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Abstract

The path to better understanding the economy requires treating the
economy as the complex system that it really is. We need more realis-
tic behavioral models, but even more important, we need to capture the
most important components of the economy and their most important
interactions, and make realistic models of institutions. The complex sys-
tems approach is intermediate between traditional economic theory and
econometrics. Traditional economic theory is top-down, modeling decision
making from first principles, and then testing against data later. By “first
principles” I mean the requirement that theories have “economic content”,
i.e. that they derive behaviors from preferences. Econometrics, in con-
trast, takes a bottom up, data-driven, but fundamentally ad hoc approach.
The complex systems approach sits in the middle, taking a bottom up
data-driven approach that differs from traditional econometrics by explic-
itly representing agents and institutions and modeling their interactions,
without the requirement that everything be derived from fundamental prin-
ciples. It has the potential to free behavioralism from the straightjacket
of equilibrium modeling, and to bring the computer revolution fully into
economics. This path will at times involve abandoning economic content
in favor of economic realism.

1 Linear mathematics and non-complex economics

At the 2012 INET conference “Paradigm Lost: Rethinking Economics and Pol-
itics”, I was asked to speak in a session titled “Taking Stock of Complexity
Economics: Which Problems Does It Illuminate?”. This title made me laugh
because it reminded me of a lecture by the great mathematician Stan Ulam that



I heard as a physics graduate student at UC Santa Cruz in 1977. The lecture was
titled “nonlinear mathematics”. Ulam began by saying that he was embarrassed
by the inappropriateness of title: Since almost all of mathematics is nonlinear, he
said, it is like calling an animal a “non-elephant animal”. He argued that almost
all interesting mathematics, and almost all interesting physical phenomena, are
inherently nonlinear. This is not just a technical distinction: In most cases the
essence of physical, natural and social phenomena depends on nonlinearity. The
importance of nonlinear interactions is perhaps even more important in biology
and the social sciences than it is in physics, even if the underlying models are
less well developed.

Just as almost all mathematics is nonlinear, almost all economic phenomena
are complex, and a discussion of which problems are illuminated by complex-
ity economics is silly. A more tractable topic would be whether there are any
problems it does not illuminate, or should not illuminate. The fact that such
a session needs to occur and that its title is couched in such defensive terms
is symptomatic of a gaping hole in the subject. The importance of complex-
ity to economics should be taken for granted. The fact that INET has chosen
the moniker “new economic thinking” makes the title of this session particularly
ironic. If there were a similar conference in a parallel universe where the field of
economics is at it should be, the complex systems approach would be well repre-
sented. (But then again in that universe this conference would be supported by
the ISET — the Institute of Sound Economic Thinking).

The study of complex systems is built on top of nonlinear mathematics. Com-
plex systems is the study of how interesting emergent phenomena arise from the
interactions of low-level building blocks. By definition, if the interaction is linear,
the whole is just the sum of the parts, but if the interactions of the parts are non-
linear, the whole can be more than the sum of its parts. In the most interesting
cases the whole is qualitatively different from the sum of its parts, in which case
we say it is an emergent phenomenon.

Complex systems extends the study of nonlinear systems to focus on collective
phenomena among simple or not-so-simple building blocks. While the underlying
cause of interesting emergent phenomena is nonlinearity in the interaction of the
building blocks, this is a weak statement: Nonlinear interactions can take many
forms and can have many different results. The study of complex systems focuses
on the synthetic properties of such interactions. The goal is to characterize
emergent phenomena, and to understand which types of low level interactions
lead to which kind of phenomena.

In view of its origins, the fact that economics can be singled out as a field
of science where the complex systems revolution has had the least impact is
an odd twist of history. Within the study of complex systems Adam Smith
is widely regarded as the first to clearly articulate the concept of an emergent
phenomenon. In his studies of the distribution of income, Pareto was the first to
describe a power law distribution, a concept that has played an important role in



the study of nonequilibrium phenomena and complex systems in particular. In
my view, the failure to embrace complex systems thinking is probably the main
reason that economics has not experienced the rapid progress seen in so many
other sciences during the last fifty years. This is closely connected to the lack of
serious computer simulation, which goes hand-in-hand with the complex systems
approach.

