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play, and social relations allow coordination on an efficient norm. We examine this trade-o 

 in a network game with a unique Nash equilibrium, but such that agents can achieve a higher payoff by 

following a "collaborative norm". Subjects establish and maintain a collaborative norm in the circle, but 

the norm weakens with the introduction of one asymmetric node in the wheel. In complex and 

asymmetric networks of 15 and 21 nodes, the norm disappears and subjects' play converges to Nash on 

every node. We provide evidence that subjects base their decisions on their degree, rather than the 

overall network structure. Methodologically, the paper shows the capabilities of UbiquityLab: a novel 

platform to conduct interactive experiments online with a large number of participants.  
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Abstract

The tension between e�ciency and equilibrium is a central feature of economic
systems. In many contexts, social networks mediate this trade-o↵: an individual’s
network position determines equilibrium play, and social relations allow coordina-
tion on an e�cient norm. We examine this trade-o↵ in a network game with a unique
Nash equilibrium, but such that agents can achieve a higher payo↵ by following a
“collaborative norm”. Subjects establish and maintain a collaborative norm in the
circle, but the norm weakens with the introduction of one asymmetric node in the
wheel. In complex and asymmetric networks of 15 and 21 nodes, the norm disap-
pears and subjects’ play converges to Nash on every node. We provide evidence
that subjects base their decisions on their degree, rather than the overall network
structure. Methodologically, the paper shows the capabilities of UbiquityLab: a
novel platform to conduct interactive experiments online with a large number of
participants.
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INET, University of Cambridge, Università degli Studi di Milano-Bicocca, Seoul National University, UC
Irvine, and the Psychometrics Center (Cambridge); and to conference participants at the Social Networks
and Matching Processes Workshop (CSAE, Oxford), the Learning in Social Networks Workshop (IESE,
Barcelona), the Keynes Fund Research Day (Cambridge), and the 2013 ESI Autumn Workshop (Max
Planck, Jena). Generous research support by the Keynes Fund for Applied Economics in Cambridge,
the Balliol Interdisciplinary Institute and the Oxford-Man Institute of Quantitative Finance is thankfully
acknowledged.

1



1 Introduction

The tension between e�ciency and equilibrium is a central feature of social and economic
systems. In some contexts, e�ciency can be achieved and sustained through the estab-
lishment of a norm: a prominent example is the provision of a public good where we have
abundant empirical (Ostrom [1990]) and experimental (Ledyard [1995]) evidence that in-
dividuals manage to coordinate away from the zero contribution equilibrium. Norms are
intertwined with a society’s culture and social structure as their sustenance depends on
a set of common beliefs and expectations which are often maintained through social rela-
tions1. Social structure can also be a key determinant of an equilibrium: recent theoretical
research has shown that the position of an individual in a social network is a determinant
of equilibrium behavior in many economic contexts2.

Despite the importance of social structure for equilibrium behavior and the establish-
ment of norms, we have scarce evidence of how conducive di↵erent social structures are
to the establishment and sustenance of a norm in contexts where position in the social
structure determines equilibrium play. A primary reason for this gap is the largely unre-
solved challenge of unambiguously identifying the causal link from position in the social
structure to behavior: social econometrics is still in its infancy and it struggles to validate
the theory using empirical data. Experiments are a natural tool to pin down the causal
link, but most of the experimental research on networks in economics focuses on networks
that are small in size and/or have a stylized structure, which limits the testing of the rich
relation between network position and behavior predicted by the theory.

This paper addresses this gap by investigating experimentally a game of strategic
complements played on sizable networks with a non-trivial structure. We have chosen
this specific game for three reasons. First, it has a unique Nash equilibrium in which
agents’ play is determined by their position in the network: they exert e↵orts that are
proportional to their Bonacich centrality, a metric that captures the number of connections
of an agent, her neighbors, her neighbors’ neighbors, and so on. Second, in all the networks
we examine, it is possible for agents to achieve payo↵s higher than Nash play if everyone
coordinates on exerting higher e↵orts, which we dub a “collaborative norm”. Third,
this type of game captures a broad range of phenomena involving collaboration among
members of a group with complementary skills such as teamwork in organizations, criminal
activity, and coauthorships in academia.

The experiment consists of playing 40 rounds of the game on a given network structure.
In a round each subject is randomly assigned to a di↵erent node of the network, and picks
a level of e↵ort, which can be any integer in the [0, 100] range. There are 4 treatments
that di↵er in the network the subjects are exogenously assigned to. Figure 1 illustrates
the 4 networks: a circle network g� and a wheel network g⌦ with 9 nodes each, a 15-node

1See Young [2014] for a comprehensive review of research on social norms in economics.
2See Goyal [2007] and Jackson [2008] for comprehensive reviews.
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network g15, and a 21-node network g21. We conduct the experiment using UbiquityLab:
a platform we built to conduct interactive experiments online with a large number of
participants.

Our first finding is that in simple networks subjects are able to establish and maintain
a collaborative norm where they exert e↵orts higher than equilibrium play. In the simple
and symmetric g� network, subjects converge to average e↵orts that are in between the
e↵ort predicted by Nash play and the most e�cient collaborative norm for the group. As
a minimal degree of asymmetry is introduced in the g⌦ network, the collaborative norm
survives but it is weakened: e↵orts are closer to Nash play than to the most e�cient
collaborative norm. Finally, in the more asymmetric and complex3 g15 and g21 networks,
subjects are unable to sustain any kind of collaborative norm.

The second result is that subjects converge to the Nash equilibrium in all positions
of the g15 and g21 networks. In spite of the presence of highly profitable collaborative
norms, it is likely that the asymmetry and complexity of the networks make it challenging
for subjects to achieve coordination. It is somewhat remarkable that subjects are able
to learn to play the equilibrium given the size of the strategy space and the number of
di↵erent positions in the network structure. For instance, the g21 network has 5 types
of positions and the Nash equilibrium predictions range from 33 to 78. In spite of this
complexity, subjects’ average e↵orts on all node types in the g15 and g21 networks are
statistically indistinguishable from the Nash predictions.

These findings show that position in the network structure is highly predictive of
subjects’ decisions in networks of significant complexity. The full validation of the Nash
predictions in these complex networks is somewhat surprising, given the intricate relation
between Nash play and position with respect to the overall network structure. It is clear
from the data that subjects do not start by playing Nash, so a natural question is how
they are able to converge to Nash over time. We investigate the hypothesis that subjects
simplify the task by focusing on the local features of the network structure. A natural
metric to capture the position in the network using local information is the number of
connections, or degree, which is highly correlated to Bonacich centrality in most networks.

Our third finding is that subjects base their decisions on the degree: they exert higher
e↵ort the larger is the degree of the node they are assigned to. We specifically designed the
g21 network to be able to separate play according to degree from Bonacich. Equilibrium
play in network g21 is such that subjects in node type P (degree 1) exert the same e↵ort
as subjects in the central node F (degree 2), and a lower e↵ort than subjects assigned to
node type C (degree 2) that is a neighbor of F . In the data we observe that subjects’ play
in node types P and C is indistinguishable from Nash, but subjects in the central node F
choose an e↵ort that is indistinguishable from the e↵ort in node type C and qualitatively

3Throughout this paper we use the terms “complex” and “complexity” in a non-technical fashion to
convey the intuitive fact that the structure of networks g15 and g

21 has more asymmetries than networks
g

� and g

⌦.
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higher than the e↵ort in node type P , as expected if they based their decision on degree.
Moreover, in a panel regression analysis, if we restrict the attention to nodes P , C and
F , then only degree remains a significant predictor of subjects’ choices. Thus, in this
context, it su�ces to have information about a simple network metric, the degree of an
individual, to predict behavior, rather than having to collect information about the whole
network structure.

These results highlight the importance of going beyond small and stylized networks
to investigate how network structure determines behavior. As we will see below, exper-
imental research on networks in economics has so far failed to investigate behavior in a
game with a rich strategy space played on large networks with a complex structure. This
simplification comes at the cost of largely failing to test the behavioral validity of the
relation between a rich network structure and behavior predicted by the theory. We find
that in stylized networks with a few nodes and/or asymmetries, such as the circle and
the wheel, subjects are able to process the network structure and coordinate on norms of
behavior. However, in complex networks with many asymmetries, subjects find it more
challenging to achieve the coordination necessary to establish and maintain a norm, and
they mainly base their decisions on the local network structure to reduce the cognitive
cost of the task of processing complex network information. It is crucial to investigate
experimentally the generalizability of these findings to di↵erent contexts if we want to
give novel input for theoretical work and enhance its behavioral validity.

