n/2/ and no node pro-

tects,

12Formally, if y nodes protect in a star of sizes, then the damage caused by eliminating the center
equalsf (s) & yf (1). This is minimal for y = s & 1.

13If n $ { 2, 3} and c $ (n & 1, cU (n)), the designer would like to induce full protection but any network
has an equilibrium with no protection.

14In the next section we provide a necessary and a su"cient condition for a network to be inGfull (N, c)
for general network value functions.
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where

ös(n) =

(
s(n) if 2s(n) & 1 < u(n)

s(n) & 1 otherwise

,

öc
D

(n) =
n2 & [ös2(n) + ( n & ös(n) & u(n))]

n & 1
.

Note that the size of the star, ös(n), in the optimal network with partial protection

may di"er from the one the designer chooses under welfare maximising equilibria. This

stems from the fact that, facing a given network and defence proÞle, di"erent strategies

of the adversary can be equilibrium strategies. SpeciÞcally, how the adversary decides,

when indi"erent between two attacks, can exacerbate the over-protection problem. For

example, iff (y) = y2 and there aren = 32 nodes, then the optimal partially protected

network under welfare maximizing equilibria consists of a star of size 25 and a component

of size 7. If only the center of the star protects, the adversary is indi"erent between

eliminating the small component (producing a gross welfare of 252 = 625) and targeting

a spoke of the star (yielding gross welfare of 242 + 7 2 = 625). Two equilibrium outcomes

are therefore possible: either all spokes protect, or no spoke protects (with the adversary

attacking the small component in both cases). Clearly the former equilibrium is worse,

and the designer responds to this by isolating a spoke of the star and thus reducing the

size of the star to 24 nodes.

Figure 2 contrasts design under Þrst best with design under decentralized protection

for f (y) = y2, as a function of the size of the network,n, and the protection cost,c.

The parameter space (n, c) is partitioned into Þve regions. In region I, the Þrst best is a

connected network with all nodes protected. By choosing the right topology, the designer

can attain Þrst best payo"s. In regions II, III, and IV, the Þrst best is a center-protected

star. However, in a decentralized equilibrium either all nodes protect or no node protects

in the star.

Facing this problem, the designer must choose to either keep the network connected, in

which case all nodes must protect, or save on protection at the expense of connectivity. In

region II, s/he opts for choosing a connected network. In turn, in region III a disconnected

network with a center-protected star of size ös(n) is optimal. It is important to note that,

while this topology and protection proÞle can get the designer higher payo"s than both a

fully protected connected network and an unprotected disconnected network, it may not

be implementable in equilibrium. Ifc > ös(n) the center of the star would not protect, and

so the designer will choose either a connected network where all nodes protect (region

II), or the optimal unprotected network that has two components of size.n/2/ (region

IV).

Finally, in region V the Þrst best involves no protection, and this is implementable in

equilibrium.
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Figure 2: Optimal architecture if f (y) = y2, as a function of network sizen (horizontal

axis) and protection costc (vertical axis).

5.2 General network value function

The discussion of Section 4 established that departures from Þrst best welfare arise if full

protection is Þrst best but is not implementable in equilibrium, and because the center

protected star is not an equilibrium. If the Þrst problem arises, its solution is simple:

the designer will respond to it by choosing an optimal unprotected network. The second

problem, on the other hand, is more challenging.

By Lemma 3, there are two equilibrium defence proÞles on the star network. No

protection is an equilibrium proÞle of the star ifc > f (n & 1)/(n & 1), whereas full

protection is an equilibrium proÞle ifc - f (n)/n. Note that for any c > f (n)/n, no

network has protection in equilibrium, and thus the designer chooses in this case the

optimal unprotected network. The non-trivial situation is therefore whenc - f (n)/n and

in the best equilibria of the star all nodes protect. In the case of MetcalfeÕs Law explored

above, we have seen that this is achieved by fragmenting the network and sacriÞcing

a relatively small component. Here we show that this feature holds for any network

value function, in the following sense. SpeciÞcally, we show that if the designer chooses

a connected network, it must be that all nodes protect. The intuition is the following.

Note that any connected network that has a partial protection equilibrium, also has a

full protection equilibrium. If the beneÞts from connectivity are ÔweakÕ enough for full

protection to be worse than partial protection, then the designer can attain the same

gross welfare (but with less protection) by luring the adversary with a relatively small
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component. Let us state the result and then provide an intuition for the formal proof.

Proposition 4. Let G be an optimal network in a welfare maximising equilibrium of $.

If some but not all nodes protect, then G is not connected.

To illustrate the proof of the result, let us consider the following example. Suppose

that there are n = 20 nodes, the cost of protection isc = 0 .8, and the network value

function is f (y) = y & ln(y + 1). The payo" to the designer under full protection is

f (20) & 20 ác = 0 .95. This is clearly an equilibrium on any connected network, since

c < f (20)/20. Suppose that the designer chooses a connected network where some nodes

are eliminated in equilibrium. Consider, for example, the network depicted in panel (a) of

Figure 3. The defence proÞle #⇤ is depicted such that protected nodes are surrounded by

a square. Facing #⇤, gross welfare is smaller if the adversary targets nodei (f (17) = 14.1)

than if s/he targets nodek (f (4) + f (15) = 14.6). Note that if node i protected it would

successfully divert the attack towards nodek, since the gross welfare after attacking

an unprotected neighbour ofi is f (18) = 15 > 14.6. Consider then the strategy of

the adversary that speciÞes attacking nodei if nodes choose defence #⇤, and attacking

nodek if nodes choose defence proÞle #⇤ + { i} . Then # ⇤ is an equilibrium defence. In

particular, note that node i does not wish to protect, since in that case its payo"s are of

f (4)/4 & c < 0.

This network thus avoids the over-protection problem, and achieves strictly higher

welfare than a fully protected connected network (f (17)& 2ác = 15.7 > 0.95). Consider,

however, re-designing the network into a star of 17 nodes and a cycle of 3 nodes, as shown

in panel (b) of Figure 3. There is an equilibrium in this modiÞed network where only

the hub of the star protects and the adversary targets the unprotected cycle.15 While

gross welfare isf (17) in both networks, the modiÞed network features lower protection

spending. This example points to the sub-optimality of partially protected connected

networks. When they achieve higher welfare than the fully protected connected network,

they are in turn dominated by a network which achieves the same gross welfare with

lower spending on protection.

It follows from Proposition 4 that if the designer were to choose a network where

some but not all nodes protect, then this network must be disconnected. This opens

up two possibilities for the adversaryÕs attack on the equilibrium path: either (i) s/he

attacks an unprotected component, or (ii) s/he targets a partially protected component.

While Case (ii) is the one that we have not been able to rule out for general network

value functions, Case (i) is certainly a possibility, as shown above for the case off (y) =

y2. It is important to note, however, that the option given by Case (i) of sacriÞcing a

15Facing this defence proÞle, the adversary prefers to attack the cycle (producing gross welfare of
f (17) = 14.1) to eliminating a spoke of the star (gross welfare off (3) + f (16) = 14.8). A node in the
cycle could protect and thus divert the attack towards a spoke of the star. But this is not proÞtable,
sincef (3)/ 3 & c < 0.
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Figure 3: Addressing overprotection:n = 20 and c = 0 .8, with f (y) = y & ln(y + 1). The

network in panel (a) has an equilibrium where some but not all nodes protect. Panel (b)

shows a disconnected network which achieves higher welfare.

relatively small component to save on protection in a larger component, which works

under MetcalfeÕs Law, cannot work for some value functions.

To see this, consider any value function such thatf (y) > 2f (y & 1) (e.g. ReedÕs Law,

f (y) = 2 y & 1). Let X be an unprotected attacked component, andY an unattacked

protected component,|Y | > |X |. As shown in the Appendix, if the network is discon-

nected no component is fully protected. Therefore, there is at least one node inY that

the adversary could eliminate. Since|X | - | Y | & 1, we have thatf (|X |) - f (|Y | & 1) <

f (|Y |) & f (|Y | & 1), and so the adversary strictly prefers eliminating a single node of the

largest component to eliminating all nodes inX, a contradiction. The intuition is simple:

sincef (y) > 2f (y & 1), a single extra node in the largest component generates at least

twice the value as the entire smaller component. Therefore, the designer will never be

able to satisfy the ÔappetiteÕ of the adversary with a smaller component.

Let us next consider the problem of optimal design when, for every network, nodes and

adversary coordinate on a welfare minimising equilibrium. How can the over-protection

problem be addressed in these circumstances?

Observe Þrst that, under welfare minimizing equilibria, if the optimal network is

connected it must be that all nodes are protected. The intuition is as follows. Consider

a connected networkG which has a (welfare minimizing) equilibrium defence # where

some but not all nodes protect. Even though the adversary is eliminating at least one

node, the net payo" of nodes that protect is non-negative. It follows that networkG must

have another equilibrium defence whereall nodes protect. Furthermore, by deÞnition of

#, the equilibrium with full protection cannot be worse. If # attains the same level of

welfare as full protection, then the tie breaking assumption that nodes prefer to remain

uninfected implies that full protection must be preferred by the designer as well. But
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then the designer can be better o" by choosing a star network, as in any equilibrium of

the star all nodes will protect.

The upshot of Proposition 4 therefore extends to welfare-minimizing equilibria (albeit

for di"erent reasons): the designer must disconnect the network if s/he is to avoid the over-

protection problem. As stated above, if the network is disconnected then two things may

happen on the equilibrium path. Either the adversary attacks an unprotected component

(denoted as Case (i)), or s/he attacks a partially protected component (Case (ii)). Case

(ii) can be ruled out if the network value function satisÞes the following property.

Property 1. f (1)y < f (y + 1) & f (y) for any y " 0.

Property 1 is a condition on the convexity of the network value function. Functions

that satisfy this property include, for example, ReedÕs Law (f (y) = 2 y & 1), and poly-

nomial functions with exponent greater than or equal to 2 (i.e.f (y) = y↵, ↵ " 2). We

make the following remark.

Proposition 5. Suppose f satisfies Property 1. Let (G, # , x) be a welfare minimizing

equilibrium of $. If G is not connected, then the adversary attacks an unprotected com-

ponent.

The proof works by contradiction. Suppose that in a welfare minimizing equilibrium

the network is disconnected but the adversary attacks a component where some nodes

protect. Let us denote this component byP . Clearly, P cannot be fully protected. IfP

was fully protected and the adversary attacks it, then it must be thatall components are

fully protected, and the designer can be better o" by choosing a connected star where

all nodes protect in any equilibrium. Thus,P is not fully protected and the adversary

eliminates at least one node ofP .

Let us say that a component is ÔlargeÕ if its size is such thatf(|C|)
|C| " c, and that it

is ÔsmallÕ otherwise. Clearly, if a small component exists then eliminating it is always

feasible for the adversary, since any node in a small component does not protect in any

equilibrium. Moreover, there must exist one such small component if the optimal network

is disconnected. Otherwise the defence proÞle where all nodes protect is an equilibrium

defence, which, by deÞnition, cannot be worse. But then the designer can attain strictly

higher payo"s by choosing a connected star where all nodes protect in any equilibrium.

We next observe that ifP has only one unit of protection, then the adversary must

strictly prefer an attack on P to attacking a small component. To see this, note Þrst

that P must have the structure shown in Figure 4. The adversary eliminates the setX

of nodes, and if a node inX protects then the adversary attacks a node inY . For an

eliminated nodei who has a protected neighbour, not to protect is a best response only

if the adversary disconnects protected nodes inP if i protects. Otherwise nodei could

get at least the same payo"s of protected nodes ofP by protecting. Note, in particular,

that componentP has at least two units of protection and the adversary weakly prefers
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an attack on X or Y to an attack on any other component. Clearly, ifP had only one

unit of protection the adversary wouldstrictly prefer an attack onP than an attack on

any other component.

The proof is Þnalized with the following step. We show that it must be possible to

construct another equilibrium defence, #0, where in any ÔlargeÕ component some but not

all nodes protect, and the adversary attacks a ÔsmallÕ component. By deÞnition of #

being a welfare minimizing equilibrium, the new equilibrium with defence #0 cannot be

worse. Moreover, by the observation of the previous paragraph, under #0 there must be

at least two protected nodes in componentP . But then the designer can modify the

original network by changing all components into stars. If Property 1 holds, then in any

equilibrium on the modiÞed network only the centres of the large components protect

and the adversary eliminates a small component.16 This attains the same gross welfare

as # 0 does in the original network, but with strictly less protection spending. Hence the

original network G cannot be optimal.
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Figure 4: The structure of the partially protected and attacked component

As a corollary of Proposition 5, we have the characterization of the optimal net-

works under welfare minimizing equilibria for any network value function that satisÞes

Property 1. In equilibrium, if the network is connected then all nodes protect. If it is

disconnected and some nodes protect, then it consists of large centrally protected stars

and small unprotected components, with the adversary eliminating a small component.

If it is disconnected and unprotected, it is the optimal unprotected network.

Consider, for example, the case of ReedÕs Law,f (y) = 2 y & 1. Since, as argued above,

under ReedÕs Law the option of luring the adversary with a small component cannot

work, optimal design under welfare minimizing equilibria is as follows.

Corollary 1. Assume f (y) = 2 y & 1. Let (G, # , x) be a welfare minimizing equilibrium.

(1) If c - 2

n" 1�1

n�1

, G is connected and all nodes protect.

(2) If c > 2

n" 1�1

n�1

, G features two components of size .n/2/ and no node protects.

16If Property 1 holds, an equilibrium where the large components are periphery-protected stars may
be possible.

20



Theorem 1 states that ifc < min{ c
0

(n), c
1

(n), c
2

(n)} , then the price of anarchy equals

one. That is, Þrst best involves full protection and there exist networks that attain full

protection in every equilibrium. What is the structure of these networks?

Let us start by observing that if the cost of protection is very low,c - f (1), then any

node that is attacked is better o" by protecting, regardless of the protection decisions of

other nodes. Therefore, in any equilibrium outcome all nodes are protected. Sincef (1) <

min{ c
0

(n), c
1

(n), c
2

(n)} , c - f (1) implies that the Þrst best is a connected and fully

protected network. The designer can attain Þrst best payo"s in decentralized equilibrium

by choosing any connected network.

What if costs of protection are low (so that Þrst best involves full protection) but

not very low: f (1) < c - min{ c
0

(n), c
1

(n), c
2

(n)} ? As we discussed already, there are

connected networks were ine!cient equilibrium outcomes are possible, as nodes may

fail to coordinate on the e!cient equilibria (e.g. no protection on the cycle, when full

protection is the Þrst best). However, this problem can be solved by choosing the right

topology of the network. Below we provide a necessary condition and a su!cient condition

for a connected network to have full protection in any equilibrium outcome under costs

of protection c - f(n�1)

n�1

.17

DeÞnition 1 (k-critical node). Node i $ N is k-critical in connected networkG if the

largest component inG & { i} is of sizek.

Loosely speaking, the importance of a node as a barrier against contagion due to an

intelligent attack is decreasing in its criticality. For example, any node in a complete

network is (n & 1)-critical.18 On the other hand, the centre of a star is 1-critical.

Proposition 6. Consider a network G, and let k be such that

f(n�k)

(n�k)

" c.

(1) If all nodes protect in every equilibrium of $(G), then G has a k-critical node.

(2) If for all i $ N , i is k-critical or has a link to a k-critical node, then all nodes protect

in every equilibrium of $(G).

In essence, the presence of ak-critical node, with f(n�k)

n�k

" c, rules out equilibrium

outcomes where no node protects: eachk-critical node has incentives to protect if no

other node protects. However, it is not su!cient for having full defence in any equilibrium

outcome. Consider the network depicted in Figure 5a. Letf (y) = y3 and c $ (81, 100].