In this essay I intend to be provacative. I will give my views on the underlying
reasons why the complex systems and computer revolutions have so far passed
economics by, to motivate why it is urgent to change this. I do not have space
here to present a comprehensive review of what has already accomplished in
complex economics, nor to thoroughly discuss how the alternatives should be
implemented, but rather will just provide references.

2 What is the complex systems approach?

Complex systems, and its close cousin and near synonym “complexity”, are terms
that refer to a movement in science that has blossomed and begun to bear fruit
during the last thirty years or so. It is focused on the question of how emergent
phenomena emerge from the interaction of low level building blocks. In a certain
sense one might argue that this is nothing new — in a narrow sense physics and
other disciplines have been doing this for a long time. One might argue that in
some narrow sense of the word, the movement of the planets is an emergent phe-
nomenon that comes about from the very simple low-level postulates of Newton’s
laws of gravitation and mechanics. A better example would be Adam Smith’s
invisible hand: How do the collective wealth and shared benefits of society come
about from the striving of selfish individuals? Unlike the solar system, we are
still far from understanding the mysteries of the invisible hand.

The debate here is not whether this is an interesting thing to understand —
we can all agree that it is — but how we should go about understanding it. An
advocate of the complex systems approach would argue that we will never get
there with simple models in which we have a few representative agents. Experi-
ence from the study of complex systems in other fields of science suggests that
to understand where the richness of the economy comes from, we need to instead
study the collective interaction of a large number of heterogeneous participants.

Complex systems seeks to develop concepts, methods and tools that tran-
scend specific applications and disciplines. It also seeks to apply this approach to
problems that are well beyond the traditional scope of physics, such as adaptive
systems, like those commonly encountered in biology and social science. While
of course manifestations of complex systems are different in every field, the com-
monalities can be striking. It is possible, for example, to show that models of
adaptive systems including neural networks, classifier systems, autocatalytic net-
works, immune networks, and evolutionary game theory can all be mapped into



a common mathematical framework [1]. For a general review of the literature in
complex systems see [2, 3, 4, 5, 6, 7]

Complex systems has antecedents that have gone under a variety of names,
including cybernetics, self-organization, and synergetics. One of the visionaries
of complex systems, John von Neumann, correctly predicted the future in 1950
when he said:

Science and technology will shift from a past emphasis on motion,
force, and energy to communication, organization, programming, and
control.

To this I would add form, function, structure, information, computation,
emergence and evolution. The change in language that von Neumann antici-
pated reflects both a change in focus of the problems that are considered, and
a change in the way of thinking about them and the methods that are brought
to bear to understand them. Complex systems is a highly interdisciplinary field
that has incorporated ideas and methods from statistical mechanics, dynamical
systems, game theory, evolutionary biology, ecology, machine learning, informa-
tion theory, theory of computation, and graph theory. The knowledge involved
has been imported from many different disciplines.

It is of course very ambitious to try to find general principles spanning so
many fields. This program is far from being realized, and many question whether
it can ever be fully realized, but there are some modest successes. These include
network theory and agent-based modeling, which are both highly relevant to
economics and will be discussed here.

The complex systems approach is strongly data driven. One begins by study-
ing a system to identify its components and their interactions. Then one typically
constructs either a simulation or a theoretical model that takes these interactions
into account, and in particular focuses on understanding the emergent collective
behavior that they generate. For an economy, for example, one would naturally
identify the key institutions, such as households, firms, banks, and financial mar-
kets and construct rules for their interactions. Because the economy is a rather
complicated complex system, a natural starting point is a computer simulation,
such as an agent-based model. Of course, because the key decision makers are
human beings, the basic building blocks of such a model are extremely compli-
cated, and this is a challenging task. Nonetheless, the fact that this approach
has never been tried in economics is striking [8]. See [9] for a vision of how this
approach can be used in economics.

Even if simulation models are a cornerstone of the complex systems approach,
they are by no means its only component. Analytic models can also be very useful.
But under the complex systems approach analytic analysis almost always goes
hand in hand with simulation.