The remaining part of this section surveys the related literature. Section 2 presents
an overview of the theory. Section 3 gives the details of the experimental design and
lists our hypotheses. Section 4 analyzes the experimental data and tests the validity of
the hypotheses. Section 5 conducts some robustness checks of our results, and section 6
concludes. The paper also includes three appendices: appendix A provides further details
on the web platform we developed to conduct the experiment, appendix B presents some
further analysis of the data, and appendix C contains the screenshots of the instructions
for the experiment and the post-experimental questionnaire.

1.1 Literature review

The study of whether individuals converge to equilibrium play in various games has been a
major theme of inquiry since the beginning of experimental economics. In many contexts,
a force that counters convergence to equilibrium play is the emergence of norms that
lead to more e�cient outcomes. Despite the large body of work along these themes, only
recently researchers have turned their attention to how the overall structure of social
networks and the position of individuals in the network plays a role in mediating the
tension between equilibrium play and e�ciency. Our paper is a contribution to this more
recent literature and it ties the role of social structure to some familiar findings in the
experimental literature.

First of all, this paper contributes to examining the impact of asymmetries among
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individuals on the establishment and sustenance of a social norm. In the extensive exper-
imental literature on public good games, several researchers have investigated the e↵ect
of introducing heterogeneity among subjects on the positive contribution norms observed
in the benchmark case with homogeneous subjects. Ledyard [1995] surveys several papers
and finds that the introduction of heterogeneity in preferences or endowments decreases
the level of contributions. For instance, Rapoport and Suleiman [1993] find that groups
where individuals have di↵erent endowments are less successful in providing the public
good compared to groups where everyone has the same endowment. To our knowledge,
our paper is the first one to investigate position in the network structure as a source of
asymmetry among agents in the context of the establishment and sustenance of a social
norm. Our results on the gradual breaking down of the norm as more complexity, or
asymmetry, is added to the network is consistent with results in the literature, albeit in
the context of a di↵erent game where the role of norms has received little attention before.

Our paper is the first comprehensive experimental investigation of the game of strategic
complements on a network in Ballester et al. [2006]. The lack of experimental work on this
topic is surprising because the causal relation between network position and behavior in
this game is well-understood at theoretical level since Ballester et al. [2006], which is one
of the seminal papers in the network literature in economics. Moreover, this type of game
captures a wide range of applications in which social networks matter for behavior, and
that have been extensively studied in sociology and other disciplines. Charness et al. [2014]
is the most closely related paper in this vein of work. They investigate network games
of strategic complements and substitutes, both with complete and partial knowledge of
the network, in which the action space is binary. The focus of their paper is a test of
the comparative statics predictions in the Galeotti et al. [2010] paper which introduces
incomplete information in network games. Moreover, their choice of binary actions means
that all outcomes are corner solutions, which makes it challenging to investigate the
rich relation between equilibrium play and network position in the Ballester et al. [2006]
framework.

More broadly, this paper contributes to a growing literature in experimental economics
investigating games played on exogenously given networks. Selected contributions include
bargaining (Charness et al. [2007], Gallo [2014]), trading (Gale and Kariv [2009], Choi
et al. [2014]), public goods (Choi et al. [2011], Rosenkranz and Weitzel [2012]), prisoner’s
dilemma (Cassar [2007], Gallo and Yan [2014]), and coordination (Cassar [2007]) games.
A common characteristic of these papers is that they largely focus on small and stylized
networks that do not allow an in-depth investigation of the intricate causal relation from
network position to behavior4. In contrast, there are three elements in our set-up whose
combination allows the exploration of this relation: the size of the networks, the presence

4Outside of economics there is an experimental literature that investigates games played on large
networks (e.g. Gracia-Lázaro et al. [2012], Kearns et al. [2006], Kearns et al. [2009]), but the focus is on
the e↵ect of the overall network structure rather than the relation between position in the network and
behavior.
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of asymmetry across nodes, and the large strategy space. To our knowledge, the presence
of all these three elements is a distinctive feature of our paper. Charness et al. [2014] has
three treatments with asymmetric networks of similar size to ours, but the strategy space
is binary. Choi et al. [2014] explore large networks and subjects can choose from a large
strategy space, but the networks are highly symmetric. Moreover, our findings show that
the analysis of behavior on both stylized and complex networks leads to novel insights
compared to an investigation limited to either type.

A recent literature has begun to examine how individuals process information about
complex networks and how they use this information to take decisions. Social psychol-
ogists have used a survey-based methodology proposed by Krackhardt [1987] to map
individuals’ cognitive perception of their social environment and they have identified a
variety of cognitive biases (see, e.g., Kumbasar et al. [1994], Casciaro [1998]). In a con-
trolled experimental setting, Dessi et al. [2014] show that individuals utilize heuristics
to memorize and recall information about networks of 15 individuals, and this leads to
systematic biases. Despite the evidence that individuals resort to heuristics to cope with
the complexity of network information, there are still very few studies that investigate
how this a↵ects individuals’ decisions by analyzing treatments that di↵er in the degree of
network information provided to participants. Two exceptions are Charness et al. [2014],
who show that incomplete information about the network structure makes it more di�-
cult to coordinate on an e�cient equilibrium, and Gallo and Yan [2014] who show that
individuals use information about the whole network to form separate communities in the
context of a prisoner’s dilemma game with endogenous network formation. In our paper,
we do not have treatments with di↵erent network information, but we provide evidence
that individuals cope with the complexity of the network by basing their decisions on
local network information rather than the overall network structure.

In summary, this paper makes 4 main contributions. First, it sheds light on the
relation between network structure and the establishment of a social norm that leads
to a better aggregate outcome than equilibrium play: the norm emerges and survives
in stylized and symmetric networks, but it disappears in more complex networks that
generate asymmetries across subjects. Second, this is the first experimental test of the
seminal result in Ballester et al. [2006] for games of strategic complements on a network:
the theory turns out to be highly predictive of subjects’ choices in complex networks.
Third, it increases our understanding of how individuals cope with the complexity of a
social structure that matters in their decisions: here they mainly focus on the local rather
than the global structure of the network, which explains the single deviation from the
Nash predictions that we observe in one of the two treatments with a complex network.
Finally, it shows the potential of UbiquityLab and the novel methodology of interactive
online experiments.
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2 Theory

The theory underlying this experiment is well-established since the seminal article by
Ballester et al. [2006]. In this section we provide a brief overview that serves the pur-
poses of introducing relevant notation, providing intuition for the key result, and briefly
mentioning some recent developments.

Consider a set of N = {1, ..., n} agents who are the nodes of a network g. The
network is undirected and unweighted5 so for any i, j 2 N we have that either there is a
link gij = gji = 1, or they are not connected, i.e. gij = gji = 0. Each agent i selects an
e↵ort level ei and obtains utility:

ui(e1, ..., en) = ↵ei �
�

2
e2i + �

nX

j=1

gijeiej (1)

where ↵ > 0 and � > 0 capture the strength of the idiosyncratic benefits and costs to i
from her own e↵ort. Note that these are symmetric across agents and that utility is strictly
concave in own-e↵ort. The parameter � determines the strength of the complementarity
e↵ect: the higher � is the more higher e↵orts by i’s neighbors lead to higher incentives
for i to increase her e↵ort. This is the key results from Ballester et al. [2006]:

Theorem [Ballester et al. (2006)]. Let �
�
⌘ �⇤ < 1/µ1(g), where µ1(g) is the largest

eigenvalue of the adjacency matrix of g, then we have that:

e(g) =
↵

�


I�

✓
�

�

◆
g

��1

1

where I is the identity matrix and 1 is a vector of 1s.

This closed-form solution relates the e↵ort each agent exerts at Nash to the overall net-
work structure. Intuitively, an agent equilibrium’s e↵ort increases in how well-connected
she is, how well-connected her neighbors are, how well-connected her neighbors’ neighbors
are, and so on... The complementarity e↵ect determines how much weight the connect-
edness of neighbors, neighbors’ neighbors, etc. has on an agent’s equilibrium play. The
Nash equilibrium is unique as long as the complementarity e↵ect is below a threshold,
because if the complementarity is too high then the equilibrium play becomes infinite
e↵ort.

Bramoullé et al. [2014] extend the result in Ballester et al. [2006] and they show
that this is a potential game. Using standard results from the potential game theory
literature, it follows that the unique Nash equilibrium is the equilibrium outcome of a
best-reply dynamic process of agents playing this game on a network. This suggests that

5Ballester et al. [2006] consider weighted networks and a more general theoretical framework. Here
we limit the exposition to a simplified model that su�ces for our purposes and facilitates understanding.
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if subjects are randomly matched to play a series of one-shot versions of the game in the
lab then over time if they best-respond to the other subjects’ choices they will converge
to the Nash equilibrium play.

Despite the abundance of theoretical research in the economics of networks, there is
still a dearth of work that shows that the intricate details of the structure of the social
network provides insights on behavior above and beyond peer e↵ects. The uniqueness
of the solution and the richness of the dependence of an agent’s e↵ort on the network
structure makes Ballester et al. [2006] an ideal setting to test the impact of social network
structure on behavior. It also provides an ideal setting to investigate whether Nash-based
results that tie network structure to outcomes are behaviorally relevant, or whether the
complexity of processing network information may lead to outcomes di↵erent from the
Nash predictions.