The largest component inG& { i} is of size 9, and soi is 9-critical. Note that with k = 9,
f(n�k)

n�k

= 100 " c. Consider the defence proÞle shown in the Þgure. Facing this defence

proÞle, the adversary generates a loss of 193 & (19 & 8)3 = 5 , 528 if nodej is targeted,

17If c > f (n $ 1)
n $ 1 , then every network has an equilibrium with no protection.

18In fact, any node in a d-connected network,d " 2, is (n & 1)-critical. A network is d-connected if
there is no set ofl < d nodes whose removal disconnects the network and the network can be disconnected
by removing a set ofd nodes (see e.g. Bollob«as (1998)).
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and a loss of 193 & (93 + 9 3) = 5 , 401 if nodei is attacked. Hence the best response of

the adversary eliminates nodej, which thus earns payo" 0. Ifj chooses to protect, then

the adversary can generate a loss of only 193 & (19 & 7)3 = 5 , 131 if s/he attacks a node

of the clique to whichj belongs, and therefore prefers to attack nodei when j protects.

Thus, if it deviates to protection, payo"s of j are of 92 & c < 0. Additionally, since each

of the protected nodes earns positive payo", none of them is better o" by choosing no

protection, as in any best response of the adversary they would be eliminated. Thus, the

defence proÞle shown is indeed an equilibrium proÞle.

Note that a k-critical node cannot be eliminated in equilibrium, or otherwise it would

proÞtably deviate by protecting. It follows from this observation that ifG has ak-critical

node and there exist unprotected nodes in an equilibrium of $(G), then none of the nodes

who are eliminated in equilibrium can have a link to ak-critical node. Thus, a su!cient

condition for full protection to be the unique equilibrium outcome on a network is that

every node isk-critical or has a link to a k-critical node. Figure 5b provides an example

where the su!cient condition stated in the second part of Proposition 6 holds. Nodei

is 3-critical, and has links to all other nodes. Thus iff (y) = y3 and c $ (0, 162), any

equilibrium of $(G) has all nodes protected. This condition is not necessary, as illustrated

in Figure 5c. Whenf (y) = y3 and c $ (0, 132), in any equilibrium outcome all nodes

protect.

6 Random attack

To understand the e"ect of adversarial intelligence on the problem faced by the designer,

in this section we consider the case where the identity of the node attacked is independent

of its position in the network and protection status. In particular, the attack studied

in this section is random in the following sense: a randomly picked nodei $ N is

targeted. The payo"s of nodes and designer are modiÞed in obvious ways to reßect

expected utilities.19

19This model of random attack is the appropriate benchmark to study the e!ects of the adversary
purposefully choosing one node to attack. An alternative model of random attack consists of assuming
that every node fails independently with probability 1 /n . To see that the two speciÞcations of random
attack are di!erent in a meaningful way, suppose that f (y) = y2, n = 4, and c > f (4) = 16 so
that investing in protection cannot be optimal for the designer. If every node fails independently with
probability 1 / 4, then a connected network achieves the highest welfare, of

�
1 & 1

4

�4
áf (4) = 5 .0625.

Clearly, a connected network cannot be optimal if a randomly picked node is attacked, as it yields zero
welfare.
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Figure 5: Networks overn = 19 nodes with ak-critical node, k - 9.
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6.1 First best outcome

We start the analysis by characterizing the Þrst best. The following deÞnitions will be

used. ForB(n) = { b $ Nn : b
1

" . . . " b
n

" 0 and
P

i

b
i

= n} , let

B⇤(n) = arg maxb2B(n)

nX

i=1

f (b
i

)(n & b
i

).

For b $ B⇤(n), we will let K(b) denote the maximumi such that b
i

is strictly positive.

Moreover, let

öc
1

(n) =
f (n) & f (n & 1)

n
, (15)

öc
2

(n) =
f (n) & 1

n

P
n

i=1

f (b
i

)(n & b
i

)
n

, (16)

öc
3

(n) =
f (n) + ( n & 1)f (n & 1)

n
&

nX

i=1

f (b
i

)(n & b
i

), (17)

whereb $ B⇤(n).

Proposition 7. Suppose the attack is random and the designer chooses protection as well

as design. Then

(1) If c - min{ öc
1

(n), öc
2

(n)} , the network is connected and all nodes are protected.

(2) If öc
1

(n) < c - öc
3

(n), the network is a star and only the centre is protected.

(3) If c > max{ öc
2

(n), öc
3

(n)} , the network is unprotected and has K(b) components, of

sizes b
1

, . . . , b
K(b).

When the Þrst best involves protection, the topologies that are optimal are the same

as under intelligent attack. The novel aspect is the structure of the optimal unprotected

network. Facing an intelligent threat, there is no point in choosing an unprotected net-

work with a unique largest component; the adversary would remove such a component.

Under random attack, the designer may choose an unprotected network with a very large

component if the network value function is su!ciently convex. For example, iff (y) = ↵y,

↵ " e,20 then the optimal unprotected network consists of a component of size (n & 1)

and an isolated node.

6.2 MetcalfeÕs Law

In this section we present the characterization of optimal networks under random attack

when f (y) = y2. As shown in the Appendix, for this value function the optimal unpro-

tected network consists of two components, of sizes2n/23 and .n/2/ . The di"erences

20Where e is the base of the natural logarithm.
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Figure 6: Networks overn = 6 nodes. In the network of Figure 6a, the unprotected nodes

{ 4, 5, 6} expose the other nodes to the possibility of contagion, but an attack on any of

them neither spreads nor disconnects the network if all other nodes protect. Figure 6b

presents an example with only one unprotected node.

in the Þrst best between intelligent and random attack are thus minor in the case of

MetcalfeÕs Law.21

Before we state the next result, we need to deÞne the following sets of networks over

n nodes:

Gn�u(N ) = {G $ G(N ) : existsU # N such that |U | = u,

G & { i} is connected for alli $ U , and ij $ G for i $ U i" j /$ U }

for u = 1 , . . . , n & 1. For u = 0, let Gn(N ) denote the set of connected networks. To

illustrate, suppose that there aren = 6 nodes. Figure 6a shows a network inG3(N ).

Note that, e.g., the set of nodesU = { 4, 5, 6} satisfy the conditions required: they are

not linked among themselves, but have links to all other nodes. Moreover, their removal

does not disconnect the network. The network in Figure 6a is inG5(N ). In this case,

U = { 6} .

Proposition 8. Assume f (y) = y2, and suppose the attack is random. If (G, #) is a

welfare maximising equilibrium, then

(1) If c - 1, G is connected and all nodes protect.

(2) If 1 < c - öc
1

(n), G is in Gn�1(N ) and all but one nodes protect.

21The minor di!erences stem, Þrst, from the fact that if n is odd then the optimal unprotected network
features a component of size (n + 1) / 2 and another of size (n & 1)/ 2. Secondly, under random attack the
hub of the center-protected star is attacked with positive probability. This makes the star more attractive,
and therefore the threshold for the star to be better than a fully protected network is öc1(n) = 2n $ 1

n under
random attack, which is smaller than the threshold c1(n) = 2n $ 1

n $ 1 under intelligent attack. Naturally,
this extra beneÞt of the star under random attack vanishes asn grows.

25



! !

!

"

(a)

! !

!

"

(b)

Figure 7: Let f (x) = x2. Network 7a features strategic complements: nodej protecting

increases incentives for nodei to protect. Network 7b features strategic substitutes: node

j protecting decreases incentives for nodei to protect.

(3) If öc
1

(n) < c - (n & 1) + 1/n, G is a star and only the centre protects.

(4) If c > (n & 1) + 1/n, G is unprotected and has two components, of sizes 2n/23 and

.n/2/ .

Under random failure, investments in security always exhibit positive externalities.

Additionally, protection decisions may be strategic substitutes, as well as strategic com-

plements (c.f. Figure 7). The latter possibility is due to the fact that nodes care not

only for staying uninfected but also for the beneÞts they derive from being in the net-

work. Either way, the positive externalities e"ect always prevails and the over-protection

problem is no longer present if the external threat is unintelligent. In e"ect, the de-

signer will disconnect the network in decentralized equilibrium only for reasons related

to under-protection.

Interestingly, when the designer decides to keep the network connected, s/he will not

choose any such network (even if nodes coordinate on welfare maximising equilibria!).

This also stands in sharp contrast with the case of intelligent attack, where under welfare

maximising equilibria the designer could choose any connected network to enforce full

protection. For relatively small protection costs, the intelligence of the adversary works

for the designerÕs advantage. Under random attack, the designer needs to choose the

network more carefully. In particular, networks that satisfy the properties to belong in

Gn�1(N ) have equilibria where a subset of nodes are su!ciently exposed so as to secure

maximum protection spending in equilibrium.

To illustrate point (2) in Proposition 8, suppose there aren = 19 nodes, and that

c = 1 .5 $ (1, öc
1

(n)). Since c - öc
1

(n), Þrst best is full protection in a connected network.

Note, however, that in any equilibrium of a connected network there will be at least

one unprotected node. If all other nodes protect, the individual gain from protection
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(a)

  

(b)

Figure 8: Two equilibria on the wheel network overn = 19 nodes.

is 1

n

n & c < 0. Maximum equilibrium welfare will therefore be achieved if there is a

single unprotected node that elimination neither spreads nor disconnects the network.

Figure 8a presents the wheel network as an example. Note that protected nodes do not

wish to unprotect, for the gain from protection is2

n

n & c > 0.

Given that multiple protection proÞles can be equilibria in a given network, the op-

timality of the networks presented in Proposition 8 may rely on nodes coordinating on

the right equilibrium. If the cost of protection is c - 1, a node will choose to protect on

any network (since 1

n

n & c " 0). Moreover, if öc
1

(n) < c - (n & 1) + 1/n, then centre

protection is the unique equilibrium of the star network.

What if the cost of protection is small (c - öc
1

(n)), but not too small (c > 1)? We show

that in this case a networkG attains maximum equilibrium welfare in every equilibrium

if and only if G is the complete network. To illustrate this, Figure 8b shows another

equilibrium on the wheel network where more than one node is unprotected. The next

result characterizes the optimal network under welfare minimizing equilibria.

Proposition 9. Assume f (y) = y2, and suppose the attack is random. If (G, #) is a

welfare minimizing equilibrium, then

(1) If c - 1, G is connected and all nodes protect.

(2) If 1 < c - öc
1

(n), G is the complete network and all but one nodes protect.

(3) If öc
1

(n) < c - (n & 1) + 1/n, G is a star and only the centre protects.

(4) If c > (n & 1) + 1/n, G is unprotected and has two components, of sizes 2n/23 and

.n/2/ .

The key point is to note that potential coordination problems among nodes are ad-

dressed in fundamentally di"erent ways depending on the nature of the attack. Under
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both intelligent and random attack, the set of networks chosen bearing in mind coordi-

nation failures is a strict subset of the possible designs when coordination problems are

absent.22 The reason is that, in both cases, the designer can prevent coordination failures

by appropriately choosing the network. However, when the adversary is intelligent, full

protection is secured by choosing networks that aresparse: there must exist a su!ciently

important node that can block the adversaryÕs attack and thus be willing to protect. On

the contrary, under random attack maximal protection is achieved by choosing networks

that are dense: a node must be exposed to an unprotected node, or otherwise it would not

have enough incentives to protect; maximal protection in every equilibrium is achieved

through maximal exposure, i.e. by designing a complete network.

6.3 General network value function

In this section we discuss in what ways the intuitions brought forward by the case of

MetcalfeÕs Law generalize to other network value functions. Before we state the propo-

sition characterizing welfare maximising equilibria, we need to introduce the following

quantities. Let

t
0

(n) = 0 ,

t
u

(n) =
f (n)
n2

+ ( u & 1)
f (n & 1)
n(n & 1)

, for u = 1 , . . . , n.

Proposition 10. Suppose the attack is random, and let (G, #) be a welfare maximising

equilibrium of $. Then

(1) G is in Gn�u(N ) and exactly u nodes do not protect, if t
u

(n) < c - min { t
u+1

(n), öc
1

(n), öc
2

(n)} ,

for u = 0 , . . . , n & 1.

(2) G is a star and only the centre protects, if öc
1

(n) < c - min { öc
3

(n), t
n

(n)} .

(3) G is an optimal unprotected network, if c > min { t
n

(n),max{ öc
2

(n), öc
3

(n)}} .

Recall that under MetcalfeÕs Law, if full protection is Þrst best (c - { öc
1

(n), öc
2

(n)} )

then either all (if c - t
1

(n)) or all except one (if t
1

(n) < c - t
2

(n)) nodes protect in

equilibrium. The generalization of Proposition 10 shows that this depends on the speciÞc

network value function.

Suppose, for example, that there aren = 6 nodes and consider again ReedÕs Law, i.e.

f (y) = 2 y & 1. The optimal unprotected network consists of two components, of sizes 4

and 2. From this observation, it is straightforward to see that full protection is Þrst best

if c - 5.3 (as min{ öc
1

(n), öc
2

(n)} = öc
1

(n) = 5 .3). Simple calculations indicate that in this

22When the aversary is intelligent, we know that the network must be connected and contain ak-
critical node with k < n & c, and this class of networks is a strict subset of the set of connected networks.
Under random attack, the complete network is a strict subset ofGn $ 1(N ).
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caset
4

(n) < 5.3 < t
5

(n). Therefore, when Þrst best is full protection, up to 4 nodes may

be unprotected in equilibrium if the cost of protection is large enough. Ift
4

(n) < c < 5.3,

in decentralized equilibrium ofany network there will be at least 4 unprotected nodes.

Equilibrium welfare is therefore bounded above by the case where there are exactly 4

unprotected nodes such that an attack on any of them neither spreads nor disconnects

the network, and this is only attained by networks inG2(N ).

As we discussed for the case of MetcalfeÕs Law, the optimality of the networks that

attain maximum equilibrium protection may depend on nodes coordinating on the best

equilibrium. For the network value function f (y) = y2 the welfare costs of coordination

problems could be avoided by choosing the right topology. We conclude this section with

a discussion on whether this Þnding generalizes to other network value function.

For su!ciently small protection costs, Þrst best networks attain Þrst best payo"s in

every decentralized equilibrium for any network value functions.

Fact 1. Suppose the attack is random and first best involves full protection. If 0 < c -

t
1

(n) and G is connected, the unique equilibrium of $(G) attains first best payo↵s.

If costs of protection are low (so that full defence is Þrst best) but not too low,

then every equilibrium on any network features some unprotected nodes. The designerÕs

optimal choice is a network with an equilibrium where the number of unprotected nodes

is as small as possible. Supposet
1

(n) < c - t
2

(n). In the welfare maximising case, the

designer chooses a networkG with a node l who has a link to all other nodes, andG&{ l}

is connected. There is an equilibrium on such a network wherel is the only unprotected

node. Notice that the complete network satisÞes these properties Ðl can be any node

i $ N . The next result states that for any network di"erent from the complete network,

a worse equilibrium exists (i.e. one where more than one node does not protect). Thus,

the only hope if the designer wants to achieve maximum equilibrium payo"s in every

equilibrium is the complete network. However, whether the complete network has only

one unprotected node in every equilibrium depends on the network value function.

Fact 2. Suppose the attack is random, first best involves full protection, and t
1

(n) < c -

t
2

(n).

(1) If G is not the complete network, there exists an equilibrium of $(G) which does not

attain maximum equilibrium welfare.

(2) The complete network Gc

attains maximum equilibrium welfare in every equilibrium

of $(Gc) for any c - t
2

(n) if

f(n�1)

(n�1)

- uf(n�u)

n�u

for any u = 1 , . . . , n & 1.

The intuition for this observation is as follows. Sincet
1

(n) < c - t
2

(n), by Proposi-

tion 10 we know that there are at least one unprotected node in every equilibrium. This

is true because forc > t
1

(n) any node who has all its neighbours protected prefers not to

protect. For any network that is not the complete network, we can construct an worse
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equilibrium, where there are two unprotected nodes. This is what is established in point

(1) of Fact 2.