3 Economic content vs. economic realism

The failure for complex systems methods to be widely used in economics is closely
associated with the evolution within the economics profession of the ironclad re-
quirement that theories must have “economic content” to be considered valuable.
This phrase does not mean what one would naively think, that a theory must
explain an economic phenomenon. Instead, a theory is said to have “economic
content” if its starting point is the assumption that selfish individuals maximize
their preferences. If the theory doesn’t start there, it has no economic content,
and in fact, it doesn’t even deserve the word “theory”.

Constructing theories with economic content is a laudable goal. There are
many situations where this approach is valuable, and there are good reasons
why this requirement has evolved, the most famous being the Lucas critique
[10]. Many important problems have economic content, there are many situa-
tions in which maximizing preferences plays an important role, and this is in no
way incompatible with complex systems theory. As I already said, the invisible
hand of Adam Smith is the first clear articulation of an emergent phenomenon.
Nonetheless, making this an absolute requirement needlessly restricts what can
be accomplished and slows down progress in economics. It has choked off other
approaches and become a straight jacket that limits the usefulness of economics.

There are threes problems with the strict requirement that theories have “eco-
nomic content”:

1. Even though many problems may ultimately depend on some version of
selfishly maximizing preferences, the requirement that this be the starting
point for all theories is excessively stringent. Many phenomena depend on
factors that cannot be addressed using the heavy mathematical baggage
that “economic content” requires.

2. There are many important economic phenomena that either have no eco-
nomic content or that require minimal behavioral assumptions to explain.

3. There are many circumstances in which preferences are difficult to charac-
terize, are intrinsically plastic and context dependent, or are dictated by
other requirements, so that this is simply the wrong approach.

4. Such an a priori restriction diminishes the diversity of effort and impover-
ishes the resulting science.

The first problem comes from the fact that science is a resource-limited enter-
prise. One cannot do everything well; it is necessary to allocate effort efficiently
and focus on a few things at a time. The derivation of economic equilibria is
a mathematically challenging activity; as one adds structure to a problem the
complexity of the mathematical machinery increases, and there is inevitably a



critical point where a problem becomes intractable. As a result, any economic
theory that has economic content has to have a simple framework. One must
keep the number of variables to a minimum and it is only possible to treat a few
interactions at a time. This often means that important aspects of a problem
must be neglected. All too often the baby goes out with the bathwater [11, 8].

The mandate that all theories have economic content is like requiring that
all theories in physics start at the level of quarks. In fact, physicists often con-
struct phenomenological theories, that simply connect different phenomena. This
is sometimes done using approximations that can be justified based on more fun-
damental theories, but this is not always the case; sometimes physicists begin
with an ansatz, i.e. a seemingly arbitrary assumption, and showing that such
an assumption leads to interesting conclusions. (A good example is Newton’s
postulate that gravity obeys a force that decreases as the square of the radius,
which was severely criticized by the Cartesians, and still lacks a truly fundamen-
tal explanation). The main agenda of science is not to derive everything from
first principles, but rather to relate diverse phenomena to each other and thereby
simplify our description of the world.

The second problem can be viewed as failure in cost-benefit analysis. One
of the cardinal rules of science is to pick low hanging fruit first. If a problem
doesn’t require a given assumption, why use it? Examples of problems in which
it is possible to learn a lot while assuming little or no economic content include the
size distribution of mutual funds [12], variations in the growth of firms [13], the
relationship between order flow and the bid-ask spread in the continuous double
auction [14], and indeed one of the most important problems in economics, namely
technological progress and economic growth [15, ?, 16, 17, 18]. Since papers that
do not have “economic content” are very difficult to publish in top economics
journals, there is a great deal of low hanging fruit waiting to picked for those
adventurous enough to do so.

The third problem is that in most cases utility does not provide a good de-
scription of preferences. Prospect theory might give a small improvement, but
it is still wide of the mark. Studies of the factors that influence subjective well-
being show that the real determinants of happiness are much more complicated
than the standard utility function. But there is an even deeper problem: In
an evolutionary setting preferences are not arbitrary — they are dictated by the
imperative of survival. From the theory of gambling it is well known that only
individuals with log utility survive in the long run [19, 20, 21]. This matches up
with evolutionary principles — the bottom line is survival, not utility. In these cir-
cumstances utility is no longer fundamental since it is not a matter of choice, and
maximizes preferences is misleading, as it gives the impression that preferences
are arbitrary.