3 Experiment: Design and hypotheses

The experiment was conducted using UbiquityLab, a novel platform we developed to
run online experiments that allows a large number of subjects in di↵erent geographical
locations to play a game by interacting in real-time. The platform is composed of server-
side components written in Python and client-side libraries written in JavaScript, and its
modular design allows experimenters to conduct online almost every type of experiment
currently run in the lab. In order to create an experiment, the researcher creates several
minimal Python modules which are plugged into the servers using an API. The platform
is designed to operate independently, although in the experiment in this paper we utilize
Amazon Mechanical Turk (AMT) as a source of subjects. Appendix A contains further
details on the platform.

In total, 234 subjects participated in the experiment. We ran a total of 11 meta-
sessions, and the number of subjects per meta-session varied from 12 to 60 so there were
up to 5 sessions in the same meta-session. Each session lasted an average of 31 minutes,
and there were 6 sessions for each treatment. The participants were recruited using a
5-minute survey on AMT, and section 4.1 shows that they span a broad range of socio-
economic characteristics. The average earnings for a subject was approximately $4.79,
which is inclusive of a $1 show-up fee.6 The experimental instructions are available in
appendix C.

After clicking on a URL provided on AMT, subjects enter the platform and start
reading the instructions. The subjects are obliged to stay a minimum amount of time on
each instruction page, and they can go back to previous instruction pages at any time.

6These earnings are above the average per hour earnings for a worker on AMT and the US minimum
wage. We also estimate that they are comparable to average per hour earnings in lab experiments if one
takes into account that online experiments eliminate many of the activities that require subjects’ time
such as getting to and leaving the lab location, waiting for late participants, payment of earnings, etc.
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The first part of the instructions describes the general set-up and how to pick a level of
e↵ort7. The second part of the instructions includes an in-depth description of how points
are computed depending on their decisions and the decisions of their neighbors, as well
as two illustrative examples. At the end of the instructions participants take a quiz that
tests their understanding, and they are told in advance that it is necessary to answer the
quiz questions correctly to proceed to the experiment. The quiz has 3 questions that test
subjects’ understanding of how the points are computed. There is complete anonymity
throughout the experiment.

Before the beginning of the experiment each participant plays a trial on a 5-node
network that consists of 3 rounds. In each round of the trial each participant is assigned
to the same node of the trial network, and the e↵ort of the neighbors are randomly
chosen by the computer. The trial allows the participants to become acquainted with the
interface of the experiment, and the time they have to make a decision (20 seconds). In
the left part of the screen they see the network with a position highlighted in blue that
denotes the node they have been assigned to, and the countdown timer. The top right
part of the screen tells participants the one-letter ID of the node they have been assigned
to and the IDs of the neighboring nodes in this round. Below there is a slider that allows
them to pick their e↵ort level for this round. Once everyone has selected an e↵ort level,
the results of the round are displayed in the bottom-right part of the screen.

Participants play 40 rounds of the game on the same network structure, which is always
displayed throughout the experiment. In a round each subject is randomly assigned to
a di↵erent node of the network8, and picks a level of e↵ort which can be any integer in
the [0, 100] range. Participants win points in each round depending on their own and
their neighbors’ choice of e↵orts, according to the formula in (1) with values of (↵, �,�)
as below. At the end of a round each participant is reminded of the network position she
was assigned to, the e↵ort level she chose, and who were her neighbors; she also receives
information about the e↵ort choices of her neighbors and the number of points that she
won.

At the end of the experiment the subjects fill in a questionnaire with standard socio-
economic questions, and they take a Holt and Laury [2002] incentivized test to elicit
their risk preferences. At the end of the questionnaire, we randomly pick X rounds and
convert the sum of points won in those rounds to the final earnings on top of the fixed $1
fee. See appendix C for a copy of the instructions, the quiz, and the post-experimental
questionnaire.

There are 4 treatments in the experiment that di↵er in the network that subjects are

7In the experiment we used the wording “level of activity” rather than “e↵ort” to avoid priming.
8In networks g15 and g

21 we introduce “mirror” positions so there are 9 subjects playing in g

15 and
12 subjects playing in g

21. In the visual interface, a subject can be assigned to any position, but when a
subject is assigned to a node type P , H or B in, say, the left cluster then the subject’s play counts also
for the mirror node in the right cluster. This facilitates learning on node types F and C that are rare in
the networks. Note that in g

15 the H nodes which are neighbors of F are not mirror nodes.
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exogenously assigned to. Figure 1 illustrates the 4 networks used in the experiment: a
circle network g� with 9 nodes, a wheel network g⌦ with 9 nodes, a 15-node network
g15 with 2 completely connected clusters joined by a single node, and a 21-node network
g21 with 2 completely connected clusters joined by a chain of 3 nodes. In treatments g�,
g⌦ and g15 we chose parameter values of ↵ = 20, � = 1 and � = 0.1. In treatment g21

we chose parameter values of ↵ = 20, � = 1 and � = 1/6. The choice of di↵erent values
of the parameters for g21 is inconsequential for our analysis because we investigate how
subjects behave depending on their position within the g21 network, rather than making
comparisons with subjects’ behavior in the other networks.

The networks in figure 1 have labels that indicate di↵erent “types” of nodes.9 Note
that we are using a definition of “type” for expository purposes: it does not coincide with
the predicted Nash equilibrium play as we want to allow for potential deviations from
Nash play for network positions that are equivalent in terms of Nash play but di↵er in
terms of structural features irrelevant to Nash play. An example is the focal node F and
the peripheral nodes P in g15: the Nash equilibrium play is the same, but the nodes are
classified as di↵erent types because, e.g., the focal position of F may lead subjects to
treat this node di↵erently from the peripheral nodes.

Table 1: Equilibrium Nash and collaborative norm predictions for all treatments.

Network Position(s) Nash Collaborative† %� Welfare‡

g� any 25 33 7%

g⌦ H 44 100
61%

P 31 66

g15 H 38 100
108%

F, P 28 60

g21

H 77 100

61%
B 78 100
C 38 87

F, P 33 100
† E↵ort levels for the collaborative norm that leads to the highest welfare for the group. Note that
we constrain types of nodes that have the same Nash equilibrium e↵ort to make the same e↵ort in the
collaborative norm as well. ‡ % increase in welfare from Nash equilibrium for the group if everyone
chooses e↵ort levels according to the collaborative norm.

The first and second columns of Table 3 summarize the di↵erent networks and positions
respectively. The third column lists the Nash equilibrium e↵ort levels rounded at the
nearest integer. For instance, the equilibrium e↵ort level e⇤H(g

⌦) for the hub node H

9These are of course di↵erent from the labels that were displayed to subjects: in the experiment each
node had a one-letter label inside the node and these labels were fixed for all sessions in a treatment.
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Figure 1: Networks used in the experiment. Top left: circle network g� with 9 nodes.
Top right: wheel network g⌦ with 9 nodes. Middle: 15-node network g15 with 2 com-
pletely connected clusters joined by a single node. Bottom: 21-node network g21 with 2
completely connected clusters joined by a chain of 3 nodes.

in the wheel network g⌦ is 44 and the equilibrium e↵ort level e⇤P (g
⌦) for the peripheral

node P is 31. However, Nash equilibrium play does not maximize the welfare of the
group, defined as the sum of the utilities of all the subjects. In all 4 networks it is
possible for subjects to increase their earnings by coordinating on a collaborative norm:
choosing an e↵ort higher than the Nash equilibrium e↵ort to get a higher payo↵ as long
as everyone else follows the norm as well. The fourth column lists the e↵ort levels for the
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most e�cient collaborative norm in terms of maximizing the group’s welfare.10 The last
column in Table 3 shows that there are very large welfare gains for the group if everyone
follows the collaborative norm. For instance, in g⌦ the collaborative norm that achieves
the highest group welfare leads to a 61% increase in group welfare compared to the case
where everyone plays Nash.

The first question that we want to investigate is whether subjects are able to coordinate
on a collaborative norm. In any collaborative norm the subjects exert higher e↵ort than
equilibrium play in each network position so a basic test of the presence of a collaborative
norm is that the observed e↵ort levels the subjects converge to in the experiment are
higher than the Nash predictions. This hypothesis leads to 11 inequalities that we can
test for in the four networks.

H1: Subjects converge to a collaborative norm with e↵ort levels higher than Nash play.
The specific hypotheses to test are:

(i) eF (g�) > 25

(ii) eH(g⌦) > 44 and eP (g⌦) > 31

(iii) eH(g15) > 38, eP (g15) > 28 and eF (g15) > 28

(iv) eB(g21) > 78, eH(g21) > 77, eC(g21) > 38, eP (g21) > 33 and eF (g21) > 33

In case subjects are unable to coordinate on a collaborative norm, a potential fall
back option is to play the Nash equilibrium level of e↵ort for each network position. This
generates 11 point predictions that we can test for in the 4 di↵erent network structures.