By creating maximal exposure, there are no equilibria in the complete network where

exactly two nodes do not protect. But nodes may Ôget stuckÕ in worse equilibria in the

complete network, and whether this is possible depends on the network value function.

Increasing the probability of contagion by creating exposure taps the substitutes aspect

of protection decisions. But nodes value being connected to surviving individuals Ð this

is the complements aspect of protection decisions. Thus, if few nodes are protected it

may not pay o" to protect. Consider, for example,f (y) = 2 y & 1 with n = 6 nodes, and

suppose thatc = 2 .6 $ (t
1

(n), t
2

(n)). By Proposition 10, the complete network has an

equilibrium with full protection. It also has, however, an equilibrium with no protection.23

The condition in point (2) of Fact 2 bounds the convexity of the value function, and

thus bounds the strength of complementarities in protection. This condition holds, for

example, iff (y) = ya, a - 2.

7 Concluding remarks

In this paper we studied the problem of mitigating ine!ciencies resulting from protection

decentralization by appropriate network design.

Motivated by the example of cybersecurity, we Þrst took up the case of an intelligent

threat. An e!cient equilibrium may exhibit too much or too little investment in security.

The problem of over-protection problem arises for intermediate costs of protection, and

is best addressed by disconnecting the network into unequal components, and sacriÞcing

some nodes. The problem of under-protection is more standard and reßects the public

good aspect of security. It arises at larger costs of security and is addressed by creating

networks with equal components. Finally, ine!cient equilibria arise due to strategic

complementarity in security. They are addressed by creating networks that are ÔsparseÕ

and contain ÔcriticalÕ nodes. This sparseness gives rise to nodes that can prevent attacks

from spreading, and thus save large parts of the network. Although the Þrst best cannot

be attained when over-protection pressures prevail, network design puts a bound on the

welfare costs of decentralization.

Finally, motivated by problems in epidemiology, we studied optimal design in the

face of random attack. The over-protection problem is no longer present, whereas under-

protection problems may be mitigated in a diametrically opposite way: namely, by cre-

ating dense networks that expose the individuals to the risk of contagion.

23 If no other node protects in the complete network, then a nodeÕs gain from protecting equals
1
n

f (n )
n + n $ 1

n f (1) & c = 2 .58& c < 0. Therefore, no protection is an equilibrium. In fact, if no protection
is an equilibrium defence on the complete network, then it is an equilibrium defence on anyd-connected
network, d " 2. The optimal network in these case must therefore be 1-connected.
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A Equilibrium existence

Proof of Lemma 1. Let x be a strategy ofA in $(G) such that for all # # N , x(#) is a

best response to #. NetworkG and strategy x deÞne game $(G, x) with set of players

N such that, given defence # induced by a strategy proÞle of the nodes (�
1

, . . . , �
n

), the

utility of player i is ÷ui(#) = U i(G, # , x(#)).

We will show that $(G, x) has a Nash equilibrium. To show that we will construct a set

of defended nodes, #⇤, such that the corresponding strategy proÞle of the nodes is Nash

equilibrium of $(G, x).

There are two cases possible. First, suppose that for all componentsC $ C(G), f(|C|)
|C| " c.

I this case #⇤ = N is an equilibrium of $(G, x), as any node that would deviate and drop

protection, would obtain payo" 0 - f(|C|)
|C| & c.

Second, suppose that there existsC $ C(G) such that f(|C|)
|C| < c. Let A (G|c) = {C $

C(G) : f (|C|)/|C| < c} be the set of all such components. We construct #⇤ using the

following algorithm.

¥ # ⇤ := N \
S

A(G|c), i.e. # ⇤ protects all the nodes in components where protection

yields non-negative payo"s to the protected nodes; for anyC $ A (G|c), C4 # ⇤ = ?;

note that x(# ⇤) removesC $ A (G|c) of maximal size.

¥ While there existsi $ # ⇤ such that x(# ⇤ \ { i} ) $ A (G|c) do

Ð # ⇤ := # ⇤ \ { i} .

Clearly the algorithm stops, as in every step at least one node is removed from #⇤.

Moreover, x(# ⇤) removesC $ A (G|c) of maximal size and no node inC has incentive

to protect. The algorithm ensures that no node in #⇤ has incentive to drop protection

either. Hence #⇤ is an equilibrium protection of $(G, x) and (# ⇤, x) is an equilibrium of

$(G).
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B The First Best Outcome

Proof of Proposition 1. Let (G, #) be a Þrst best protected network. Three cases are

possible.

Case (i). # = N Clearly in this caseG must be a connected network.

Case (ii). ? ( # ( N In this caseA removes at least one node fromG and so gross

welfare is bounded from above byf (n & 1). Star network is the unique network that

attains this upper bound by using only one unit of protection. This is the lowest possible

number of protected nodes possible in Case (ii). ThusG is a star and # = { i} , where i

is is the centre ofG.

Case (iii). # = ? As long asn > 1, any disconnectedG yields higher welfare than a

connected network in this case. Moreover, there are at most two sizes of components in

C(G). For assume otherwise and letC
1

, C
2

, C
3

$ C(G) be such that |C
1

| > |C
2

| > |C
3

|.

Then, sincef is strictly increasing and strictly convex,D is better of by moving a node

from C
3

to C
2

. Lastly, if C
1

is the component of maximal size inC(G), then there is

at most one componentC $ C(G) with |C| < |C
1

|. If there was another component

C 0 $ C(G) with |C 0| = |C|, then, sincef is strictly increasing and strictly convex,D

would be better o" by moving a anode fromC 0 to C. It is straightforward to see that

the number and the sizes of the components are as stated in the proposition.

Comparing the payo"s of (i)-(iii) yields the desired result.
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C The price of decentralization

To prove Lemma 2, we will use the following two results. LetGfull(N, c) denote the set

of connected networks such that all nodes protect in any equilibrium. That is,

Gfull(N, c) = {G $ G(N ) : G is connected and #(G) = N for any (# , x) $ E(c|G)} .

Lemma 5. Gfull(N, c) %= ? if and only if c - c
0

(n).

Proof. For left to right implication, note that if c > c
0

(n) = f(n�1)

n�1

, then any node

strictly prefers to protect only if all other nodes survive. Therefore, for any networkG,

the strategy proÞle where no node protects is an equilibrium of $(G).

For right to left implication, suppose that c - c
0

(n) = f(n�1)

n�1

and let G be a star network

and i be the centre ofG. Take any equilibrium (# , x) of $(G). It must be that i $ #

as otherwisei would be removed byA obtaining payo" 0 instead of f(n�1)

n�1

& c " 0.

Similarly, if there is j $ N \ { i} such that j /$ #, then k = x(#) /$ # and k is better o"

by protecting, which yields payo" at least f(n�1)

n�1

& c " 0.

Fact 3. For all q $ Q⇤(n),
f(. n

q" 1 / )
. n

q" 1 / < c
3

(n).

Proof of Lemma 2. Consider Þrstc - min { c
0

(n), c
1

(n), c
2

(n)} . Sincec - min { c
1

(n), c
2

(n)} ,

Þrst best is attained through full protection in a connected network. Sincec - c
0

(n), by

Lemma 5 there exists connectedG such that # = N in every equilibrium of $(G).

Consider nextc > max{ c
2

(n), c
3

(n)} . By Fact 3, this implies that c >
f(. n

q" 1 / )
. n

q" 1 / . There-

fore, if c > max{ c
2

(n), c
3

(n)} and G is a Þrst best network, # = ? in every equilibrium

of $(G).

Proof of Lemma 3. Let G be a star network. For a contradiction, suppose there is an

equilibrium (# , x) on G with # ( N .

Suppose that f(n�1)

n�1

< c. In this case any protected nodei $ # would be better o" by

deviating to no protection, asA removes at least one node fromG and so the payo" to

i, U i(G, # , x(#)) - f(n�1)

n�1

& c < 0.

Suppose thatf(n�1)

n�1

" c and let i be the centre of starG. If i protects, it obtains at least

the payo" of f(n�1)

n�1

& c " 0. Hencei prefers to protect, regardless of protection decisions

of other nodes. Letj = x(#) be the node attacked byA. As in the case ofi, j prefers to

protect, a contradiction with the assumption that (# , x) is an equilibrium.

Proof of Theorem 1. Point 1 follows directly from the discussion in the main text. For

point 2 notice that, by Lemma 5, D can enforce full protection by choosing the right

connected network if and only iff(n�1)

n�1

" c.

Since f(y)

y

is increasing, eitherf(n�1)

n�1

" c for su!ciently large n, or f(n�1)

n�1

< c for all

n " 1.
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Consider the former case. Then, for su!ciently largen, D could choose a connected

network where all nodes protect in every equilibrium. This attains a welfare off (n) & nc.

Thus

lim
n!1

PoA(c, n) - lim
n!1

f (n & 1) & c

f (n) & nc
= lim

n!1

1 & n

f(n)

f(n)�f(n�1)

n

& c

f(n)

1 & n

f(n)

c
. (18)

Suppose that f(n)

n

is unbounded, i.e. lim
n!1

f(n)

n

= + 0 . Then, by the fact that
f(y)�f(y�1)

y�1

is bounded,

lim
n!1

1 & n

f(n)

f(n)�f(n�1)

n

& c

f(n)

1 & n

f(n)

c
= 1 . (19)

Suppose now that lim
n!1

f(n)

n

= p < + 0 . In this case lim
n!1

f(n)�f(n�1)

n�1

= 0 and

lim
n!1

1 & n

f(n)

f(n)�f(n�1)

n

& c

f(n)

1 & n

f(n)

c
=

p

p & c
. (20)

Assume now that f(n�1)

n�1

< c, for all n " 2. If D chooses the fully disconnected network,

then

lim
n!1

PoA(c, n) - lim
n!1

f (n & 1) & c

(n & 1)f (1)
=

p

f (1)
. (21)

This completes the proof.
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D Decentralized security and optimal design

We structure the proofs of optimal design in the following way. Results that are for

general network value function are shown Þrst. Based on these results, we then show the

results for speciÞc functional forms. We start with welfare maximising equilibria, and

then move to welfare minimizing equilibria.

D.1 Welfare maximising equilibria

To prove Proposition 4, we need a couple of intermediate results and some notation.

Given a network G $ G(N ) and a set of nodesU # N , the neighbourhood of U in G

is the set of nodes@
G

(U ) = { j $ N \ U : 5i $ U. ij $ E} . In the case of a singleton

set { i} , its neighbourhood inG is the set ofneighbours of i in G. In this case we omit

the curly brackets and write @
G

(i) rather than @
G

({ i} ). Given network G and set of

protected nodes #, we will say that a componentC $ C(G) is partially protected under

# if C 4 # %= ? and C \ # = ?.

Lemma 6. Let G $ G(N ). In every equilibrium (# , x) of $(G), if two protected nodes are

connected in network G, then they are connected in the residual network G&E
x(G,�(G))

(G|#) .

Proof. Assume otherwise and leti, j $ # be connected inG and disconnected inG &

E
x(�)

(G|#). Then, under defence # all paths betweeni and j go through E
x(�)

(G|#).

Pick l $ E
x(�)

(G|#) such that l is on a path from i to j in G and is a neighbour of

C
i

(G[#( G)]). Let # 0 = # + { l} .

It must be that x(# 0) $ C
i

(G) or l is strictly better o" by getting positive payo" (it gets

higher payo" than its protected neighbour gets under #). Thus, there must be at least

another unprotected node,l0 $ C
i

(G). There are two cases possible:

Case (i). x(# 0) is reachable froml in G & #. In this case E
x(�

!
)

(G|# 0) # E
x(�)

(G|#)

and l gets strictly higher payo"s than its protected neighbour did under original strategy

proÞle; thusl is strictly better o" with payo" > 0 (a contradiction).

Case (ii). x(# 0) is not reachable froml in G & #. In this case, i and j are connected

in G & E
x(�

!
)

(G|# 0). Suppose thatx(# 0) /$ C
i

(G & E
x(�)

(G|#)) (the case with C
j

is

analogous). Then|C
i

(G & E
x(�

!
)

(G|# 0)) | > |C
i

(G & E
x(�)

(G|#)) | (the component gets

extended by nodej, at least). Sincel $ C
i

(G& E
x(�

!
)

(G|# 0)) so l is strictly better o" (a

contradiction).

The next lemma characterizes the structure that a partially protected component

must have for it to be attacked in equilibrium.

Lemma 7. Suppose that (G, # , x) is a welfare maximising equilibrium of $. Let # ⇤ =

#( G), x⇤ = x(G, # ⇤) and X⇤ = E
x

# (G|# ⇤). If x attacks a partially protected component

P $ C(G⇤), then there exists a unique set of nodes Y %= ? such that
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1. G[Y ] is connected.

2. # ⇤ 4 P = @
G

(Y ), i.e. the neighbourhood of Y is the set of protected nodes in P .

3. |C(G[P ] & Y )| = |# ⇤ 4 P | " 2 and for each C $ C(G[P ] & Y ), |C 4 # ⇤| = 1 .

Moreover, for all i $ @
G

(# ⇤) 4 X⇤
, x(G, # ⇤ + { i} ) $ Y .

Proof. Let P be a partially protected components attacked byx, as stated in the lemma.

Let # i = # ⇤ + { i} , xi = x(G, # i) be equilibrium response ofA to G and defence #

extended with a nodei $ N , and let X i = E
x

i(G|# i) be the set of nodes eliminated by

xi. We prove the lemma in the following three steps.

Step 1. For all i $ @
G

(#) 4 X, |C(G[P ] & X i)| " 2. By Lemma 6, the residual

componentG[P ] & X is connected and its value isf (|P | & |X |). Let i $ @
G

(#) 4 X be a

node removed by attackx and neighbouring a protected node. Suppose, to the contrary,

that |C(G & X i)| - |C (G)|, that is componentG[P ] does not get disconnected byX i. If

so, then|X i| - | X | (as otherwisexi would be a better response to (G, # ⇤) than x) and so

the value of residual componentG[P ] & X i, f (|P | & |X i|) " f (|P | & |X |). Payo" to i in

G[P ]& X i, when it protects, isf (|P |&|X i|)/(|P |&|X i|)& c " f (|P |&|X |)/(|P |&|X |)& c

(as f is increasing and convex). Sincef (|P | & |X |)/(|P | & |X |) & c " 0 (as there are

protected nodes inP 4 # ⇤ that get exactly this payo") so i is better o". Thus G[P ] must

get disconnected byX i, i.e. |C(G[P ] & X i)| " 2.

Step 2. For all i $ @
G

(# ⇤) 4 X⇤ and any C $ C(G[P ] & X i), |C 4 # ⇤| = 1. Pick any

i $ @
G

(# ⇤) 4 X⇤ and any C $ C(G[P ] & X i). Clearly it must be that |C 4 # | " 1, as

otherwiseC would be removed byxi. Let j $ @
G

(X i) 4 C (any node in@
G

(X i) must be

protected). LetG0 = ( N,E 0) be a network obtained fromG by removing all links to nodes

from C \{ j} and linking these nodes toj only, i.e. E 0 = ( E \ E[C \{ j} ])+{ jl : l $ C \{ j}} ;

additionally, in the case ofj $ @
G

(i), all nodes fromX⇤ are linked to form a clique, i.e.

E 0 = ( E \ E[C \ { j} ]) + { jl : l $ C \ { j}} + { lr : l, r $ X, l %= r} .

Consider a strategy proÞle (#0, x0) in $(G0) such that

¥ # 0 = (# ⇤ \ C) + { j} .

¥ x0(# 0) = x⇤.

¥ For all l $ # 0, x0(# 0 \ { l} ) = x(G, # 0 \ { l} ).