4 How does the complex systems approach dif-
fer from traditional economics?

We can now return to ask how the complex systems approach differs from the
approach used in mainstream economics. The skeptic might argue that the ap-
proach outlined in Section 3 is precisely that taken by economists. The key
difference is in where the effort is focused, how the components are identified,
which kind of interactions are considered, the method used to understand their
effect, and what is considered an interesting result.

As currently practiced, economics is a field polarized between two extremes:
Economic theory sits on one hand and econometrics sits on the other. The basic
structure of an economic theory is always the same: One postulates preferences
and beliefs and then derives an equilibrium. This top down approach is justified
by the argument that economic phenomena are noisy and complicated, and unless
one imposes strong priors, it is easy to get lost [22].

Econometrics, in contrast, is a bottom-up, strongly data-driven activity. Econo-
metricians use functional forms that are typically fairly arbitrary and use sta-
tistical methods to estimate their parameters from data. This can be extremely
useful; for example, it is the basis for the principle models used to make economic
forecasts. But it is intrinsically limited in the understanding it can provide.

At least in a certain sense, a typical complex systems model can be viewed as
sitting in between these two poles. Complex systems models are not constrained
to have economic content (though there is no prohibition against it, and in recent
years some economists have begun to consider properties such as network inter-
actions that are very much in the spirit of complex systems [23]). The difference
is that the focus of a complex systems model is on representing the interactions
among the elements, which in an economic model involves agents (individuals)
and institutions (firms, regulatory agencies, etc.).

A good complex systems model both begins and ends with data: Low level
data is used to formulate the assumptions about the building blocks of the model,
and both and high and low level data is also used to test whether the resulting
emergent phenomena properly correspond to those observed in the real world.
Economic content is often sacrificed in favor of economic realism.

5 Economic phenomena are often far from equi-
librium

Current economic theory is almost entirely based on the notion of equilibrium. A
typical model postulates utility functions for the relevant economic agents, makes
assumptions about their strategies for maximizing it, and then computes equi-
libria. Under the right circumstances, i.e. when all the underlying assumptions



apply, this approach can be very useful. However, in many situations there is
no unique equilibrium. When there are multiple equilibria it may be difficult to
predict which agents will converge to; in other circumstances they may fail to
converge to any equilibrium at all.

How frequent are these “bad” situations where convergence to equilibrium
fails? Is there any way we can know in advance when such problems are likely
to occur? Tobias Galla and I have investigated questions within the context of
game theory. We do this by making up games at random. That is, for each
possible combinations of moves by the players we assign them random payoffs.
We then assume the players try to learn better strategies for making their moves
using a common approach called reinforcement learning, which has been shown
in economic experiments to provide a good characterization of how real people
learn in games. The games we study are “complicated” in the sense that each
player has many possible actions. Think of the stock market, where a player has
a choice of buying any of thousands of possible stocks. For the details please see
[24].

For simplicity we began by studying two player games. We find that there
are two key parameters that characterize when the system will converge to an
equilibrium. The competition parameter I' is the correlation between the payoffs
of the players: If I' = —1 the game is zero sum, meaning that if one player wins
the other loses. Similarly if I' = 0 the payoffs of the two players are uncorrelated,
and if I' > 0 the payoffs are positively correlated, i.e. the payoffs are likely to be
either win-win or lose-lose, depending on the players’” moves. Thus the smaller
I', the stronger the competition. The timescale parameter o controls how much
attention the players pay to the distant past. If @ = 0 then actions in the distant
past are weighted the same as actions in the recent past, and if & > 0 more recent
actions are given higher weight, so the bigger a the faster the player forgets the
past.

One might think that, since the payoffs are made up at random, the results
would have no particular pattern. This is not the case at all. For a given choice
of v and I' we see fairly consistent behavior as shown in in Figure 1: The regimes
are:

1. The strategies converge to a unique equilibrium. This occurs when « is large
and I' is small, i.e. when the strategies weight the future more strongly than
the past and when the games are competitive.