H2: Subjects converge to Nash play. The specific hypotheses to test are:

(i) eF (g�) = 25

(ii) eH(g⌦) = 44 and eP (g⌦) = 31

(iii) eH(g15) = 38 and eP (g15) = eF (g15) = 28

(iv) eB(g21) = 78, eH(g21) = 77, eC(g21) = 38 and eP (g21) = eF (g21) = 33

However, the complexity of the network structure may make it very challenging for
subjects to converge to Nash equilibrium play, either through learning or by figuring out
what the equilibrium is. An intuitive way to reduce this complexity is to focus solely
on the local, rather than the global, structure of the network. The degree, or number

10Note that coordination on the collaborative norm that achieves the highest welfare may require
subjects to take losses when assigned to certain positions in the network, which would naturally make
the norm more di�cult to sustain. However, in all 4 networks there are collaborative norms such that
subjects achieve higher payo↵s than Nash in every network position.
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of connections, of a node is a very prominent and easily distinguishable local feature of
the structural position of a node in the network. Despite being a rather simple metric, it
is also highly correlated with Bonacich centrality, which determines Nash play. The fact
that degree is a very intuitive metric and that it is highly correlated with Bonacich makes
it a natural way to investigate the role of the local structure of the network: subjects who
choose their e↵orts depending on the local structure would pick higher e↵orts the higher
is the degree of the node they are assigned to.

A drawback of the high correlation between degree and Bonacich centrality is that in
most networks subjects whose play is determined by the local structure of the network
will be undistinguishable from subjects playing Nash. However, this is not the case for
g21 with the value of � that we have chosen. As Table 3 shows, the equilibrium Nash
prediction is e⇤C(g

21) > e⇤F (g
21) = e⇤P (g

21). From figure 1 we can see that nodes F and C
have degree 2 while node P has only one connection so subjects whose play is determined
by the local network structure would pick e↵orts eF (g21) = eC(g21) > eP (g21), which is
a di↵erent ranking from Nash play. This leads to a complete ranking of e↵ort levels that
we can test for in networks g⌦, g15 and g21, and that, crucially, departs from the ranking
for Nash play for 3 types of nodes in g21:

H3: Subjects choose e↵ort levels based on their local position in the network as captured
by degree, rather than taking into account how their position relates to the overall network
structure as captured by Bonacich centrality.The specific hypotheses to test are:

(i) eH(g⌦) > eP (g⌦)

(ii) eH(g15) > eF (g15) = eP (g15)

(iii) eH(g21) = eB(g21) > eF (g21) = eC(g21) > eP (g21)

4 Experiment: Results

Section 4.1 describes basic data on the sample of subjects, and section 4.2 presents the
results.

4.1 Sample description

The experimental data contains the decisions of 234 subjects. Each subject participated in
one session of one treatment so she played the game in one of the four network structures.
We ran each treatment 6 times and there are 40 rounds in each game so we have a total of
9, 360 decisions or observations. The experimental data was matched with the data from
the questionnaire that subjects had to fill in at the end of the experiment.

Table 2 summarizes some of the main socio-demographic characteristics of the partici-
pants and their pairwise correlations. All the participants are resident in the US: 39% are
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Table 2: Summary statistics and pairwise correlations for some of the main variables.1

n Mean s.d. 1 2 3 4 5
1. Gender1 233 0.39 0.49 1.00
2. Age 233 30.72 10.48 0.00 1.00
3. Trust2 233 0.52 0.50 -0.04 -0.05 1.00
4. Education 3 233 3.35 1.27 -0.00 0.00 0.07 1.00
5. HL4 212 7.30 1.59 �0.02 -0.10 0.14⇤ 0.06 1.00

⇤p < 0.05, ⇤⇤p < 0.01, ⇤⇤⇤p < 0.001. 1. Female= 1. 2. General trust question with 0 =“Need to be
very careful” and 1 =“Most people can be trusted”; 3. See the caption of Figure 2 for the coding; 4.
Holt and Laury [2002]’s risk attitude test: 20 participants are excluded because they made at least one
inconsistent choice (i.e. multiple switching points) and 1 participant is excluded because he/she had no
switching point. Note that one participant did not complete the questionnaire.

female and the average age is 30.7 years old. We asked subjects the standard interpersonal
trust question from the World Values Survey (WV S) and found that 52% believe that
others can be trusted, which is higher than the average value from the WV S survey of
the US population. The level of trust is not correlated with gender or age.

Figure 2 illustrates in more detail one of the advantages of online experiments vis-à-
vis lab studies: a heterogeneous subject pool that is more representative of the general
population than the student populations that are typical of most laboratory studies.
Figure 2(a) shows that subjects belong to di↵erent age groups ranging from a minimum
of 18 to a maximum of 70 years old. Moreover, there is a significant heterogeneity in terms
of the education level of the participants. Figure 2(b) shows that 76.8% of participants
have some kind of college degree as the highest level of education attained, 6.9% only
have a high school diploma, and 16.3% have a master, professional degree or PhD.

Figure 2: Percentages of subjects of di↵erent age groups (left) and education levels (right)
for 233 out of 234 participants. Classification of education levels: 1 = high school, 2 =
some college, 3 = 2-year college, 4 = 4-year college, 5 = master, 6 = professional degree
(e.g. MD) or PhD.
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After the questionnaire, subjects took the classic Holt and Laury [2002]’s risk attitude
test. For each of 10 scenarios they had to pick between a safe and a risky lottery. In
the early scenarios the safe lottery gives a higher expected payment, while in the late
scenarios it is the other way around. A risk-neutral participant would switch from the
safe to the risky lottery at scenario 5. The participants are on average risk-averse because
the mean switching point is 7.3. There are 4 (1.9%) participants who switch at scenario 4
and therefore are slightly risk-seeking, and 29 (13.7%) participants who are risk-neutral.
There is a significant correlation between risk aversion and trust: participants who display
a high level of trust tend to be more risk-averse. There is no significant correlation of risk
aversion with gender, age or education.

4.2 Results

In this section we test the hypotheses formulated in section 3 using the experimental data.
Table 3 shows the average and median e↵ort in the last 10 rounds for each type of node,
and figures 3 and 4 show the distribution of e↵orts for each type of node in the last 10
rounds.

Our first finding is that subjects are able to coordinate on a collaboration norm in
the simple g� and g⌦ networks. In the g� network, subjects’ average e↵ort level in the
last 10 rounds is equal to 29.2, which is significantly higher (Wilcoxon signed rank test,
hereafter WSR, p = 0.02) than the Nash prediction e⇤(g�) = 25. As we saw in Table 3,
the collaborative norm that would lead to the highest welfare for the group requires an
e↵ort level equal to 33 so subjects converge to an average e↵ort level that is in between
Nash and the most e�cient collaborative norm. The top left panel of figure 3 shows the
distribution of e↵ort levels in the last 10 rounds: the large majority of subjects choose
e↵orts in between the Nash prediction and the most e�cient collaborative norm. There is
some loose analogy between this type of collaborative norm and the contribution norms
observed in public good experiments with quadratic payo↵s: Laury and Holt [2008] find
levels of collaboration that are similar to what we find in the g� treatment.11

The collaborative norm is still present in the g⌦ network, but it is weaker. The average
e↵ort level in the last 10 rounds in the H type node is 51, which is qualitatively higher
than the Nash prediction e⇤H(g

⌦) = 44. Similarly, the average e↵ort level in the last
10 rounds in the P type node is 34.9, which is significantly higher (WSR, p = 0.03)
compared to the Nash prediction e⇤P (g

⌦) = 33. However, the collaborative norm that
we observe is extracting only a small fraction of the potential gains from coordination
compared to the most e�cient collaborative norm which, as table 3 shows, would entail
subjects in the H type node choosing e↵ort level equal to 100 and subjects in the P or
F type nodes choosing 60. Thus, the average e↵ort levels subjects converge to are much

11See, in particular, their low Nash treatment where the Nash contribution is 20% and the Pareto
optimum is 80%: subjects’ contributions start close to 60% and decline to just below 40%.
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Figure 3: Distribution of e↵orts chosen in the last 10 rounds by type of position in
networks g�, g⌦ and g15. Top: g� (left) and H type in g⌦ (right). Middle: P type in
g⌦ (left) and H type in g15. Bottom: F (left) and P (right) type in g15. Vertical lines
indicate predicted Nash play (black), mean (red) and median (blue) e↵orts.
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Table 3: E↵ort levels in di↵erent network positions.