¥ For all l $ P \ (# 0 + C), x0(# 0 + { l} ) = x(G, # + { l} ) (note that P \ (# 0 + C) =

P \ (# + C)).

¥ For all l $ (C \ { j} ), x0(# 0 + { l} ) = x⇤.

37



The strategy proÞle (#0, x0) is an equilibrium of $(G0). The responses ofA to # 0 and

any single node deviations from #0 are best responses, because they are best responses

to (G, #) and any single node deviations from #0 # # ⇤. None of the nodes is better o"

by deviating from its strategy, as they obtain the same payo"s as under (#⇤, x(G, á)) in

the game $(G).

Since (#0, x0) is an equilibrium of $(g0) and it yields a better welfare than (#⇤, x(G, á)) in

$(G) (as less defence resources are used), so we get a contradiction with the assumption

that (G, # , x) is an equilibrium. Hence it must be that|C 4 # | = 1.

Step 3. The structure of G[P ]. Clearly G[X i] is connected. Moreover, since for any

componentC $ C(G[P ]& X i), |C 4 # ⇤| = 1, so # ⇤ 4 P = @
G

(X i), i.e. the neighbourhood

of X i is the set of protected nodes. Additionally, by Step 1,C(G[P ] & X i) " 2. Thus

taking Y = X i we have a set of nodes that satisÞes points 1 Ð 3 stated in the lemma.

It remains to be shown that it is unique such set of nodes. Assume to the contrary

that there is a set of nodeY 0 %= Y that satisÞes points 1 Ð 3 as well. It cannot be that

Y 0 4 Y %= ?, because@
G

(Y 0) would contain unprotected nodes fromY (which violates

point 2 for Y 0). But then, by point 2 for Y 0, G[# ⇤ 4 P ] & Y is connected, which violates

point 3 for Y .

Uniqueness ofY together with points 1 Ð 3 and Step 1 imply that for alli $ @
G

(# ⇤) 4 X,

x(G, # + { i} ) $ Y .

Let (G, # , x), # ⇤ = #( G), x⇤ = x(G, # ⇤), P $ C(G), and X⇤ = E
x

# (G|# ⇤) be as

deÞned in Lemma 7. LetY be the set of nodes satisfying points 1 Ð 3 of Lemma 7. Suppose

that # ⇤ 4 P = { j
0

, . . . , j
d

} with j
0

$ @
G

(X⇤). Let C(G[P ] & Y ) = {Z
0

+ X,Z
1

, . . . , Z
d

}

with j
i

$ Z
i

, for all i $ { 1, . . . , d} (by Lemma 7 this is possible; in the component of

G[P ] & Y containing j
0

we distinguish two subsets:X and the remaining set of nodes

Z
0

). The structure of G[P ] is illustrated in Figure 4.

The components ofG can be divided into three disjoint sets (some of them possibly

empty): {P } , D = {C $ C(G) : C 4 x⇤ = ? and C 4 # ⇤ %= ?} (the set of not attacked

components, protected under #⇤), and U = {C $ C(G) : C 4 (x⇤ + # ⇤) = ?} (the set of

not attacked components not protected under #⇤).

In the following lemmas we establish further properties of networkG and subnetwork

G[P ].

Lemma 8.

f (|X |) " f (|P | & |X |) & f (|P | & |X | & 1). (22)

Proof. Assume to the contrary that

f (|X |) < f (|P | & |X |) & f (|P | & |X | & 1). (23)
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Since each nodej
i

, with i $ { 1, . . . , d} is protected, so if the node would not protect, the

adversary would remove it. Thus for alli $ { 1, . . . , d} ,

f (|P |) & f (|X | + |Z
0

|) &
dX

i=1,i 6=q

f (|Z
i

|) > f (|P |) & f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|) (24)

which implies

f (|X | + |Z
0

|) < f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|) &
dX

i=1,i 6=p

f (|Z
i

|) (25)

and further

f (|X | + |Z
0

|) < f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|). (26)

By the fact that f is strictly increasing, it follows that

|X | < |Y | +
dX

i=1

|Z
i

|. (27)

On the other hand, since removing the nodes fromX is better than attacking a node in

Y and disconnecting the component, we have

f (|P |) & f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|) > f (|P |) & f (|X | + |Z
0

|) &
dX

i=1

f (|Z
i

|), (28)

which implies

f (|X | + |Z
0

|) +
dX

i=1

f (|Z
i

|) > f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|). (29)

Since|P | = |X | + |Z
0

| + |Y | +
P

d

i=1

|Z
i

|, so Equation (23) implies

f (|Z
0

| + |Y | +
dX

i=1

|Z
i

|) > f (|X |) + f (|Z
0

| + |Y | & 1 +
dX

i=1

|Z
i

|). (30)

This, together with Equation (29) implies

f (|X | + |Z
0

|) +
dX

i=1

f (|Z
i

|) > f (|X |) + f (|Z
0

| + |Y | & 1 +
dX

i=1

|Z
i

|), (31)

from which we get

f (|X | + |Z
0

|) & f (|X |) > f (|Z
0

| + |Y | & 1 +
dX

i=1

|Z
i

|) &
dX

i=1

f (|Z
i

|) (32)

and further, by convexity of f ,

f (|X | + |Z
0

|) & f (|X |) > f (|Z
0

| + |Y | & 1 +
dX

i=1

|Z
i

|) & f (
dX

i=1

|Z
i

|). (33)
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and

f (|X | + |Z
0

|) & f (|X |) > f (|Z
0

| + |Y | & 1 +
dX

i=1

|Z
i

|) & f (|Y | & 1 +
dX

i=1

|Z
i

|), (34)

as f is strictly increasing and|Y | " 1. Sincef is strictly increasing and strictly convex,

this yields

|X | > |Y | & 1 +
dX

i=1

|Z
i

| (35)

and further, by the fact that |X |, |Y | and |Z
1

|, . . . , |Z
d

| are integers,

|X | " | Y | +
dX

i=1

|Z
i

|, (36)

a contradiction with Equation (27). Thus we have shown that it must be thatf (|X |) "

f (|P | & |X |) & f (|P | & |X | & 1).

Fact 4.
f (|X | + |Z

0

|)
|X | + |Z

0

|
- c -

f (|P | & |X |)
|P | & |X |

. (37)

Proof. If it was f (|X | + |Z
0

|)/(|X | + |Z
0

|) > c, then it would be proÞtable for a node

i $ @
g

# (j
0

) 4 X to protect. If it was c > f(|P |�|X|)
|P |�|X| , then it would be proÞtable for any

node i $ P 4 # not to protect.

Corollary 2.

2|X | + |Z
0

| - | P |. (38)

Proof. Sincef (y) is strictly increasing and strictly convex, sof (y)/y is strictly increasing.

Thus, by Equation (37), |X | + |Z
0

| - | P | & |X | and Equation (38) follows.

As a corollary from Lemma 8, Fact 4 and Corollary 2 we get thatG must have at

least one not attacked component, which implies Proposition 4.

Proof of Proposition 4. We prove the proposition by showing thatD + U %= ?.

Assume, to the contrary, that C(G) = {P } . Let G0 be a network consisting of two

components, a clique over the set of nodesX and a star over the set of nodesV \

X, with centre i. Consider the strategy proÞle (#0, x0) of the game $(G0) with # 0 =

{ i} , x0(G0, # 0) $ X and x0(G0, # 00) being a best response to (G0, # 00), for # 00 %= # 0.

Strategy proÞle (#0, x0) is an equilibrium of game $(G0): by Equation (22), x0(G0, # 0)

is a best response to (G0, # 0); by Equation (37), none of the nodes inX can be better

o" by choosing protection, while being protected inP \ X yields non-negative payo";

by Equation (38, A would attack G[P \ X] if i did not protect (recall that |Z
0

| " 1 as

j
0

$ Z
0

).

Since (#0, x0) is an equilibrium of $(G0) soG0 yields a strictly better payo" to D than G,

a contradiction with the assumption that (G, # , x) is a welfare maximising equilibrium.

Thus it must be that D + U %= ?.
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To prove Proposition 2, we need three intermediate steps. Lemma 9 shows that, for

any f , if the network is not connected in a welfare maximising equilibrium, then there is

no fully protected component. Lemma 10 shows forf (y) = y2 that if G is not connected

and the adversary attacks a protected component, then there exists another protected

component inG. Based on this intermediate result, Lemma 11 shows that ifG is not

connected the adversary does not attack a protected component.

Lemma 9. Let (G, # , x) be a welfare maximising equilibrium. If G is not connected,

then there is no fully protected component.

Proof. SupposeG is not connected, and there exists componentX $ C(G) such that

X # #. Clearly, X must be the only fully protected component, or otherwiseD would

be strictly better o" by merging all fully protected components.

We compare two modiÞcations toG. Network G0 is obtained by attaching another com-

ponent Y $ C(G) to X, where x(G, #) /$ Y if possible. We present the case where

x(G, #) /$ Y ; if G has only two components the proof is analogous. First, note that there

exists an equilibrium of $(G0) were all nodes inX + Y protect and A attacks the same

unprotected node or attacks a protected node inX + Y . For G to be optimal, it must be

that G0 does not attain higher welfare. Let|X | = |X 00| + |Y |, and denote withp
Y

< |Y |

the number of nodes protected inY . Then,

f (|X 00| + 2|Y |) & (|X 00| + 2|Y |)c - f (|X 00| + |Y |) + f (|Y |) & (|X 00| + |Y | + p
Y

)c

6 c(|Y | & p
Y

) " f (|X 00| + 2|Y |) & f (|X 00| + |Y |) & f (|Y |). (39)

The second modiÞcation consists of networkG00, formed from network G as follows.

ChangeX into a star, and detach|Y | spokes from it to form a copy ofY . The nodes that

have not been detached fromX form a componentX 00. Let # 00 denote the equilibrium

defence proÞle in $(G00).

Case (i). X 00 # # For G to be optimal, it must be that

f (|X 00|) + 2 f (|Y |) & (2p
Y

+ |X 00|)c - f (|X 00| + |Y |) + f (|Y |) & (p
Y

+ |X 00| + |Y |)c

6 c(|Y | & p
Y

) - f (|X 00| + |Y |) & f (|X 00|) & f (|Y |).

Combining this condition with (39), we have that f (|X 00| + 2|Y |) & f (|X 00| + |Y |) -

f (|X 00| + |Y |) & f (|X 00|), which contradicts f being convex.

Case (ii). X 00 ( # and x(G00, # 00) /$ X 00 Following the same steps as in Case (i) leads

to a contradiction.

Case (iii). X 00 4 # = ? and x(G00, # 00) /$ X 00 Following the same steps as in Case (i)

leads to a contradiction.
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Case (iv). X 00 4 # = ? and x(G00, # 00) $ X 00 Since nodes inX 00 are eliminated, it must

be that c > f(|X !! |)
|X !! | , or

|X 00|c > f (|X 00|). (40)

Let Z denote the component attacked in equilibrium (G, # , x). By Lemma 6, the payo"

to the designer from this component in the original network isf (|Z| & |E
x(G|�)

(G|#) |).

Then, for G to be optimal, it must be that

f (|X 00| + |Y |) + f (|Z| & |E
x(G|�)

(G|#) |) & (|X 00| + |Y |)c " f (|Y |) + f (|Z|) & p
Y

c,

or, equivalently,

|X 00|c + ( |Y | & p)c - f (|X 00| + |Y |) & f (|Y |) & [f (|Z|) & f (|Z| & |E
x(G|�)

(G|#) |)].

We can combine this condition with (40) to obtain:

f (|X 00|) + ( |Y | & p
Y

)c < f (|X 00| + |Y |) & f (|Y |) & [f (|Z|) & f (|Z| & |E
x(G|�)

(G|#) |)].

Rearranging yields:

(|Y | & p
Y

)c < f (|X 00| + |Y |) & f (|X 00|) & f (|Y |) & [f (|Z|) & f (|Z| & |E
x(G|�)

(G|#) |)].(41)

For G to be optimal, c must be such that (39) and (41) holds. Thus, it must be that

f (|X 00| + 2|Y |) & f (|X 00| + |Y |) < f (|X 00| + |Y |) & f (|X 00|)

&[f (|Z|) & f (|Z| & |E
x(G|�)

(G|#) |)]

- f (|X 00| + |Y |) & f (|X 00|),

which contradicts f being convex.

Lemma 10. Assume f (x) = x2

. Let G be a network chosen in welfare maximizing

equilibrium. If G is not connected and the adversary attacks a protected component, then

there exists another protected component in G.

Proof. Assume otherwise. Let (G, # ⇤, A⇤) be a welfare maximizing equilibrium. Since

the adversary attacks a protected component, there must be unprotected nodes there

and the adversary removes some of them. We know that if (G, # ⇤, A⇤) is an equilibrium,

then A⇤(G, # ⇤(G)) does not disconnect the protected nodes. LetP be the protected

component andp = |P | be its size,x be the number of unprotected nodes removed, and

u
1

, . . . , u
k

be the sizes of the remaining, unprotected, componentsU
1

, . . . , U
k

of g, such

that u
1

" . . . " u
k

. We will construct a sequence of strategy proÞles (g
i

, #
i

, A
i

)
0il

(not

necessarily equilibria) such that:

1. l " 1
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2. (g0, # 0, A0) = ( G, # ⇤, A⇤),

3. (gl, # l, Al) is an equilibrium.

4. If i0 < i, then W (gi
!
, # i

!
, Ai

!
) < W (gi, # i, Ai).

The points above contradict the assumption that (G, # ⇤, A⇤) is a welfare maximizing

equilibrium. In each strategy proÞle (gi, # i, Ai), # i di"ers from # ⇤ on network gi only,

and Ai di"ers from A⇤ on (gi, # i(gi)) only. Describing the strategy proÞles we will focus

on the arguments on which the strategies of the players are di"erent to (G, �⇤, A⇤).

Let (g1, # 1, A1) be deÞned as follows. ComponentP is replaced with two components:

P 1

1

of sizep1
1

= p & x0, and P 1

2

of sizep1
2

= x0. Here,x0 = min Y (x), whereY (x) = { 1 -

y - x : f (y) " f (p & y) & f (p & y & 1)} . The subnetwork ofg
1

over P 1

1

is a star and

the subnetwork ofg
1

over P 1

2

is a clique. Let #1(g1) = {m} , wherem $ P 1

1

is the centre

of the star overP 1

1

. Let A1(g1, # 1(g1)) $ P 1

2

. The construction above is valid as long

as x0 is well deÞned, i.e. as long asY (x) %= ?. This is the case because, by Lemma 8,

x $ Y (x).

Given i " 2, the network (gi, # i, Ai) is deÞned on the basis of (gi�1, # i�1, Ai�1). Each

such network has at least two components:P i

1

, of sizepi
1

, P i

2

, of sizepi
2

. The subnetwork

overP i

1

is a star and the subnetwork over the remaining components are cliques. Defence

#
i

(g
i

) = {m} , wherem $ P i

1

is the centre of the star overP i

1

. Attack A
i

(g
i

, #
i

(g
i

)) $ P i

2

,

removes all the componentP i

2

. The set of the remaining components is denoted byUi.

The construction ends on minimali such that for all U $ U i, |U | < |P i

2

|.

Let ti = max{ s $ N : f (pi�1

2

) & f (1) " f (pi�1

1

+ s) & f (pi�1

1

+ s & 1)} . In other words

ti is maximal such that removing all but one node from a component of sizepi�1

2

+ 1 is

preferred by the adversary to removing a single node from a component of sizepi�1

1

+ ti.

Network (gi, # i, Ai) is obtained from (gi�1, # i�1, Ai�1) as follows:

1. Pick the largest componentU i�1 from Ui�1. Let ui�1 = |U i�1| (note that ui�1 " pi�1

2

as otherwise the algorithm would stop before reaching this point).

2. Movedi = min( ti, pi�1

2

& 1) nodes fromU i�1 to P i�1

1

adding them as spokes of the

star overP i�1

1

, thus obtaining the componentP i

1

.

3. Move 1 node fromU i�1 to P i�1

2

, thus obtaining componentP i

2

, and form a clique

over P i

2

.

Clearly, if l " 2, the nodes-adversary subgame in the last strategy proÞle in the sequence,

(gl, # l, Al), is an equilibrium, as, by the construction, attackingP l

2

is preferred to attack-

ing P l

1

and none of the components inUl is larger than pl
2

& 1. If the protected node

in P l

1

chose no protection, it would be removed by the adversary. Moreover, no node in

P l

2

is better o" by choosing protection. This is because, by the construction, even if one

node protects inP l

2

, the adversary still prefers to attack this component to attacking any

other component (note that the components inU are all strictly smaller than P l

2

).
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To see why the nodes-adversary subgame in the last strategy proÞle in the sequence,

(gl, # l, Al), is an equilibrium in the case ofl = 1, notice that no node in P l

2

is better

o" by deviating and choosing protection. This is because|P l

2

| = x0 - x and if this is

proÞtable for a node to protect inP l

2

, then it must be proÞtable to protect for any of the

removed nodes neighbouring a protected node in the attacked componentP in G (if such

a node protects, then the adversary switches his attack and the component of that node

in the residual network is of size" x + 1). This would contradict the assumption that

(G, # ⇤, A⇤) is an equilibrium.

Now, it is enough to show thatW (G, # ⇤, A⇤) < W (gl, # l, Al). To show this we will show,

for all i $ [1, l], that

W (gi, # i, Ai) > W (gi�1, # i�1, Ai�1). (42)

Clearly for i = 1 this is the case, as there are less units of defence used and the number

of nodes removed by the adversary is the same or less. Fori " 2 the equation above

reduces to

f (pi�1

1

+ di) + f (ui�1 & di & 1) > f (pi�1

1

) + f (ui�1). (43)

For f (x) = x2 this is equivalent to (substituting, for clarity of presentation, d ' di,

p
1

' pi�1

1

, p
2

' pi�1

2

, u ' ui�1)

(p
1

+ d)2 + ( u & d & 1)2 > p2
1

+ u2. (44)

We show Þrst thatp
1

> u. To show that it is enough to show thatp& x > u
1

in g0 = G,

as in the subsequent networkspj
1

grows and the sizes of components inUj (weakly)

decrease, i.e.p
1

" p & x and u - u
1

. Since in (G, # ⇤, A⇤), the Adversary prefers to

attack componentP to attacking U
1

, so it must be that the residual network with x

nodes removed fromP has at most the value of the residual network with component

U
1

fully removed. Consider networkg0 obtained from G by re-designingP into a star

with centre m $ P . Consider the strategy proÞle (g0, # 0, A0) where # 0(g0) = {m} and

A0(g0, # 0(g0)) # U
1

. If the adversary prefersA0 to attacking a spoke ofP . This proÞle

cannot be an equilibrium, or otherwiseG is not optimal for the designer. Thus it must

be that the Adversary prefers to attack a spoke ofP to attacking a node inU
1

, that is

p2 & (p & 1)2 " (u
1

)2 (45)

which yields

2(p & x) + 2x & 1 " (u
1

)2. (46)

Notice that it must be that x - u
1

. This is because otherwise the designer would be

better o" by disconnectingx nodes fromP , forming a clique out of them, and changing

P into centrally protected star. By Lemma 8, Equation (22), there is an equilibrium in

the changed network subgame where the adversary attacks the clique of sizex and no

node protects in the clique (if a node protected, the adversary would attack the remaining
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nodes in the clique). Thus the new network yields a better payo" to the designer, as the

loss is the same, but less protection is used.

Sincex - u
1

and p
1

" p & x, so (46) implies

2p
1

+ 2u
1

& 1 " (u
1

)2. (47)

which gives

u
1

-
p

2p
1

+ 1 . (48)

Since forp " 4 (and we know that p " 4 by the structure of the subnetwork ofG over

P ), p
1

>
1

2p
1

+ 1, so u
1

< p
1

.

Now, to show (44), we consider two cases separately: (i)d = p
2

& 1 and (ii) d = ti < p
2

& 1.

For case (i), we rewrite (44) as

(p
1

+ p
2

& 1)2 + ( u & p
2

)2 > p2
1

+ u2 (49)

which reduces to

(p
2

)2 + ( p
2

& 1)2 > 2(p
2

& 1)(u & p
1

) + 2u. (50)

Since (p
2

)2 " (p
1

)2 & (p
1

& 1)2 (as removingP i�1

2

yields better payo" than removing a

spoke of the star overP i�1

1

), so

(p
2

)2 + ( p
2

& 1)2 " 2p
1

& 1 + ( p
2

& 1)2. (51)

Sincep
1

> u, so

2p
1

& 1 + ( p
2

& 1)2 > 2(p
2

& 1)(u & p
1

) + 2u, (52)

which implies (44).

For case (ii), Equation (44) can be rewritten as

2p
1

d + d2 > 2u(d + 1) & (d + 1) 2 (53)

and further to

2(p
1

& 1)d + d2 > 2ud + d2 & 2(d2 & u) & 1. (54)

Now we can show that Equation (54) holds. Since

(p
2

& 1)2 & 1 " (p
1

)2 & (p
1

& 1)2 (55)

so

p
2

"
p

2p
1

+ 1 . (56)

Moreover, since

(p
2

)2 & 1 < (p
1

+ d + 1) 2 & (p
1

+ d)2 (57)

(as d is maximal such that attackingP i

2

is preferred to attackingP i

1

) so

d >
(p

2

)2

2
& p

1

& 1 (58)
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and, by (56),

d >
p

2p
1

&
1
2
. (59)

By this

d2 & u > 2p
1

&
p

2p
1

+
1
4

& u > 0, (60)

asp
1

& 1 " u and p
1

+ 1 >
1

2p
1

. Consequently, (54) holds.

By Equation (54), W (gi, # i, Ai) > W (gi�1, # i�1, Ai�1). Thus we have shown that

(G, # ⇤, A⇤) cannot be an equilibrium, as the designer could choosegl instead. This

completes the proof.

Lemma 11. Assume f (x) = x2

, and n " 20. Let (G, # , x) be a welfare maximising equi-

librium of $. If G is not connected, the adversary does not attack a protected component.

Proof. For a contradiction, suppose thatx(G, #( G)) $ C
1

(G), whereC
1

(G)4 # %= ?. Let

e = |E
x(G,�(G))

(G|#) | denote the number of eliminated nodes, and|C
1

(G)| = y+ e be the

size of the attacked component. By Lemma 6, the attack does not disconnect protected

nodes that are connected inG, and so the loss due to attack equals (e + y)2 & y2.

Pick node i such that i $ E
x(G,�(G))

(G|#) and N
i

(G) 4 # %= ?. That is, node i is

eliminated under attackx(G, #( G)) and has a protected neighbour. For (G, # , x) to be

an equilibrium, it must be that x(G, #( G) + { i} ) attacks a node inC
1

(G) disconnecting

protected nodes.24 It follows that there are at least two protected nodes inC
1

(G), i.e.

|C
1

(G) 4 # | " 2. Moreover,e " 2, or otherwise the adversary would strictly prefer attack

x(G, #( G) + { i} ) to attack x(G, #( G)) under (G, #( G)). This implies that G cannot

feature two isolated nodes; the designer would be strictly better o" by connecting them.

By Lemma 11, there exists another componentC
2

(G) %= C
1

(G) with protected nodes,

C
2

(G) 4 # %= ?. Without loss of generality, letC
2

(G) denote the largest such component.

If C
2

(G) is not a star, then it can be redesigned as a star, and in this new network there is

an equilibrium where only the hub of the star protects, and all other nodes not inC
2

(G)

choose the same strategy as in the original equilibrium. Moreover, the attackx(G, #( G))

is still optimal for the adversary. Since this attains the same gross payo"s with minimal

protection spending, let us assume thatC
2

(G) is a star. Let z = |C
2

(G)| denote the size

of this component.

We will construct a series of strategy proÞles (Gi, # i, xi)
0il

such that:

1. l " 1.

2. (G0, # 0, x0) = ( G, # , x).

24If x(G, #( G) + { i } ) /$ C1(G), then node i would earn strictly larger payo!s by protecting than the
payo!s of its protected neighbour when i does not protect. If x(G, #( G) + { i } ) $ C1(G) but the attack
does not disconnect protected nodes inC1(G), then node i would earn at least as much as its protected
neighbour does wheni does not protect. By the tie breaking assumption that a node prefers not to be
eliminated, node i would protect.
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3. xi(Gi, # i) is a best response of the adversary to defence #i in subgame $(Gi).

4. If i0 < i, then W (Gi

!
, # i

!
, xi

!
) < W (Gi, # i, xi).

5. W (Gl, # l, xl) < s2(n) + ( n & s(n) & u(n)).

In each strategy proÞle (Gi, # i, xi), # i di"ers from # on network Gi only, and xi dif-

fers from x on (Gi, # i(Gi)) only. Describing the strategy proÞles we will focus on the

arguments on which the strategies of the players are di"erent to (G, # , x). The points

above contradict the assumption that (G, # , x) is a welfare maximising equilibrium. If

the designer could control protection, then s/he would choose (Gl, # l) over (Gi, # i) for

any i < l. S/he does not do so because #i is not an equilibrium defence proÞle. But

the network with a star of sizes(n), a clique of sizeu(n) and (possibly) an isolated node

achieves strictly higher welfare in equilibrium.

Let (G1, # 1, x1) be deÞned as follows. Recall that|C
1

(G)| = y + e. Take y nodes of

P
1

(G) are arrange them in a star. Take the remaininge nodes ofC
1

(G), arrange them

in a clique, and link all of the nodes in this clique to the centre of the star of sizey. This

yields a new componentC1

1

(G1). Let # 1(G1) 4 C1

1

(G1) = {m} , wherem is the node that

is linked to all other nodes.x1(G1, # 1) eliminates the e unprotected nodes attached to

m. Note that by construction x1(G1, # 1) is a best response of the adversary to defence

# 1 in sub-game $(G1).

Given i " 2, the network (Gi, # i, xi) is deÞned on the basis of (Gi�1, # i�1, xi�1). Each

such network has at least two components:C i

1

(Gi), of sizey + ei, and C i

2

(Gi), which is

a star of sizezi. Defence of these components is #i(Gi) 4 C1

i

(Gi) = {m} , and # i(Gi) 4

C2

i

(Gi) = {h} , whereh is the centre ofC i

2

(Gi). Attack xi(Gi, # i(Gi)) $ C i

1

(Gi) removes

ei nodes fromC i

1

(Gi).

For 2 - i - l & 1, (Gi, # i, xi) is obtained from (Gi�1, # i�1, xi�1) as follows:

1. Pick a componentC i�1

j

(Gi�1), j /$ { 1, 2} , with si�1

j

= |C i�1

j

(Gi�1)| " 2. If such a

component does not exist, the algorithm stops.

2. Move ti = min { y + ei�1, si�1

j

& 1} nodes fromC i�1

j

to C i�1

2

adding them as spokes

of the star overC i�1

2

, thus obtaining componentC i

2

.

3. Move 1 node fromC i�1

j

to C i�1

1

adding it to the clique ofei�1 nodes to be eliminated,

thus obtaining componentC i

1

.

4. If, after these changes, there are two isolated nodes, create a component with them.

The construction ends on minimali such that |N \ { C i

1

(G) + C i

2

(G)}| $ { 0, 1} , i.e. there

is at most one node not included inC i

1

(G) or C i

2

(G).

By construction, xi(Gi, # i) is a best response of the adversary to defence #i in sub-game

$(Gi). In particular, for every i we have that f (zi) & f (zi & 1) - f (y + ei) & f (y). To
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see this, Þrst note that it holds fori = 1. Then suppose that it holds fori & 1:

f (zi�1)f (zi�1 & 1) - f (y + ei�1) & f (y). (61)

Next note that

f (zi) & f (zi & 1) = f (zi�1 + ti) & f (zi�1 + ti & 1)

- f (zi�1 + y + ei�1) & f (zi�1 + y + ei�1 & 1)

= f (zi�1) & f (zi�1 & 1) + 2(y + ei�1)

- f (y + ei�1) & f (y) + 2( y + ei�1)

< f (y + ei�1) & f (y) + 2( y + ei�1) + 1

= f (y + ei�1 + 1) & f (y)

= f (y + ei) & f (y).

Thus, if it holds for i & 1, it holds for i. By induction, it holds for all i.

It remains to show that after every application of steps 1-4, the designer is strictly better

o". Suppose that ti = y + ei�1. The gain in gross payo"s is bounded below by the case

whereC i�1

j

is of the same sizezi�1 asC i�1

2

, and zi�1 is smallest, i.e.zi�1 = ti + 1. The

gain in this case is of{ [(ti + 1) + ti]2 & (ti + 1) 2}& [(ti+1) 2& 0] = 2(ti)2& 1 > 0. Suppose

next ti = si�1

j

& 1. The gain in gross welfare is of
�

[zi�1 + ( si�1

j

& 1)]2 & (zi�1)2
 

& [(si�1

j

&

1)2 & 0], which is greater than zero if and only ifsi�1

j

> 1

2

2z

i" 1�1

z

i" 1�1

. Since 1

2

2z

i" 1�1

z

i" 1�1

< 3/2

and si�1

j

" 2, the result follows.

Finally, (Gl, # l, xl) is obtained from (Gl�1, # l�1, xl�1) as follows. Take the largest number

tl spokes away fromC l�1

1

and move them as spokes ofC l�1

2

such that

f (zl) & f (zl & 1) - f (yl + el) & f (yl), and (62)

f (zl + 1) & f (zl) > f (yl & 1 + el) & f (yl & 1). (63)

(62) implies that the adversaryÕs original attack is optimal, whereas (63) implies that if

further spokes are moved fromC l�1

1

to C l�1

2

then the adversary would prefer to attack a

spoke ofC l�1

2

. Henceforth, let us denotez ' zl, y ' yl, e ' el.

Let s(n) = . (n+1) &
1

2n/ andu(n) denote the size of the center-protected star and clique,

respectively, of the optimal network with at most three components when the adversary

attacks an unprotected component. Note thate < u(n) (or otherwise the adversary

would attack the clique of sizee if it was disconnected), andz < s(n) (or otherwise the

adversary would prefer to attack a spoke of the size-z star to eliminating the e nodes

attached to the star of sizey). We can then consider the following modiÞcation toGl.

Out of the y surviving nodes of the attacked component, leavey & (s(n) & z) nodes as

unprotected neighbors of the eliminated nodes, and attach the remaining (s(n) & z) nodes

as spokes of the other star. The net gain in gross welfare is equal to

s2(n) & (z2 + y2) = s2(n) & z2 & [(u(n) & e) + ( s(n) & z)]2 = 2�
z

(z & �
e

) & �2
e

,(64)
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where �
z

7 (s(n) & z) and �
e

7 (u(n) & e). From (62), we have that [(u(n) & �
e

) +

(�
e

+ �
z

)]2 & (�
e

+ �
z

)2 > 2z & 1, or

�2
e

+ 2�
z

�
e

& [u2(n) & (2z & 1) + 2u(n)�
z

] < 0.

Since z < s(n), it is easy to see thatu2(n) & (2z & 1) > 0: the adversary prefers to

eliminate a clique of sizeu(n) than a spoke of a star of sizez. Thus, this polynomial in

�
e

has a negative and a positive root. We then have that

�
e

< ø�
e

7 & �
z

+
p

�2
z

+ u2(n) & (2z & 1) + 2u(n)�
z

ø�
e

is increasing inu(n). Note, however, that (u(n) & 1)2 < 2s(n) & 1, i.e., the adversary

prefers to eliminate a spoke of a star of sizes(n) to eliminating a clique of (u(n) & 1)

nodes. This implies thatu(n) < 1 +
p

2s(n) & 1, so that

�
e

< &�
z

+
q
�2
z

+ 4�
z

+ 1 + 2(1 + �
z

)
p

2s(n) & 1.