Network Position(s) Nash
E↵ort last 10 rounds
Mean s.d. Median

g� any 25 29.32⇤⇤ 7.63 30

g⌦ H 44 51.02 22.88 50
P 31 34.89⇤⇤ 10.98 33

g15
H 38 39.15 12.63 40
F 28 29.92 13.62 28.5
P 28 27.88 11.45 25.5

g21

H 77 78.95 24.01 88
B 78 79.35 24.28 86
C 38 40.79 16.00 40
F 33 38.95 19.86 34
P 33 34.63 18.25 30

Summary statistics for e↵ort levels in the di↵erent network positions for the last 10 rounds of play.
Significance levels refer to the Wilcoxon signed-rank test on aggregated data at the session level for the
last 10 rounds (⇤p < 0.1, ⇤⇤p < 0.05, ⇤⇤⇤p < 0.01).

closer to Nash than to the most e�cient collaborative norm. An interpretation is that
the g⌦ network introduces asymmetry across nodes, which makes the coordination on a
collaborative norm more challenging. Continuing with the loose analogy with public good
game experiments, this is in agreement with the finding that contribution levels decrease
in public good games where there are asymmetries across participants (see, e.g., Rapoport
and Suleiman [1993]).

Result 1: In the g� network, subjects establish and maintain a collaborative norm that
entails choosing e↵orts higher than the Nash prediction. The collaborative norm is still
present, but it is weaker, in the asymmetric g⌦ network. The norm disappears in the more
complex and asymmetric g15 and g21 networks.

If subjects are unable to sustain a collaboration norm in the more complex and asym-
metric networks, a potential fall back option is to play the Nash equilibrium e↵ort levels.
At the same time, the set-up of this game is rather complex given the rich structure of the
g15 and g21 networks as well as the number of discrete e↵ort levels subjects can choose
from, so it is not an easy task to figure out or learn the equilibrium.

Our second finding is that subjects converge to the Nash equilibrium predictions in the
more complex g15 and g21 networks. Table 3 shows that in g15 the average e↵ort in the
last 10 rounds is statistically indistinguishable from the Nash predictions independently
of the type of position. The average e↵ort by subjects assigned to the H node is 39.2,
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Figure 4: Distribution of e↵orts chosen in the last 10 rounds by type of position in network
g21. Top: H (left) and B (right) type. Center: F (left) and C (right) type. Bottom: P
type. Vertical lines indicate predicted Nash play (black), mean (red) and median (blue)
e↵orts.
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and we cannot reject the hypothesis that this is the same as the Nash e↵ort e⇤H(g
15) = 38.

Similarly, the average e↵orts in the last 10 rounds in the F and P positions are 29.9 and
27.9 respectively, and we cannot reject hypothesis H2(iii) that they are the same as the
Nash predictions e⇤F (g

15) = e⇤P (g
15) = 28. The center right and bottom panels of figure

3 show the distribution of e↵orts in the last 10 rounds in the H, F and P type of nodes
respectively: e↵orts are approximately normally distributed with mean/median at the
Nash equilibrium prediction.

Figure 5: Evolution of welfare level during the 40 rounds. Top: g� (left) and g⌦ (right)
treatment. Bottom: g15 (left) and g21 (right) treatment. Lines indicate predicted Nash
(black) and mean (red) welfare levels.

The Nash point predictions in H2(iv) for the g21 network are also validated by the
data. Table 3 shows that the average e↵orts in the last 10 rounds in the B and H positions
are 79.4 and 79 respectively, and we cannot reject hypothesis H2(iv) that they are the
same as the Nash predictions e⇤B(g

21) = 78 and e⇤H(g
21) = 77. Similarly, the average e↵orts

in the last 10 rounds in the C and P positions are 40.8 and 34.6 respectively, and we cannot
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reject hypothesis H2(iv) that they are the same as the Nash predictions e⇤C(g
21) = 38 and

e⇤P (g
21) = 33. The Nash prediction for type F node is also validated by the data, although

the average e↵ort by subjects in the last 10 rounds is 39 which is qualitatively higher
than the Nash prediction e⇤F (g

21) = 33. Figure 4 shows the distribution of e↵orts in the
last 10 rounds. They tend to be approximately normally distributed with mean/median
coinciding with the Nash equilibrium prediction, aside for position F where the mean is
qualitatively higher than the Nash prediction. In the H and B type nodes, there is a
fraction of subjects that pick e↵orts close to or equal to 100, possibly due to the vicinity
of the Nash prediction to the upper boundary of the strategy space.

A consequence of the subjects’ inability to establish a collaborative norm in the g15

and g21 networks is that the aggregate welfare is, in comparative terms, lower than in the
g� and g⌦ networks relative to the theoretical aggregate welfare achievable if everyone
were to play Nash. Figure 5 shows the evolution of the aggregate welfare, i.e. the sum
of subjects’ payo↵s, for each of the 4 networks. In the g� and g⌦ networks, subjects
converge to an aggregate welfare that is indistinguishable from the theoretical aggregate
welfare if everyone played Nash. On the other hand, the aggregate welfare in the g15

and g21 networks is significantly lower than the theoretical aggregate welfare if everyone
played Nash. Notice that the presence of variability in subjects’ play lowers aggregate
welfare so the average aggregate welfare is not above the one achievable at Nash in the
g� and g⌦ networks despite the establishment of a collaboration norm, and, similarly, it
is not equal to the one achievable at Nash in the g15 and g21 networks despite the subjects
converging to Nash play on average.

Result 2: In the g15 and g21 networks, subjects converge to the Nash point predictions on
all node types.

Our third finding is that there is evidence that subjects focus on the local, rather than
the global, features of the network to make their decisions. The first piece of support-
ing evidence is that the ranking of subjects’ e↵ort decisions in di↵erent types of nodes
matches all the predictions in H3. Table 4 shows the average di↵erence in e↵ort levels
of subjects across the di↵erent types of nodes in the g⌦, g15 and g21 networks. As we
have hypothesized in section 3, subjects who choose their e↵orts depending on the local
structure would pick higher e↵orts the higher is the degree of the node they are assigned
to. In the g⌦ and g15 networks, the predictions in H3(i) and H3(ii) of subjects playing
based on the local structure match the Nash predictions, and Table 4 shows that the data
validates these predictions. Similarly, in the g21 network, subjects in the B and H node
types choose e↵ort levels higher than subjects in the other node types in agreement with
both the Nash predictions and H3. However, subjects who play according to the degree
will deviate from Nash play for moderately high levels of the complementarity e↵ect in
specific networks, and we designed the g21 treatment to examine such a case.

In the g21 network, there are three node types where the Nash predictions ranking of
e↵ort levels di↵ers from the ranking in H3, and the data fully validates the predictions
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Table 4: Di↵erences in average e↵ort across di↵erent positions for all the data.

g⌦ g15 g21

P F P H P C F

g⌦ H 14.0⇤⇤⇤

g15 H 9.2⇤⇤ 9.7⇤⇤

F 0.5

g21

B 0.6 37⇤⇤⇤ 29.8⇤⇤⇤ 32.5⇤⇤⇤

H 37.6⇤⇤⇤ 30.4⇤⇤⇤ 33.2⇤⇤⇤

P �7.2⇤⇤ �4.5⇤

C 2.8

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney test. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.

generated by play based on local network structure. Subjects playing according to the
degree would pick the same e↵ort level in node types F and C, which have degree 2, and
they would pick a higher e↵ort level in node F compared to the P node type that has
degree 1, while the Nash predictions are e⇤C(g

21) > e⇤F (g
21) and e⇤F (g

21) = e⇤P (g
21). Table 4

validates the predictions in H3(iii): the e↵ort levels of subjects in the F and C node types
are indistinguishable, and subjects choose a higher e↵ort level in node F compared to the
P node type (Mann-Whitney, p = 0.068). Moreover, we also cannot reject the hypothesis
that subjects’ play in node type F is the same as the Nash prediction e⇤C(g

21) = 38 for C.
The second piece of supporting evidence is a panel data analysis of the determinants

of subjects’ e↵orts in Table 5. Specifications (1)-(2) analyze the full data for the g21

treatment: the common regressors to all the specifications are subjects’ gender, age,
trust and risk aversion as captured by the risk elicitation test in the post-experimental
questionnaire. In specification (1) we add the degree of the node the subject was assigned
to as an additional regressor, and we find that it is highly significant. In (2) we repeat
the same exercise using Bonacich centrality instead of degree, and, similarly, we find that
it is highly significant. Specification (2) includes both degree and Bonacich centrality as
regressors and both remain highly significant, which makes it challenging to distinguish
between the two metrics.