Combining this result with (64) yields

s2(n) & (z2 + y2) > �
z

(2z & 4) & 2(1 + �
z

)
p

2s(n) & 1 & 1

" �
z

(2z & 4) & 2(1 + �
z

)u(n) & 1

= 2�
z

(�
z

+ [ z & (u(n) + 2)]) & 2�2
z

& 2u(n) & 1 (65)

where the second inequality uses
p

2s(n) & 1 - u(n). Recall that �
z

" 1. The proof

is completed with with following two steps. First, let us show that z " u(n) + 2, so

that the right-hand side of (65) is minimized at�
z

= 1. Suppose, for a contradiction,

that z - u(n) + 1. It is straightforward to verify that u(n)+1

n

- 0.4 for any n " 15.

Thus, for n " 15 we have that z
n

- 0.4. On the other hand, note thaty < z/2. To see

this, note that (63) can be written asy <
z� 1

2 (e�1)

2

e

< z/2, where the second inequality

usese " 2. Moreover,x < z (or otherwise the adversary would attack a disconnected

clique of sizex rather than a spoke a star of sizez). Therefore, z/n = z/(x + y + z) >

z/(z + z/2 + z) = 0 .4, a contradiction. Second, substituting �
z

= 1 in (65), we obtain

s2(n) & (z2 + y2) > 2s(n) & 4u(n) & 7, where the right-hand side is positive forn " 20.

Lemma 12. Assume f (y) = y2. If G is not connected, x(G, #) $ C
j

where C
j

4 # = ?,

and # %= ?, then:

(a) |# | = 1 , i.e. there is only one protected node.

(b) There are at most two unprotected components.

(c) If there are two unprotected components, one of them is of size 1.
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Proof. Let P
1

, . . . , P
l

denote components with at least one protected node, andC
1

, . . . , C
r

denote unprotected components. Component labels are such that|P
1

| " | P
2

| " , . . . , "

|P
l

| and |C
1

| " | C
2

| " , . . . , " | C
r

|.

By Lemma 9, there is no fully protected component. Therefore, ifP
i

is not a star, the

designer can re-design it as a star, and the proÞle where only the centre protects is an

equilibrium proÞle. Since this achieves the same connectivity with minimal protection,

the designer is not worse o". We can then assume thatP
i

is a star for all i. Let |P
1

| = s

and |C
1

| = u denote the sizes of the largest star and the largest unprotected component,

respectively. For the adversary to attackC
1

in equilibrium, it must be that u2 " 2s& 1 if

c > u, or u2 & 1 " 2s& 1 if c - u. Sinceu2 & 1 " 2s& 1 impliesu2 " 2s& 1, let us assume

the more restrictive case whereu is the smallest integer such thatu2 & 1 " 2s & 1.

SpeciÞcally, letu be the smallest integer such that 2s& 1 - u2 & 1 < 2s+ 1. If n = s+ u

or n = s+ u+ 1, then (a), (b) and (c) hold. We will show that if n > s+ u+ 1, i.e. there

are at least two other nodes in the network, thenG cannot be optimal.

Note that if the designer adds an additional node inN/(P
1

+ C
1

) to C
1

, she could attach

a maximum of S(u) additional spokes toP
1

such that the adversary would still strictly

prefer to attack the unprotected component, where

S(u) =

(
u if u is even

u + 1 if u is odd
. (66)

Further note that u " 2: if u = 1 then eliminating the spoke of a star will always be

preferred. It follows that, if the size of the clique is increased by 1, then the size of the

center-protected star can be increased by at least 1 and the adversaryÕs original attack

will remain optimal.

Recall that n > s + u + 1. If all other components in G are of size 1, then consider

the following modiÞcations toG yielding a network G0. Create a clique including all

nodes originally inC
1

and one additional node who was isolated inG, and add a spoke

to P
1

. By (66), the adversary attacks the clique ofG0 of size (u + 1). Since s " 2,

(s + 1) 2 & (s2 + 2) > 0, and gross welfare is strictly higher underG0 than under G.

Since protection spending does not change,G0 achieves strictly higher welfare thanG, a

contradiction.

Suppose Þnally that there is a componentK of sizek, 1 < k - s. Then gain in welfare by

re-allocating nodes inK to componentsC
1

and P
1

is bounded below by the case where

k = 2: only one spoke can be added toP
1

after adding one node toC
1

. Consider then

network G00, obtained from G by creating a clique including all nodes originally inC
1

and one of the nodes ofK, and adding the remaining node ofK as a spoke ofP
1

. By

(66), the adversary attacks the clique ofG00 of size (u+ 1). Gross gain in welfare is equal

to (s + 1) 2 & (s2 + 4) > 0. Since protection spending remains constant or decreases,G00

achieves strictly higher welfare thanG, a contradiction.

It follows from Lemma 12 that if the adversary attacks an unprotected component,
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then G consists of a star of sizes(n) and a component of sizeu(n), and # = {m} , where

{m} is the centre of the star.

Proof of Proposition 2. By Proposition 4 and Lemmas 11-12, three architectures and de-

fence proÞles are possible under welfare minimizing equilibria: a connected network where

all nodes protect, a disconnected network as described in point (2) of the proposition,

and a disconnected network as described in point (3) of the proposition. Comparing wel-

fare attained in (1)-(3) yields the thresholdsc
D

(n) and c
U

(n). In particular, the network

and defence proÞle achieving highest welfare is (1) if 0< c - min{ c
D

(n), c
U

(n)} , (2) if

c
D

(n) < c < c
U

(n), and (3) if c " max{ c
D

(n), c
U

(n)} . However, defence proÞle in (2) is

equilibrium defence proÞle if and only ifc - f(s(n))

s(n)

= s(n) (so that the centre protects).

Considering this yields the desired result.

D.2 Welfare minimizing equilibria

As in the proof of existence (Lemma 1), given networkG and costsc, we will useA(G|c)

to denote the set of components inG were it is not individually rational to protect under

any attack strategy. That is, for anyC $ A (G|c), f (|C|)/|C| < c. The following fact will

be used to prove some of the results.

Fact 5. Let (G⇤, # , x) be a welfare minimizing equilibrium. If G⇤
is disconnected, then

A(G⇤|c) %= ?.

Proof. Suppose there is no such component. Let #⇤ = #( G⇤) and x⇤ = x(G⇤, á). By the

construction used in proof of Lemma 1, there exists an equilibrium of $(G⇤), such that

all nodes protect. Since (#⇤, x⇤) is welfare minimizing, this equilibrium is not worse for

D. Let G0 be a star over all nodes fromN . Sincef (n& 1)/(n& 1) " c, in any equilibrium

(# 0, x0) of $(G0), # 0 = N and no node is infected byx0(# 0). Moreover, by convexity of

f , D is strictly better o" than under G⇤, a contradiction with our assumptions. Thus it

must be that there existsX $ C(G⇤) such that f (|X |)/|X | < c.

We start by showing that, in a welfare minimizing equilibrium, there cannot be a fully

protected component.

Lemma 13. Let (G⇤, # , x) be a welfare minimizing equilibrium. If G⇤
is disconnected,

then there is no fully protected component.

Proof. Assume, to the contrary, that there existsC $ C(G⇤) such that C # #. Let

# ⇤ = #( G⇤) and x⇤ = x(G⇤, á). As in the proof of existence (Lemma 1), given network

G and costsc, we will useA(G|c) to denote the set of components inG were it is not

individually rational to protect under any attack strategy. By Fact 5, A (G⇤|c) %= ?.

Moreover, in any equilibrium of $(G⇤) and for any C $ A (G⇤|c), no node protects inC

under ÷#.
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Let G0 be a network deÞned as follows. The sets of components ofG0 and G⇤ are the

same,C(G0) = C(G⇤), and for eachX $ C(G0), G0[X] is a star. We will show that either

G0 yields higher payo" thanG⇤ under welfare minimizing equilibria toD, or there exists

G00 that does. This will contradict our assumptions and complete the proof. The proof

goes by steps.

Let # ex be an equilibrium defence of $(G⇤), constructed as in proof of equilibrium exis-

tence (Lemma 1).

Step 1. In any equilibrium (# 0, x0) of $(G0), for any X $ C(g) \ A (G0|c), X 4 # 0 %= ?.

For assume otherwise. Then there existsX $ C(G) \ A (G0|c) such that X 4 # 0 = ?.

Clearly A attacks one suchX of maximal size. It must be thatx0(# 0 + { i} ) $ X \ { i} ,

where i is the centre ofG0[X], for otherwise it would be proÞtable for the centre of

X to protect (becausef (|X |)/|X | " c and every node prefers outcomes where it stays

uninfected). Similarly, it must be that f (|X | & 1)/(|X | & 1) < c, as otherwise deviation

to protection would be proÞtable toi. But then X is a component inC(G0) \ A (G0|c) of

minimal size (if it had one node less, it would be inA(G0|c)). Notice also that it must

be that X # # ex, for otherwise it would mean thatA prefers attacking a component in

A(G⇤|c) than removing a node inX (removing a node is the smallest possible damage

that A can cause toX whenX is not fully protected). Furthermore, sinceX is of minimal

size to be inC(G0) \A (G0|c), it must be that all nodes inN \A (G⇤|c) are protected under

# ex. Clearly, this means thatX is the unique component inC(G0) \A (G0|c), or otherwise

a network G00 that merges all components inC(G0) \ A (G0|c) into a single star attains

(by convexity of f ) strictly higher payo"s than G to D in any equilibrium, for in any

equilibrium of $(G00) all nodes in the star protect.

Note that there must exist at least two components inA(G0|c), for otherwise the unique

unprotected components,Z, yields zero payo"s toD, and D is strictly better o" by

choosing a star network where all nodes protect in any equilibrium. The payo"s of nodes

in X increase, as well as the payo"s of nodes inZ.

Consider then the following two modiÞcations toG0. Network öG is obtained by attaching

component Y to X and forming a star component, wherex(G0, # ex) /$ Y (such an

unattacked component exists because of the argument in the preceding paragraph). In any

equilibrium of öG all nodes in the star component protect. Let|X | = | ÷X |+ |Y |. For this not

to be proÞtable, it must be thatc|Y | " f (| ÷X |+2|Y |)& f (| ÷X |+ |Y |)& f (|Y |). Network ÷G is

formed by creating a star out ofX and detaching|Y | spokes to form a copy ofY . SinceX

was of minimal size for it to be individually rational to protect, clearly no node protects in

any equilibrium of $( ÷G). Two cases are possible. IfA does not attack ÷X, then this is not

a proÞtable modiÞcation toD i" ( | ÷X |+ |Y |)c - f (| ÷X |+ |Y |)& f (| ÷X |)& f (|Y |). Combining

with the condition that states that öG is not proÞtable yieldsf (| ÷X |+2|Y |)& f (| ÷X |+ |Y |) -

f (| ÷X | + |Y |) & f (| ÷X |), a contradiction with f being convex. IfA attacks ÷X, then this

is not a proÞtable modiÞcation toD i" ( | ÷X | + |Y |)c - f (| ÷X | + |Y |) & f (|Y |) & f (|Z|),
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whereZ is the originally attacked component. Since it is not individually rational to

protect in ÷X, ÷Xc > f (| ÷X |), so that f (| ÷X |) + |Y |c < f (| ÷X | + |Y |) & f (|Y |) & f (|Z|), or

|Y |c < f (| ÷X | + |Y |) & f (| ÷X |) & f (|Y |) & f (|Z|). Combining with condition for öG not

to be proÞtable yieldsf (| ÷X | + 2|Y |) & f (| ÷X | + |Y |) < f (| ÷X | + |Y |) & f (| ÷X |) & f (|Z|) <

f (| ÷X | + |Y |) & f (| ÷X |), a contradiction with f being convex. Therefore, in any equilibrium

either öG or ÷G attain strictly higher welfare than G0 does under #ex, a contradiction with

G0 being optimal under welfare minimizing equilibrium.

Step 2. In any equilibrium (# 0, x0) of $(G0), for any X $ C(G) \A (G0|c), either X # # 0

or X 4 # = { i} , wherei is the centre ofG0[X].

Notice Þrst that there exists a componentX $ C(G⇤) \A (G⇤|c) such that X # # 0. To see

this take anyX $ C(G⇤) \ A (G⇤|c) such that X # # ⇤ (as we assumed, such a component

exists). It must be that removing a single node fromX is preferred byA to attacking a

largest component inA(G⇤|c), for such an attack is available toA under # ⇤ on G⇤ and

yet all nodes inX protect under # ⇤. Since this is the case inG0 as well, so either none

or all nodes protect inX under # 0. We ruled out the former in Step 2. Hence it must be

that X # # 0.

Now, suppose, to the contrary of the statement in Step 3, that there existsX $ C(g) \

A (G0|c) such that neither X # # 0 nor X 4 # 0 = { i} . SinceX 4 # 0 = ? is ruled out by

Step 2, it must be that 2- | X 4 # 0| < |N |.

As the Þrst case, suppose thatX \ { i} # # 0, where i is the centre ofG0[X]. In other

words, all spokes ofG[X] protect and its centre does not. Let|Y | be the the component

in A(G|c) attacked by x0(# 0) and Z be a largest component fully protected under #0.

Since attackingY is preferred to attacking the centre ofX, so

f (|Y |) " f (|X |) & (|X | & 1)f (1). (67)

On the other hand, sinceZ is fully protected, so

f (|Z|) & f (|Z| & 1) " f (|Y |). (68)

Thus

f (|Z|) & f (|Z| & 1) " f (|X |) & (|X | & 1)f (1), (69)

and, by convexity off ,

f (|Z| + 1) & f (|Z|) > f (|X |) & (|X | & 1)f (1), (70)

so

f (|Z| + 1) + ( |Z| & 1)f (1) > f (|X |) + f (|Z|). (71)

Consider networkG00 obtained from G0 by disconnectingG0[X] and attaching one node

from X to G[Z] as a spoke. In any equilibrium onG00, the extendedZ 0 fully protects

and none of the remaining nodes fromX protect. Moreover, any welfare minimizing
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equilibrium on G00 translates to a welfare minimizing equilibrium onG0, where the same

nodes protect apart from those inX+Z. The same operation may be applied to get rid of

all components which have spokes-only-protect equilibria onG0. By (71), the value of the

network is strictly increasing betweenG0 and G00. Now, all fully protected components

under # ⇤ are also fully protected under #ex and in any equilibrium onG0 and G00. All

the other protected components are replaced with centrally protected stars inG00 or are

proÞtably merged with fully protected components (and during this merging the number

of protected nodes between #ex and any equilibrium onG00 does not increase). HenceG00

is strictly better to G⇤ under welfare minimizing equilibria.

Steps 1-2 establish that, in any equilibrium of $(G0), there is a unique fully protected

componentX, and all other components inC(G) \ A (G0|c) are centre protected stars.

Note that under equilibrium defence #ex in $(G0), D attains the same gross welfare with

at least the same protection spending. For, by construction,X # # ex and all other

components inC(G) \ A (G0|c) have at least one unit of protection. Therefore, we have

that UD(G⇤, # ⇤, x⇤(# ⇤)) - UD(G⇤, # ex, x⇤(# ex)) - UD(G0, # 0, x0(# 0)).