Bonacich centrality may still be a predictor of subjects’ decisions even though the
subjects choose e↵orts according to their degree, because it is highly correlated to degree
for the majority of node positions. In the case of g21, node types H and B have both
high degree and centrality. In specifications (3)-(5) we repeat the panel data analysis
excluding from the sample node types H and B, and keeping node types F , C and P
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Table 5: Determinants of subjects’ e↵orts.

g⌦ g15 (all) g15 ({F, P}) g21 (all) g21 ({F,C, P})
(1) (2) (3) (4) (5) (6) (7)

Degree 2.828⇤⇤⇤ 2.973⇤⇤⇤ 4.353⇤⇤ 4.946⇤⇤⇤

(0.176) (0.212) (1.411) (1.355)

Bonacich 10.446⇤⇤⇤ 6.643
(2.413) (5.294)

F position -1.860
(1.482)

P position -0.586 -6.806⇤⇤⇤ -4.946⇤⇤⇤

(1.118) (1.047) (1.355)

C position 1.860
(1.482)

Round -0.052⇤ -0.063 -0.201⇤⇤⇤ 0.199⇤⇤⇤ -0.132⇤⇤⇤ -0.132⇤⇤⇤ -0.132⇤⇤⇤

(0.024) (0.026) (0.457) (0.034) (0.039) (0.039) (0.039)

Age 0.117 -0.046 0.034 -0.357⇤ -0.212 -0.212 -0.212
(0.087) (0.074) (0.092) (0.144) (0.129) (0.129) (0.129)

Gender 2.011 2.809 4.377⇤ 3.309 4.895 4.895 4.895
(1.702) (1.757) (2.183) (2.853) (2.549) (2.549) (2.549)

Trust 1.935 -0.320 1.492 4.546 3.545 3.545 3.545
(1.702) (1.721) (2.145) (2.971) (2.652) (2.652) (2.652)

Risk 0.214 1.667 0.495 7.123⇤ 1.702 1.702 1.702
(1.745) (2.158) (2.682) (3.331) (2.979) (2.979) (2.979)

Sessions Y Y Y Y Y Y Y

Constant 16.771⇤⇤⇤ 27.878⇤⇤⇤ 27.878⇤⇤⇤ 14.143 24.443⇤ 47.088⇤⇤⇤ 45.228⇤⇤⇤

(5.053) (4.961) (6.125) (7.694) (10.185) (6.630) (6.679)
Obs. 2160 2160 720 2840 1654 1654 1654
Subjects 54 54 54 72 72 72 72
Wald �2 292.37 242.96 41.44 2210.78 75.78 75.78 75.78
Prob> �2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tobit panel estimation with random e↵ects at subject level and session fixed e↵ects.

Standard errors in parentheses; ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001.
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where the degree and Bonacich centrality metrics di↵er. Specification (3) has degree as
a regressor, and it is highly significant. Similarly, (4) has Bonacich centrality instead
of degree, and it is also highly significant. However, in (5) we include both degree and
Bonacich as regressors and we find that degree remains highly significant while Bonacich
is completely insignificant. This is evidence that subjects are basing their decision on
their position in the local rather than the global network structure: in a network where
degree and Bonacich are not perfectly correlated, degree is highly predictive of subjects’
choices, while Bonacich centrality has no predictive power once the degree is included as
a regressor.

There are two separate e↵ects which lead degree to be a better predictor of subjects’
choices than Bonacich centrality. Specification (6) repeats the panel data analysis with
dummies for the F and P positions, and with the C position as a baseline. The F position
dummy is not significant, which indicates that the first reason degree is more predictive
is that there is no di↵erence in e↵ort levels between the F and C positions as predicted
by degree and in contrast to the eC(g21) > eF (g21) Bonacich prediction. Specification (7)
repeats the panel data analysis with dummies for the C and P positions. The P position
dummy is negative and highly significant, which indicates that the second reason degree is
more predictive is that there is a di↵erence in e↵ort levels between the F and P positions
as predicted by degree and in contrast to the eP (g21) = eF (g21) Bonacich prediction.

A third piece of supporting evidence for the local features of the network struc-
ture as the main determinant of subjects’ choices is qualitative in nature. In the post-
experimental questionnaire, we asked subjects the following open-ended question: “Please
briefly describe how you picked your activity level during the experiment.” Subjects were
required to input an answer in a text box, and we employed an RA to categorize the
answers. Out of the subjects who answered the question12 for the g15 and g21 networks
(89.7%, 113 out of 126), two thirds of them (64.6%) replied that they chose the e↵ort
depending on the number of connections of the node they were assigned to. This was
the most popular answer, followed by “trial and error” (14.2%), “maximize own profits”
(9.7%), and “depending on what others were choosing” (7.1%). No subject mentioned the
number of connections of their neighbors in the answer, which is an important component
of Bonacich centrality.

Result 3: We find qualitative and quantitative evidence that subjects base their choices
on the local rather than the global structure of the network. In all networks, subjects’
e↵orts are ranked according to the degree of the node they are assigned to. In the node
types of the g21 network where the degree has di↵erent predictions than Nash, the degree is
highly predictive of subjects’ behavior while Bonacich centrality is insignificant. Finally,
the degree of the node they are assigned to is subjects’ most popular response to an open-
ended question of how they make their decisions.

12It was compulsory to answer the question, but some subjects decided to decline to provide an answer
by, e.g., inputting a hyphen in the text box.
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5 Robustness checks

This section presents two checks of the robustness of our results. Section 5.1 shows that
the results are not driven by subjects having di↵erent exposure to node types due to the
di↵erent number of nodes of a certain type in each network. Section 5.2 shows that the
results are not a↵ected by the specific network visualizations used in the interface of the
experiment.

5.1 The role of experience

In each round of the experiment subjects are randomly assigned to nodes in the network.
In the asymmetric g⌦, g15 and g21 networks, there are di↵erent number of nodes of each
type, which implies that subjects will have di↵erent degrees of experience on making
decisions on di↵erent types of nodes. For instance, in the g⌦ network there is one node
of type H and 8 nodes of type P so a subject will on average be assigned to the H
node 4.4 times over 40 rounds and he will be assigned 35.6 times to one of the P nodes.
The purpose of this section is to check that these di↵erences in experience are not major
determinants of subjects’ decisions.

Table 6: Di↵erences in average e↵ort across di↵erent positions for the third time a subject
has been assigned to a given node type.

g⌦ g15 g21

P F P H P C F

g⌦ H 3.4

g15 H 11.8⇤⇤ 9.1⇤⇤

F �2.6

g21

B 8.4 42.4⇤⇤⇤ 35.2⇤⇤⇤ 36.8⇤⇤⇤

H 34.0⇤⇤⇤ 26.7⇤⇤⇤ 28.3⇤⇤⇤

P �7.2 �5.6
C 1.6

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney test. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.

Table 6 replicates the analysis in table 4, but it focuses on the subject’s choice of e↵ort
the third time a subject has been assigned to a certain node type rather than aggregating
the decisions over all rounds. For instance, if in the g21 network a subject has been
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assigned to node type P in rounds 1, 2 and 3 and it has been assigned to node type F
in rounds 9, 14 and 36 then the entry in the P -F cell would be the di↵erence between
that subject’s play in round 3 and 36. A comparison of the two tables shows that the
results are largely unchanged. The only di↵erences from table 4 are the lack of statistical
significance in the di↵erence between node types H and P in g⌦, P and C in g21, and P
and F in g21. However, the di↵erences are qualitatively in the same direction, and in the
case of node types H, C and P in g21 they also have the same magnitude so the lack of
statistical significance is likely due to the higher variability of play in the earlier rounds
for node type P , which is more frequent in g21 leading subjects to experience it for the
third time in the early rounds.

Table 7: Di↵erences in average e↵ort between low and high round experience subjects,
where low is <= x, high is >= y and the last round played by each subject is considered.
(x,y) are specified next to the node type.

g⌦ g15 g21

H(3,6) F(3,6) C(4,7) F(2,5)
High

Low 11.4 8.5 1.9 6.2

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney test. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.

Table 6 suggests the obvious point that e↵ort choices on node types that are rare in
a network may be more sensitive to di↵erent degrees of experience than e↵ort choices on
node types that are frequent. We can probe further into this by exploiting the random
di↵erences between subjects within sessions with respect to the number of times they
have been assigned to a given node type. Specifically, consider, say, node F in g21 and
let us divide subjects into two groups: low experience subjects have been assigned at
most 2 times to node F throughout the 40 rounds, while high experience subjects have
been assigned at least 5 times. We can aggregate the last e↵ort choice for low and high
experience subjects respectively and test whether there is a significant di↵erence between
the two: a di↵erence would indicate that the randomly determined degree of experience
has an e↵ect on the results. Table 7 conducts this exercise for node types H in g⌦, F in
g15, and F and C in g21. There is no statistically significant di↵erence between low and
high experience subjects for any of the node types suggesting that the 40 rounds duration
of the experiment is su�cient to ensure that even low experience subjects have enough
time to learn how to choose e↵orts in the node types they are only assigned to a few
times.
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Table 8: Di↵erences in average e↵ort within high experience subjects. Low (= x) and
high (= y) are equal to the xth and last time a subject has been assigned to a given node
type respectively. (x,y) are specified next to the node type.

g⌦ g15 g21

H(3,6) F(3,6) C(4,7) F(2,5)
High

Low �0.5 �1.9 �1.4 8.0

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney test. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.