Note that there must exist at least two components inG0, for otherwise attaching the

attacked nodes as spokes ofX would makeD strictly better o". Thus, there exists an

unattacked componentY %= X. The proof is completed by considering two di"erent mod-

iÞcations, yielding to networksöG and ÷G. Network öG is obtained by attaching component

Y to X and forming a star component. Network÷G is formed by creating a star out of

X and detaching|Y | spokes to form a copy ofY . Following analogous steps as in the

proof of Lemma 9 shows that under welfare minimizing equilibria eitheröG or ÷G makeD

strictly better o" than under G0, contradicting G⇤ being optimal.

Proof of Proposition 5. For a contradiction, let (G⇤, # , x) be a welfare minimizing equi-

librium where, for P $ C(G), x(G, #( G)) $ P and P 4 #( G) %= ?. Let # ⇤ = #( G⇤) and

x⇤ = x(G⇤, á). Clearly, P %## ⇤. For otherwise the adversary does not eliminate a single

node, and it must be that #⇤ = N . But then a connected star network attains strictly

higher payo"s toD in any equilibrium, as all nodes protect as well but (due to convexity

of f ) gross payo"s are higher. Thus,P %## ⇤ and A eliminates at least one node inP .

Moreover, by Fact 5,A (G⇤, c) %= ?.

Let X denote the set of eliminated nodes in equilibrium (G⇤, # , x), i.e. X = E
x

(G⇤|#).

Moreover, let # i = # ⇤ + { i} , xi = x(G⇤, # i) be equilibrium response ofA to G⇤ and

defence #i, and let X i = E
x

i(G⇤|# i) be the set of nodes eliminated byxi.

Step 1. For any i $ @
G

(# ⇤)4X, |C(G[P ]&X i)| " 2. That is, if an eliminated node with

a protected neighbor protects, the best response ofA results in the residual network over

P having at least two components. Suppose, to the contrary, that componentG[P ] does

not get disconnected byxi. It must be that X i # P and X i %#X. If X i %#P , then node

i would prefer to protect, sincef (|P |)/|P | & c > f (|P | & |X |)/(|P | & |X |) & c " 0, where
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the Þrst inequality if by f increasing and convex andf (0) = 0, and the second inequality

by the fact that there are protected nodes inP in equilibrium (G⇤, # , x). If X i # X,

then by protecting nodei gets a payo" of at leastf (|P | & |X | + 1) /(|P | & |X | + 1) & c >

f (|P | & |X |)/(|P | & |X |) & c " 0. Moreover, |X i| - | X | (as otherwisexi would be a

better response to (G, # ⇤) than x) and so payo" to i in G[P ] & X i, when it protects, is

f (|P | & |X i|)/(|P | & |X i|) & c " f (|P | & |X |)/(|P | & |X |) & c " 0, soi is better o". Thus

G[P ] must get disconnected byxi, i.e. |C(G[P ] & X i)| " 2.

Step 2. For any ÷# such that | ÷# 4 P | - 1, x(G⇤, ÷#) /$ C for any C $ A (G⇤, c). If | ÷# 4

P | = 0, then P /$ A (G⇤, c) implies that A must strictly prefer eliminating P to eliminating

C $ A (G⇤, c). Suppose then| ÷# 4P | = 1. As in the previous paragraph, letX = E
x

(G⇤|#)

denote the set of eliminated nodes in equilibrium (G⇤, # , x), and X i = E
x

i(G⇤|# i) the

set of nodes eliminated if nodei $ X protects. Let U denote the largest component

in A(G⇤, c). Note that eliminating a componentC $ A (G⇤, c) is available to A under

(G⇤, # ⇤). x⇤ /$ A (G⇤, c) implies that f (|U |) - f (|P |) & f (|P | & |X |) (the damage caused

by attacking X is at least as large as that of attackingU ). X i # P and X i %#X implies

that, for any i $ X, f (|U |) - f (|P |) & f (|X + @
G

(X)|) &
P

C2C(G[P ]�X

i

)\(X[@
G

(X))

f (|C|)

(the damage caused by attackingX i is at least as large as that of attackingU ). Moreover,

|C(G[P ] & X i)| " 2 (by Step 1) implies that, for any i $ X, C $ C(G[P ] & X i) \ (X +

@
G

(X)) %= ? and thus the last term
P

C2C(G[P ]�X

i

)\(X[@
G

(X))

f (|C|) > 0. There are two

cases to consider. Case (i):÷# 4 P # X + @
G

(X), i.e. the protected node inP is a node

in X or has a neighbor inX. Pick any i $ X, and consider an attack on nodej $ X i.

Damage caused byA bounded below by case where÷# 4 P = @
G

(X), in which case it is of

f (|P |) & f (|X + @
G

(X)|) > f (|P |) & f (|X + @
G

(X)|) &
P

C2C(G[P ]�X

i

)\(X[@
G

(X))

f (|C|) "

f (|U |). HenceA strictly prefers an attack on j $ X i to an attack on U , and therefore,

x(G⇤, ÷#) /$ C for anyC $ A (G⇤, c). Case (ii): ÷# 4P %#X+ @
G

(X). Damage caused by an

attack on any i $ X is of at leastf (|P |)& f (|P |&|X |& 1) > f (|P |)& f (|P |&|X |) " f (|U |).

HenceA strictly prefers an attack oni $ X to an attack onU , and therefore,x(G⇤, ÷#) /$ C

for any C $ A (G⇤, c).

Step 3. G⇤ is not optimal. The proof is Þnalized with the following arguments. Let

# ex be an equilibrium defence of $(G⇤), constructed as in proof of equilibrium existence

(Lemma 1). SinceA(G⇤, c) %= ?, x(G⇤, # ex) $ C, whereC $ A (G⇤, c), i.e. in equilibrium

A eliminates a component inA(G⇤, c). Note that, since (# , x) is welfare minimizing on

G⇤, UD(G⇤, # ⇤, x⇤(# ⇤)) - UD(G⇤, # ex, x⇤(# ex)). Two cases must be considered.

Case (a). There existsZ $ C(G⇤) such that Z # # ex. Then note that there must

exist at least two components inG⇤, for otherwise a connected star attains strictly higher

payo"s to D in any equilibrium. Thus, there exists an unattacked componentZ 0 %= Z.

Consider then two di"erent modiÞcations, yielding to networksöG and ÷G. Network öG is
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obtained by attaching componentZ 0 to Z and forming a star component. Network÷G

is formed by creating a star out ofZ and detaching|Z 0| spokes to form a copy ofZ 0.

Following analogous steps as in the proof of Lemma 9 shows that under welfare minimizing

equilibria either öG or ÷G makeD strictly better o" than under G0, contradicting G⇤ being

optimal.

Case (b). There is no fully protected component under #ex. By construction of # ex,

there is at least one protected node in every componentC $ G⇤ \A (G, c). Moreover, since

x(G⇤, # ex) $ C for someC $ A (G⇤, c), by Step 2 above it must be that|# ex 4 P | " 2.

Consider then networkG0, obtained fromG⇤ as follows. The sets of components ofG0 and

G⇤ are the same,C(G0) = C(G⇤), and for eachX $ C(G0), G0[X] is a star. Consider defence

proÞle #0 where, for eachC $ C0(G0) \ A (G0, c), # 0 4 C = { i} wherei is the centre ofC.

This defence proÞle is the unique equilibrium defence of $(G0). For any node in eliminated

componentU $ A (G0, c), not to protect is a strictly dominant strategy. Consider next

any of the starsP 0 /$ A (G0, c). Even if all spokes protect,A prefers to attack the centre

of the star to attacking a component anyC $ A (G0, c). To see this, note that convexity

of f and f(|U |)
|U | < c - f(|P ! |)

|P ! | imply that |U | - | P 0| & 1, and sof (|U |) - f (|P 0| & 1).

Next node that, by Property 1, f (|P 0| & 1) < f (|P 0|) & (|P 0| & 1)f (1). Combining, we

have that f (|U |) < f (|P 0|) & (|P 0| & 1)f (1), which implies that A would strictly prefer to

attack the centre of the star of size|P 0| to attacking the unprotected component of size

|U | even if all spokes ofP 0 protect. Hence, the centre ofP 0 protects in any equilibrium.

If the centre of the star protects, then spokes do not protect, asA prefers attack ofU

to eliminating a single node ofP 0 that does not disconnectP 0. The proof is Þnalized

by noting that (G0, # 0, x(G0, # 0)) achieves the same gross welfare than (G, # ex, x⇤) but

with strictly smaller protection spending, since|# 0 4 P | = 1 < 2 - | # ex 4 P |. Thus,

UA(G0, # 0, x(G0, # 0)) > UA(G⇤, # ex, x⇤) " UA(G⇤, # ⇤, x⇤), and soG⇤ cannot be optimal.

We can now use the results derived for general network value function to obtain

Proposition 3 and Corollary 1.

Proof of Lemma 4. For n " 4, c
U

(n) - n & 1. Therefore,c - c
U

(n) implies c - n & 1,

and D can choose the star networkG where #(G) = N in any equilibrium (# , x) of

$(G).

Proof of Proposition 3. Let (G, # , x) be a welfare minimizing equilibrium. By Lemma 13

and Proposition 5, ifG is disconnected but #(G) %= ?, then there is no fully protected

component andA attacks an unprotected component. By Lemma 12, in this caseG has

only one protected node. Clearly, the protected component must be a star of maximal

size, ös(n), such that A strictly prefers to attack the unprotected component.

Thus, three architectures can be optimal. IfG is connected then #(G) = N . If G is

disconnected but #(G) %= ?, then G features a star of size ös(n) and an unprotected
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component of sizeu(n). If G is disconnected and #(G) = ?, then G is the optimal

unprotected network. Comparing payo"s yields thresholds öc
D

(n) and c
U

(n).

To see that defence proÞles are equilibrium proÞles, Þrst note that ifc - min{ öc
D

(n)c
U

(n)}

then by Lemma 4 there existsG such that #( G) = N in any equilibrium of $(G).

Furthermore, if c > max{ c
U

(n), ös(n)} then c > f (.n/2/ ) / (.n/2/ ), and so if G is the

optimal unprotected network then #(G) = ? in any equilibrium of $(G). Finally, if

u(n) < c
D

(n) implies that if c
D

(n) < c - ös(n) then in any equilibrium of $(G) only the

centre of the star protects andA eliminates unprotected component of sizeu(n).

Proof of Corollary 1. Let (G, # , x) be a welfare minimizing equilibrium. We Þrst show

that if G is disconnected then #(G) = ?. By Lemma 13 and Proposition 5, ifG is

disconnected but #(G) %= ?, then there is no fully protected component andA attacks

an unprotected component. LetU $ C(G) denote the attacked component, andP $ C(G)

a partially protected component. If|P | > |U |, then f (y) > 2f (y& 1) implies that A must

strictly prefer an attack on an unprotected node inP than eliminating U . Hence it must

be that |P | - | U |. If |P | - | U | and some nodes protect inP , then there exists an

equilibrium (# 0, x0) of $(G) where P + U # # 0(G). Since (#, x) is welfare minimizing

on G, D cannot be worse o". But then consider networkG00 whereP and U are merged

into a star. All nodes inP + U protect in any equilibrium of $(G00) and, by convexity of

f , D is strictly better o". Therefore, if G is disconnected then #(G) = ?.

We thus have that G is connected and #(G) = N , or G is the optimal unprotected

network and #(G) = ?. Comparing payo"s indicates thatD prefers full protection if

c - 2

n�2

bn

2 c�n mod 2

n

, and no protection otherwise. However, forc > c(n) every network

has a no protection equilibrium. Sincec(n) - 2

n�2

bn

2 c�n mod 2

n

(with strict inequality if

n " 3), D chooses connectedG such that #( G) = N in any equilibrium of $(G) if

c - c(n), and the optimal unprotected network otherwise.

D.3 Securing full protection through network design

Proof of Proposition 6. Consider Þrst (1). For a contradiction, suppose there is nok-

critical node with f(n�k)

n�k

> c. Consider the strategy proÞle (#, x) in which no node

protects. Pick any nodei $ V . If i does not protect, it gets a payo" 0. Ifi protects, it

gets a payo" ofU i(G, # , x(#)) = f(n�k

i

)

n�k

i

& c, wherek
i

is the size of the largest component

in G & { i} . Since there is nok-critical node with f(n�k)

n�k

" c so U i(G, # , x(#)) < 0.

Therefore, the proÞle in which no node protects is an equilibrium.

Now consider (2). Let (#, x) be an equilibrium of $(G) where not all nodes protect.

Let i $ E
x(�)

(G|#). Since # ( N , E
x(�)

(G|#) %= ?. It cannot be that i is a k-critical

node with f(n�k)

n�k

> c, as i would prefer to protect. Suppose thati is not k-critical with
f(n�k)

n�k

> c. Then i is connected to ak-critical node j with f(n�k)

n�k

> c. If i deviates to

protection, its payo" will be U i(G, # + { j} , x(# + { j} )) " f(n�k

j

)

n�k

j

& c, wherek
j

is the size
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of the largest component inG& { j} . SinceU i(G, # + { j} , x(# + { j} )) > 0, soi is better

o" by deviating, which contradicts the assumption that (#, x) is an equilibrium.
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E Proofs for random attack

E.1 First best

Proof of Proposition 7. Let (G, #) be a Þrst best protected network. Three cases are

possible.

Case (i). # = N Clearly in this caseG must be a connected network.

Case (ii). ? ( # ( N Then (G, #) must be a centre-protected star. We prove this in

three steps.

Step 1. G is connected. For a contradiction, supposeG is not connected. Since #%= ?,

there existsC(G) $ C(g) with a node i $ C(G) 4 #. Consider the following modiÞcation

to G, which results in networkG0. For every nodej /$ C(G), delete all its links and

create a link betweenj and i. Protection spending remains the same, and gross expected

payo"s from connectivity strictly increase. HenceG cannot be optimal.

Step 2. If k, j /$ #, then kj /$ G. That is, there are no links between unprotected

nodes. Suppose the contrary. Ifk and j are not leaf nodes, then consider networkG0

which is identical to G except that kj /$ G0. Gross expected payo"s are strictly greater

underG0 than underG. Suppose thatk is a leaf. Leti $ # be a protected node. Consider

network G00 which is identical to G except that kj /$ G00 and ki $ G00. Gross expected

payo"s are strictly greater underG00 than under G.

Step 3. (G, #) is a centre-protected star. Let s denote the number of protected nodes.

The designerÕs payo"s are equal to

n & s

n
f (n & 1) +

s

n
f (n) & sc = f (n & 1) + s


f (n) & f (n & 1)

n
& c

�
.

Note that is must be that f(n)�f(n�1)

n

< c, or otherwise it would be optimal to protect all

nodes, a contradiction. The payo" of the designer is therefore maximised ats = 1. That

is, a single node is protected, and thus (G, #) is a centre-protected star.

Case (iii). # = ? Since there are at mostn components in the network, the designer

solves

arg maxb2B(n)

nX

i=1

b
i

n

X

j 6=i

f (b
j

) = arg maxb2B(n)

nX

i=1

f (b
i

)(n & b
i

).

Comparing the payo"s of (i)-(iii) yields the desired result.

59



E.2 Welfare-maximising equilibria

For any # # N , let # �i

= # \ { i} denote the protection proÞle where all nodes in #

di"erent from node i protect. Furthermore, let

h
i

(G, # �i

) = U i(G, # �i

+ { i} ) & U i(g, # �i

), (72)

H
i

(G, # �i

) = UD(G, # �i

+ { i} ) & UD(g, # �i

). (73)

In words, h
i

(G, # �i

) and H
i

(G, # �i

) are, respectively, the gain of nodei and of the

designer fromi protecting under networkG and defence proÞle #�i

. Recall that C
i

(G)

denotes the component ofG such that i $ C
i

(G). Thus, C
i

(G & # �i

) denotes the set

of unprotected nodes inG which have a path to i through unprotected nodes. We can

therefore write

hi (G, # $ i ) =
1
n


f (|Ci (G)|)

|Ci (G)|
& 0

�
+

X

j %Ci (G$ �! i )\{ i }

1
n


f (|Ci (G & Ej (G|# $ i + { i } )) |)

|Ci (G & Ej (G|# $ i + { i } )) |
& 0

�
& c. (74)

The following lemma establishes that, due to positive externalities, there can never be

over-investment in protection.

Lemma 14. For any G and # , H
i

(G, # �i

) " h
i

(G, # �i

), with strict inequality if and

only if |C
i

(G)| " 2.

Proof. Note that

Hi (G, # $ i ) "
1
n

[f (|Ci (G)|) & 0] +
X

j %Ci (G$ �! i )\{ i }

1
n


f (|Ci (G & Ej (G|# $ i + { i } )) |)

|Ci (G & Ej (G|# $ i + { i } )) |
& 0

�
& c,

" hi (G, # $ i ).

This establishes the Þrst statement in the lemma. For the second statement, consider

the direction from right to left. Since f is increasing, the second inequality is strict if

|C
i

(G)| " 2. Finally, consider the direction from left to right. If |C
i

(G)| = 1, then C
i

(G&

# �i

) \ { i} = ?. In this case,h
i

(G, # �i

) = 1

n

h
f(1)

1

& 0
i

= 1

n

[f (1) & 0] = H
i

(G, # �i

).

As a corollary, we have that if the Þrst best features no protection, then there is no

cost of decentralization.

Corollary 3. Let (G, #) be first best. If # = ?, then # is an equilibrium of $(G).

Proof. For a contradiction, suppose that in the Þrst best the designer choosesG and

# = ?, but # = ? is not an equilibrium of $(G). Set # �i

= ?. It must be that

h
i

(G, # �i

) > 0. SinceH
i

(G, # �i

) " h
i

(G, # �i

), # = ? cannot be Þrst best.

The next lemma shows that ifc > t
n

(n) then D chooses an optimal unprotected

network.
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Lemma 15. Let (G, #) be an equilibrium of $. If c > t
n

(n), then # = ? and G is an

optimal unprotected network.

Proof. It su!ces to show that, if c > t
n

(n), then for any G the unique equilibrium of

$(G) is # = ?. To see this, note that, for anyG $ G(N ) and # # N , h
i

(G, # �i

) -
f(n)

n

2 + ( n & 1) 1
n

f(n�1)

(n�1)

& c. Thus, if c > t
n

(n), then h
i

(G, # �i

) < 0 for any G and #. Not

to protect is a dominant strategy for a node on any network, and so for anyG $ G(N ),

the unique equilibrium of $(G) is # = ?.

We Þrst prove Proposition 10 (for generalf ), and then prove Proposition 8.

Proof of Proposition 10. We address Cases 1-3 separately.

Case 1. t
u

(n) < c - min { t
u+1

(n), öc
1

(n), öc
2

(n)} for someu = 0 , . . . , n & 1. Since

c - min { öc
1

(n), öc
2

(n)} , Þrst best is full protection in a connected network. The following

claim states that if c > t
u

(n) then, for any G, at least u nodes are unprotected in every

equilibrium of $(G).

Claim 1. Supposec > t
u

(n). For any G, |N \ # | " u in every equilibrium of $(G).

Proof. Suppose thatc > t
u

(n) but there existsG such that # is an equilibrium of $(G)

and u0 = n & |# | < u nodes are unprotected. For any protected nodei $ #, note that

h
i

(G, # �i

) -
f (n)
n2

+ u0f (n & 1)
n(n & 1)

& c <
f (n)
n2

+ u0f (n & 1)
n(n & 1)

& t
u

(n)

= [ u0 & (u & 1)]
f (n & 1)
n(n & 1)

- 0.

Therefore, any nodei $ # would rather unprotect, a contradiction.

Maximum equilibrium welfare is therefore achieved if there are exactly|N \ # | = u

unprotected nodes such that if an unprotectedi $ N \ # is attacked, the attack neither

spreads nor disconnectsG. Equilibrium welfare is therefore bounded above byu
n

f (n& 1)+
n�u

n

f (n) & (n& u)c. The following claim establishes thatG attains maximum equilibrium

welfare if and only ifG $ Gn�u(N ), and thus completes the proof of Case 1.

Claim 2. Supposet
u

(n) < c - t
u+1

(n). There exists an equilibrium # of $(G) such that

UD(G, #) = u

n

f (n & 1) + n�u

n

f (n) & (n & u)c if and only if G $ Gn�u(N ).

Proof. For the direction right to left, pick a network G $ Gn�u(N ). For a set of nodes

U # N satisfying the conditions forG $ Gn�u(N ), consider the defence proÞle # =N \ U .

For i $ #,

h
i

(G, # �i

) =
f (n)
n2

+ u
f (n & 1)
n(n & 1)

& c "
f (n)
n2

+ u
f (n & 1)
n(n & 1)

& t
u+1

(n) = 0 , (75)
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and so protected nodes do not wish to deviate. Ifu = 0, then # is an equilibrium of

$(G) and the statement is true. Supposeu " 1. For j $ N \ #,

h
i

(G, # �i

) =
f (n)
n2

& c <
f (n)
n2

& t
u

(n) = ( u & 1)
f (n & 1)
n(n & 1)

- 0. (76)

Combining (75) and (76), we conclude that # is an equilibrium of $(G), and it achieves

welfareUD(G, #) = u

n

f (n & 1) + n�u

n

f (n) & (n & u)c.

Consider next the direction left to right. For a contradiction, suppose that there exists

G /$ Gn�u(N ) which achieves maximum equilibrium welfare. Ifu = 0, then G /$ Gn�u(N )

means thatG is not connected. Sincec - t
1

(n), full protection is the unique equilibrium

on every network. Thus, the designer can be strictly better o" by choosing a connected

network, a contradiction.

Suppose then thatu " 1. SinceG attains maximum equilibrium welfare, there are only

u unprotected nodes whose potential attack neither spreads nor disconnects the network.

Since the attack toi $ N \ # does not to spread, it must be thatij /$ G for all j $ N \ #.

Since the attack toi $ N \ # does not disconnect the network, it must be thatG& { i} is

connected. It follows from these two observations thatG /$ Gn�u(V ) implies that there

exists a pair of nodes (i, j), i $ N \ # and j $ #, such that ij /$ G. Then, for nodej,

h
j

(G, # �j

) -
f (n)
n2

+ ( u & 1)
f (n & 1)
n(n & 1)

& c <
f (n)
n2

+ ( u & 1)
f (n & 1)
n(n & 1)

& t
u

(n) = 0 .

That is, node j would strictly prefer not to protect, a contradiction.

Case 2. öc
1

(n) < c - min { öc
3

(n), t
n

(n)} . Since öc
1

(n) < c - öc
3

(n), Þrst best payo"s

of the designer are attained by a centre-protected star. It is easy to check that, since

c - t
n

(n), the centrem of the star protects if no spoke protects. If a spoke Þnds protection

proÞtable whenm protects, then by Lemma 14 the designer would be strictly better o",

and therefore full protection would be optimal, a contradiction. Hence # ={m} is an

equilibrium of the star and the designer achieves Þrst best payo"s.

Case 3. c - min { t
n

(n),max{ öc
2

(n), öc
3

(n)}} . If c > max{ öc
2

(n), öc
3

(n)} , then Þrst best

is an optimal unprotected network. By Corollary 3 this is attainable in equilibrium. If

c > t
n

(n), then by Lemma 15D chooses an optimal unprotected network.

Before proving Proposition 8, we show that iff (y) = y2 then the optimal unprotected

network consists of two components, of sizes2n/23 and .n/2/ .

Lemma 16. Assume f (y) = y2 and suppose the attack is random. If (G, #) is first best

and # = ?, then G consists of two components, of sizes 2n/23 and .n/2/ .

Proof. Let b⇤ be an optimal partition, i.e.

b⇤ $ arg max
b2B(n)

nX

i=1

h(b
i

),
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whereh(b
i

) = ( n & b
i

)b2
i

. Note that h0(b
i

) = 0 6 b
i

= 2n

3

, and h00(b
i

) = 0 6 b
i

= n

3

. That

is, function h(á) has a maximum at 2n

3

, and is convex on
⇥
0, n

3

⇤
and concave on

⇥
n

3

, n
⇤
.

We show that the optimal partition contains two components, of sizes2n/23 .n/2/ , with

the following steps.

Step 1. b
1

<
⌃
2n

3

⌥
+ 1. For a contradiction, suppose that b

1

"
⌃
2n

3

⌥
+ 1. Then

consider the partition which is equal tob except that we isolate one node fromb
1

. Since

h(á) is decreasing on [2n
3

, n] and increasing otherwise, this is a strict improvement, a

contradiction.

Step 2. There is at most one component of sizeb
i

such that 0 < b
i

<
⌅
n

3

⇧
. Suppose

b
i

- b
j

<
⌅
n

3

⇧
. Then consider moving nodes from the subset of sizeb

i

to the subset of size

b
j

, up to the point in which the new size of the larger subset isb0
j

= min
�⌅

n

3

⇧
, b

j

+ b
i

 
.

Sinceh(á) is convex on
⇥
0, n

3

⇤
, this is a strict improvement, a contradiction.

Step 3. If b
i

, b
j

"
⌃
n

3

⌥
, then |b

i

& b
j

| - 1. If |b
i

& b
j

| > 1, then move one element

from the larger to the smaller subset. Sinceh(á) is concave on
⇥
n

3

, n
⇤
, this is a strict

improvement, a contradiction.

By steps 1-3, there are two possibilities. The Þrst possibility is that there are only two

non-empty subsets, of sizesb
i

>
⌅
n

3

⇧
and b

j

-
⌅
n

3

⇧
. It is easy to verify that the optimal

partition into two components is with sizes2n/23 and .n/2/ , a contradiction. Since

a = n/3, the second possibility is that there are two subsets of sizes greater than or equal

to
⌅
n

3

⇧
, and possibly one subset of size less than or equal to

⌅
n

3

⇧
. Let x, y, z denote the

sizes of the three components, withx " y " 1/3 " z " 0 andx+ y + z = n. Abstracting

from integer problems, maximising (n & x)x2 + ( n & y)y2 + ( n & z)z2 with respect to

these constraints yields two constrained local optima: (x, y, z) = ( n/3, n/3, n/3) and

(x, y, z) = ( n/2, n/2, 0). It is straightforward to verify that the objective is maximised in

the latter. Hence, the optimal unprotected network has two components, of sizes2n/23

and .n/2/ .

Proof of Proposition 8. It follows from Proposition 10 and Lemma 16.

E.3 Welfare-minimizing equilibria

Proof of Fact 1. Let G be a connected network. Pick any nodei $ N . For any # # N ,

note that h
i

(G, # �i

) " f(n)

n

2 & c " 0, where the last equality usesc - t
1

(n) = f(n)

n

2 .

Therefore, the unique equilibrium of $(G) is # = N .

Proof of Fact 2. Consider statement (1) Þrst. SupposeG is not complete and attains

maximum equilibrium welfare in every equilibrium of $(G). By Proposition 10, every

equilibrium # of $( G) must be such that there is exactly one unprotected nodel, where

G & { l} is connected. Fix such an equilibrium #. Note that li $ G for every i %=
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l. Otherwise there would be a nodei whose neighbors are all protected in #, and so

h
i

(G, # �i

) = f(n)

n

2 & c < 0, a contradiction. Moreover, sinceG is not the complete

network, there exist nodesu
1

, u
2

such that u
1

, u
2

/$ G. To complete the proof, we will

show that there is an equilibrium of $(G) where nodesu
1

and u
2

do not protect, and

thereforeG does not attain maximum equilibrium welfare in every equilibrium of $(G).

We will use the following concepts.

DeÞnition 2. A set of nodesC # N is a vertex cover (VC) of G if, for all ij $ G,

ij 4 C %= ?. A vertex coverC is minimal (MVC) if, for all D ( C, D is not a vertex

cover ofG.

Consider the following two steps.

Step 1. If C is an MVC of G and l $ C, then # 0 = C is an equilibrium of $(G). Let C

be an MVC of G, and consider defence proÞle #0 = C. For i /$ # 0, note that j $ # 0 for

every j $ @
G

(i), or otherwise #0 would not be a VC (it would not be covering all links in

G). Therefore,h
i

(G, # 0) = f(n)

n

2 & c < 0. For j $ # 0, there must existi $ @
G

(j) such that

i /$ # 0, or otherwise the VC #0 is not minimal. Furthermore, sincel $ # 0 and kl $ G for

everyk, an attack oni does not disconnectG. Therefore,h
j

(G, # 0) " f(n)

n

2 + f(n�1)

n(n�1)

& c " 0,

where the inequality usesc - t
2

(n) = f(n)

n

2 + f(n�1)

n(n�1)

.

Step 2. There exists an MVC #0 such that l $ # 0 and u
1

, u
2

/$ # 0. Construct # 0 as

follows. Start with # 0
0

= N \ { u
1

, u
2

} . Since{u
1

, u
2

} /$ G, # 0
0

is a VC. If the VC # 0
0

is

not minimal, remove nodes from #0
0

until obtaining an MVC. Node l will be in any such

MVC, or otherwise the link lu
1

$ G would not be covered.

Combining steps 1 and 2 completes the proof of statement (1). Consider next state-

ment (2). Let G be the complete networkGc. For a contradiction, suppose there exists

an equilibrium # of $( Gc) where |# | - n & 2. Let e = |N \ # | " 2 denote the number

of unprotected nodes. For unprotected nodei /$ #, h
i

(Gc, #) = f(n)

n

2 + e�1

n

f(n�e�1)

n�e�1

& c "
e�1

n

f(n�e�1)

n�e�1

& f(n�1)

n(n�1)

, where the inequality usesc - t
2

(n). By the condition given in the

fact, it is straightforward to see that h
i

(Gc, #) " 0. That is, an unprotected node would

prefer to protect, a contradiction.

Proof of Proposition 9. By Proposition 7 and Lemma 16, we have that

öc
1

(n) =
2n & 1

n
,

öc
2

(n) =
n2 & (.n/2/ 2 + n mod 2)

n
,

öc
3

(n) = ( n & 1)2 &
�
.n/2/ 2 + n mod 2

�
,

so that öc
1

(n) < öc
2

(n) < öc
3

(n). By Proposition 7, Þrst best is full protection ifc - öc
1

(n),

a centre-protected star if öc
1

(n) < c - öc
3

(n), and the optimal unprotected network if

c > öc
3

(n). Furthermore, t
1

(n) = 1, t
2

(n) = 2n�1

n

, and t
n

(n) = ( n & 1) + 1

n

, so that 0 <
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t
1

(n) < öc
1

(n) = t
2

(n) < t
n

(n) < öc
3

(n). Let (G, #) be a welfare minimizing equilibrium.

We consider the di"erent cases.

Case (1). 0 < c - t
1

(n) Since t
1

(n) < öc
1

(n), by Fact 1 any connected networkG

attains Þrst best welfare in unique equilibrium.

Case (2). t
1

(n) < c - öc
1

(n) = t
2

(n) By Fact 2, G must be the complete network.

Case (3). öc
1

(n) = t
2

(n) < c - t
n

(n) By Proposition 10, the star network has an

equilibrium where only the centre protects. To see that this equilibrium is unique, note

Þrst that c > öc
1

(n) implies that any other equilibrium must have the centre unprotected.

Let G be the star network, and # be a defence proÞle wheres $ { 0, . . . , n & 2} spokes

protect. For spokej /$ #, h
j

(G, #) = f(n)

n

2 + n�s�1

n

f (1)& c < & s

n

- 0, where the inequality

usesc > t
2

(n). Hence the unique equilibrium of the star is # = {m} , wherem is the

centre. D chooses the star and attains Þrst best payo"s.

Case (4). c > t
n

(n) By Lemma 15,G is the optimal unprotected network.
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