An alternative way to investigate whether subjects in the high experience group make
di↵erent choices due to their frequent random assignment to rare node types is to conduct
a within subject analysis. Limiting our analysis to the high experience group of subjects
previously defined, we can compare their choice of e↵ort in the last round they have been
assigned to a given node type to the xth time they have been assigned to that node type:
a di↵erence would indicate that the randomly determined degree of experience has an
e↵ect on the results because there is a non-negligible level of learning after the xth time
a subject has been assigned to a given node type, where x is equal to the total amount of
times subjects in the low experience group have been assigned to that node type. Table 8
conducts this exercise for node types H in g⌦, F in g15, and F and C in g21. There is no
statistically significant di↵erence in the choice of e↵ort of subjects in the high experience
group between the xth and the last time they have been assigned to any of the node
types. Again, this suggests that the 40 rounds duration of the experiment is su�cient to
guarantee that every subjects has enough experience to learn how to choose e↵orts even
in rare node types.

5.2 Network visualization

In section 4.2 we analyzed the data by implicitly assuming that subjects consider as
equivalent the di↵erent positions in each network that we have labelled to be the same node
type in figure 1. Dessi et al. [2014] show that individuals utilize heuristics to memorize and
recall information about social networks presented in graphical form, and these heuristics
lead to biases in the recollection of aggregate and detailed aspects of the network structure.
While it seems intuitive that individuals would consider positions labelled as the same
node type as equivalent, this section presents an overview of appendix B where we conduct
robustness checks to ensure that this assumption is validated in the data.
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Figure 6: Network visualizations as seen by subjects in di↵erent treatments. Top: g�

(left) and g⌦ (right) treatments. Bottom: g15 (left) and g21 (right) treatments.

In the experimental interface, the network figure was always displayed in the top
left part of the screen. Figure 6 shows how each network was actually displayed to the
subjects, which is di↵erent from the graphical arrangement used in figure 1 for expository
purposes in this paper. Tables 9, 10, 11 and 12 in appendix B are the equivalent of table
4 in section 4.2, but disaggregated for each node type for all the networks. For instance,
table 9 shows the average di↵erence in e↵ort levels of subjects across the di↵erent positions
which are labelled as node types H and B in the main analysis of the paper. A significant
di↵erence in e↵ort levels between two positions would indicate that our assumption that
these positions are equivalent may not hold. As it is clear from tables 9-12, across all
the di↵erent pair of positions labelled as the same node type in the 4 networks, there are
only 5 pairs of positions that have a statistically significant di↵erence in average e↵ort
levels at the 10% level. This number of statistically significant findings is less than what
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we would expect by chance given the large number of statistical tests, and therefore we
conclude that our assumption that network positions labelled as the same node type are
deemed equivalent by subjects is validated by the experimental data.

6 Conclusion

In this paper we have examined experimentally how social network structure mediates
the tension between equilibrium play and the establishment of a more e�cient norm by
investigating a game of strategic complements played on di↵erent networks.

We find that subjects are able to coordinate on a collaborative norm when the network
is simple and symmetric such as the circle, and, to a lesser extent, the wheel. In contrast,
in the more complex networks of 15 and 21 nodes, on average subjects converge to the Nash
equilibrium play on every node. Given the richness of the network structure and the size
of the strategy space, this result provides a strong validation of the theoretical results in
Ballester et al. [2006] and it shows how position in the network can be a key determinant
of equilibrium play. These results are consistent with previous experimental work on
public good games that shows that asymmetry across subjects leads to a decrease in the
level of contributions. In future work, it would be interesting to explore systematically
which structural features of the network leading to asymmetries across subjects have the
largest detrimental impact on the coordination on e�cient outcomes.

We also provide evidence that subjects base their decisions on the local, rather than
the global, network structure. If we limit the analysis to the set of nodes in the 21 node
network whose local features are not highly correlated with their overall position in the
network, degree is a significant predictor of subjects’ play, but Bonacich centrality, which
determines equilibrium play, is not. In future work, it would be interesting to investigate
whether focusing on local network features is a common way for individuals to cope with
the challenging task of processing complex network information, independently of the
game they are playing. This finding may also motivate further theoretical work: in many
games played on networks it is challenging to solve for the equilibrium because strategies
relate to the overall network structure in intricate ways, but this relation may simplify
significantly if it is limited to the local network.

Methodologically, this paper shows the potential of UbiquityLab: a novel platform
we developed to conduct online experiments with real-time interactions among partic-
ipants. UbiquityLab is designed to be able to conduct online essentially any type of
experiment that is currently run in physical labs. Moreover, as the experiment in this
paper demonstrates, it rigorously incorporates features that replicate the state-of-the-art
methodological practice in lab experiments with minimal adaptations which accommodate
the specific requirements of the online set-up. The feasibility of online experiments with
real-time interactions opens up exciting opportunities for experimental research including
the possibility of creating a subject pool and running experimental sessions with a number
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of participants which is orders of magnitude larger than current lab-based experiments,
and the potential to run experiments across cultures with participants located anywhere
in the world.
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A UbiquityLab

UbiquityLab is a novel platform for creating and executing interactive experiments on the
Internet. More broadly, the platform aims to promote online experiments for behavioral
research in the social sciences by simplifying their creation and execution. The current
version focuses on game-theoretic experiments. This section explains the functionalities
and the workflow we use to conduct the experiments in this paper, and, where appropriate,
it highlights additional available features.

In general, the platform accommodates two types of interaction. The first type is
real-time interaction: subjects continuously act and respond to actions in a matter of
seconds, and the whole experiment usually lasts no more than a few hours. For example,
this experiment utilizes this type of interaction as subjects choose e↵orts and receive the
results of their choices within 20 seconds over 40 consecutive rounds. The second type is
extended interaction: subjects engage with each other irregularly and often in sequence,
and the whole experiment may last days, weeks or even months. The current version
emphasizes the support for real-time interactive experiments.

Computationally speaking, the platform can handle both synchronous and asynchronous
processing of inputs from subjects. In the synchronous mode, a group of subjects play a
k-stage (k � 1) game for n rounds (n � 1). In each stage, some or all of the subjects in
the group submit their actions before receiving feedback and proceeding to the next stage
or round together. The stage-by-stage structure ensures that the actions of the current
stage are processed at the same time before the start of the next stage. The experiment
in this paper correspond to the k = 1 and n = 40 case.

In the asynchronous mode, the platform does not enforce the sequentiality and the
processing of actions by stages/rounds: actions are processed individually as they arrive
during a period, and an experiment may last for n periods (n � 1). Here, a period repre-
sents a longer length of time than a short interval as in a stage/round in the synchronous
mode. Unlike the synchronous mode, asynchronous processing does not need to wait for a
batch of actions to complete before moving on to handle new ones. In addition, subjects
may make di↵erent numbers of actions during a period. For example, market trading
games may adopt asynchronous processing, as bids and asks are matched whenever they
become available and subjects may trade di↵erent numbers of times in a period. In this
mode, we can specify the maximum/minimum frequency of actions per subject per period
as well as the duration of each period. Despite these underlying conceptual di↵erences,
the user experience is similar in both modes as participants make choices using a single
graphical page on which new information updates automatically without clicking across
multiple pages of text.

UbiquityLab operates a tested workflow that automates most phases of an experi-
mental session. Before launching an experiment, we post a qualification HIT on AMT
to recruit subjects using a simple survey with a fixed fee payment. We notify qualified
subjects who have agreed to be willing to participate in the experiment about the date
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and time of the sessions. Subjects enter sessions via an experiment HIT on AMT by
clicking the embedded link in the HIT description. UbiquityLab can prevent multiple
participation in the same or in a related experiment by checking the IP of participants
and their AMT identification number. Notice that the platform supports running multiple
experimental sessions in parallel within what we call a meta-session which corresponds
to an experiment HIT. In this project, we ran up to 5 experimental sessions within a
meta-session. In total, we ran 11 meta-sessions to finish all the treatments.

A meta-session starts with a virtual Waiting Room, where subjects remain active on
a web page and wait until a specified number of subjects arrive. Once enough subjects
get to the page, the waiting room automatically updates itself to allow the subjects to
click a link to proceed into the Instructions of the experiment.

The instructions are divided into multiple pages. Depending on the content and the
length of a page, the platform sets a minimum amount of time that a subject must spend
on each page. If a subject attempts to proceed sooner than the minimum required time, a
pop-up dialog appears to remind her to spend more time on that page. In the experiment
in this paper, ‘Previous’ and ‘Next’ links allow subjects to navigate between pages, and
the minimum required time ranges from 20 to 50 seconds. Notice that the minimum time
limit only applies when a subject visits the page for the first time and she has not stayed
for the required amount of time. In other words, once she stays beyond the minimum
time, she does not need to wait if she visits the same page again.

After finishing the instructions, subjects must pass a Quiz before participating in the
actual experiment. To pass the quiz, subjects usually need to answer all the questions
correctly. The platform allows the experimenter to specify the number of attempts before
failing a subject. In case of failure, the platform redirects the subject to a separate page
and notifies the end of her participation. Furthermore, in order to ensure that subjects
genuinely understand the instructions, the platform can randomize the details and the
order of questions in each retake of the quiz. In the experiment in this paper, we allow
up to three attempts to answer three questions regarding payo↵ calculation, and we
randomize the specific values in each question on each retry.

Following the quiz, subjects enter the Trial phase where they play a trial version of the
game to familiarize themselves with the user interface and understand the actual game.
Typically, during the trial subjects play against a computer algorithm independently from
each other. In the experiment in this paper, subjects play a 3-round trial game on a 5-node
network where the e↵orts of neighbors were randomly generated in each round.

Once enough subjects complete the trial and arrive on the Game page, the actual
experimental game starts automatically. The platform has di↵erent ways to ensure that
the experimental game continues even if a subject exits playing due to a network error or
a computer malfunction. Depending on the type of game being played, the computer can
either notify the remaining players about the dropout before allowing them to continue
the game without that subject, or replace the subject with a program player that plays
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according to a pre-specified algorithm. The platform also supports random termination
such that, after a specified number of rounds, the game terminates with a configurable
probability in each subsequent round. In the experiment in this paper, the single-stage
game repeats for 40 rounds with a deterministic termination, and a dropout subject
is replaced by a computer algorithm that plays Nash. The data collected in a session
involving dropout(s) is excluded from our analysis.

Finally, the experimenter may configure the platform to forward the subjects to a post-
experimental Survey hosted on Qualtrics. After the questionnaire, subjects are automat-
ically redirected to a page on the platform that summarizes the information about their
earnings and provides them the code to input in AMT for payment. In the experiment in
this paper, subjects complete a survey on Qualtrics that collects socio-demographic infor-
mation and risk attitudes using the Holt and Laury [2002] test, and submit the payment
confirmation code via the HIT page on AMT for the processing of payments using the
Amazon Payment service.

UbiquityLab also o↵ers two additional functionalities which have not been used in
the experiment in this paper: the Tour and the Chat. The tour is a visual walkthrough
of di↵erent components of the experimental interface, and it would typically follow the
instructions. The chat o↵ers the experimenter the capability of communicating with sub-
jects during instructions and tour on either one-to-one or one-to-many basis. If activated,
the chat is available on every page during those two phases.

The platform outputs data that allows the experimenter to monitor the progress of
an ongoing session. The data includes metrics such as the number of subjects in each
phase, the number of subjects who fail the quiz, the progress of the experimental game,
etc. The current version presents the data via a self-updating log file with color-coding
to di↵erentiate the various types of information. In the next version, we are planning to
have a more user-friendly web page for monitoring purposes.

Implementation wise, UbiquityLab consists of both server-side and client-side compo-
nents. The server-side services are created using the Python programming language, while
the client-side libraries are written in JavaScript. To develop an experimental game, the
experimenter creates several minimal Python modules that plug into the servers using an
Application Programming Interface (API). Each module specifies one particular aspect of
the game such as initialization, per-stage processing, data recording, payment calculation,
etc. A set of these modules defines a particular game. Thanks to this modular design, the
platform o↵ers the convenience and the freedom to implement highly customized game
logic, while abstracting away many low-level intricacies. Furthermore, the experimenter
is free to create any experimental interface that communicates with the servers via a
provided messaging protocol. To ease the development e↵ort, the platform o↵ers a suite
of common client-side functionalities such as timers, inactivity detection, input tracking,
etc.

The objective of UbiquityLab is to allow researchers to exploit the potential of online
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experiments without compromising on methodological rigour. Online experiments with
UbiquityLab give researchers the freedom to conduct experiments anywhere and at any-
time, which brings several advantages. First, it allows the creation of a diverse subject
pool that is orders of magnitudes larger than current lab-based ones: this means more
diversity in the subject pool as well as the capability of targeting the experiment to par-
ticular groups of interest. Second, it allows a large number of subjects to participate to
the same experimental session. Third, it allows subjects located far away geographically
to engage in the same experimental session opening the possibility of, e.g., cross-cultural
studies. Fourth, there are several operational advantages including the possibility to run
the experiments at any time of the year, lower costs, and a fast turnaround from design
to implementation. Finally, UbiquityLab creates a controlled environment that is close
to what can be achieved in the lab by monitoring and checking that subjects are actively
engaged in the experimental task.
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B Further analysis

This appendix contains some further analysis of the experimental data. Tables 9-12
display the results of the analysis described in section 5.2 in the main text, which validate
our implicit assumption that the specific network visualizations used in the experiment do
not a↵ect subjects’ play. Figures 7-9 give further information on the evolution of e↵orts
and payo↵s for each position type in each treatment.

Table 9: Di↵erences in average e↵ort across di↵erent positions for node types H and B
for g21.

g21

H B
2 3 4 14 15 16 17 5

g21 H

1 -3.4 -0.6 -0.3 2.2 -4.5 -1.3 -3.9
2 2.7 3.0 5.6 -1.1 2.1 -0.5
3 0.3 2.9 -3.9 -0.7 -3.3
4 2.6 -4.2 -1.0 -3.6
14 �6.7 -3.5 �6.1
15 3.2 0.6
16 -2.6

B 13 2.7

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney tests.⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.
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Table 10: Di↵erences in average e↵ort across di↵erent positions for node types P and C
for g15 and g21.

g15 g21

P P C
7 14 15 7 8 9 18 19 20 21 10

g15 P
6 2.2 1.5 1.6
7 -0.7 -0.7
14 0.0

g21 P

6 -1.9 �6.1⇤ 1.1 -1.3 -2.3 -0.9 -2.1
7 -4.2 3.1 0.6 -0.3 1.1 -0.2
8 7.2⇤ 4.8 3.8 5.2⇤ 4.0
9 -2.4 -3.4 -2.0 -3.3
18 -1.0 0.4 -0.8
19 1.4 0.1
20 -1.3

C 11 -1.5

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney tests. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.
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Table 11: Di↵erences in average e↵ort across di↵erent visual positions for node type H
for g15.

g15

2 3 4 5 9 10 11 12 13

g15

1 0.5 3.0 -0.4 0.4 1.1 1.0 3.1 2.2 0.5
2 2.5 -0.9 -0.1 0.6 0.5 2.6 1.7 0.0
3 -3.5 -2.6 -1.9 -2.1 0.1 -0.8 -2.5
4 0.8 1.5 1.4 3.6 2.6 0.9
5 0.7 0.6 2.7 1.8 0.1
9 -0.1 2.0 1.0 -0.6
10 2.2 1.2 -0.5
11 -0.9 -2.6
12 -1.7

The analysis is based on aggregated data at the session level, and each entry is the
di↵erence between the average e↵ort in the row position and the average e↵ort in the
column position. Significance levels refer to the Mann-Whitney tests. ⇤p < 0.1, ⇤⇤p < 0.05,
⇤⇤⇤p < 0.01.
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Figure 7: Evolution of e↵orts and payo↵s (aggregated every 4 rounds) in networks g�

and g⌦. Top: nodes in g�. Middle: node type H in g⌦. Bottom: node type P in g⌦.
Lines indicate predicted Nash (black) and mean (red) e↵ort or payo↵ levels. Error bars
indicate SEM.
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Figure 8: Evolution of e↵orts and payo↵s (aggregated every 4 rounds) in network g15.
Top: node type F . Middle: node type H. Bottom: node type P . Lines indicate predicted
Nash (black) and mean (red) e↵ort or payo↵ levels. Error bars indicate SEM.
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Figure 9: Evolution of e↵orts and payo↵s (aggregated every 4 rounds) in network g21.
Top: node type F . Middle: node type C. Bottom: node type B. Lines indicate predicted
Nash (black) and mean (red) e↵ort or payo↵ levels. Error bars indicate SEM.
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Figure 9: Evolution of e↵orts and payo↵s (aggregated every 4 rounds) in network g21.
Top: node type H. Bottom: node type P . Lines indicate predicted Nash (black) and
mean (red) e↵ort or payo↵ levels. Error bars indicate SEM.
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C Experimental material

C.1 Instructions and Quiz

This section shows the screenshots of the instructions and the quiz before the experiment.
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C.2 Post-experimental Questionnaire

This section shows the screenshots of the post-experimental questionnaire after the game.
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