2. The strategies converge to one of many possible equilibria. The number of
equilibria is often very large, e.g. many hundreds, beyond our ability to
find all of them. This occurs when « is small and I' is positive. i.e. when
players do not forget moves from the distant past and the payoffs of the
players are aligned.

3. The strategies usually fail to converge, instead wandering around on a limit



1 T I T

multiple
0.5 fixed points -

. uniqug .
0.5 fixed point

| | | I
1 001 002 003

Figure 1: Schematic illustration of the regimes of behavior for complicated games
when the players use reinforcement learning. « gives the timescale for the im-
portance that players give to past moves: a = 0 implies the players weight the
importance of all past moves equally, whereas a large value of o implies that
moves in the recent past have more influence in formulating the strategy. I is a
competition parameter: I' = —1 implies a zero sum game, I' > 0 a positive sum
game.

cycle or chaotic attractor. The resulting chaotic attractors can be of very
high dimension, indicating that for all practical purposes the behavior is
effectively random. This occurs when « is small and I is negative, i.e. when
the players remember the past and the games are competitive.

We also find the game dynamics have many interested and unexpected prop-
erties. One is that when the strategies fail to converge to an equilibrium the
games exhibit “fads”, in which the two players spend extended periods of time
favoring certain moves over others, and then suddenly switch to favoring a dif-
ferent set of moves. This comes about through an interaction between the moves
the players make, which determine the outcomes, which in turn affect the moves
— what Soros has termed market reflexivity [25]. This gives rise to fluctuations
in payoffs that look like the “clustered volatility” of financial markets: There are
periods in which the payoffs change rapidly, and other periods in which they are



relatively constant, as shown in Figure 2.
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Figure 2: The change in total payoff to the two players is plotted as a function
of time for a randomly selected game that displays high dimensional chaos in
the learning dynamics of the two players. There are periods in which the payoffs
change very little and other in which they change rapidly, reminiscent of clustered
volatility in financial markets.

The lesson is that whether or not the usual equilibrium approach is useful
depends on the situation. Situations where competition is strong and learning
is myopic are well-described in terms of a unique equilibrium. If the situation is
not competitive, in the sense that one player’s gain makes another player’s gain
more likely, and if learning has long memory, then there are an enormous number
of possible equilibria and it becomes difficult to know which one the system will
coordinate on. Finally, in situations where competition is strong and learning
has long-memory, the dynamics are complicated an random, and equilibria are
irrelevant.

Together with James Sanders we have now extended this analysis to games
with many players [26]. In this situation we find that the chaotic region grows
larger and larger as more players are added. In other words, for competitive
games like the stock market where there are many players who can make many
possible moves, chaos is likely (and equlibrium is not).

If the economic setting falls into regimes 2 or 3 then the equilibrium theo-
ries that most of economics is based on are out the window. For complicated
competitive games, such as financial markets, we predict that high dimensional
behavior is to be expected. One must then use alternative approaches, such as
agent-based modeling.
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6 Bringing the computer revolution to economics

During the last 50 years the computer has caused a revolution in the physical
and natural sciences. Computers have affected science in many ways, including
data gathering, data processing, and the ability to perform regressions, not to
mention email and word processing. But perhaps the most profound impact has
been the ability to simulate complex systems. Until the advent of the computer
nonlinear systems could not be solved, and the only way to make simulations
was by constructing crude mechanical analogs, such as Irving Fisher’s famous
hydraulic model of the economy. The impact on science has been profound.

There is a famous joke about the mathematician searching for his glasses under
the lamp post, who complains that although he is sure he dropped his glasses
somewhere else, he is forced to search under the lamp post because it is the
only place that he can see. Similarly, until computers became widely available
almost all mathematical science had to be based on linearized equations, and
because of this was restricted to studying simplified non-complex problems in a
reductionistic mode. Computers have changed all this, providing the flashlight
that lets the mathematician find his keys.

Computer simulations are now essential to model a broad range of phenomena,
including weather, traffic, epidemics, fluid turbulence, general relativity, earth-
quakes, and neural systems. Simulation is essential because it makes it possible
to use reductionism to study complexity. Reductionism is a program in science
that seeks to understand basic interactions at a low level, typically by studying
the parts of a system in isolation. Complexity is the study of phenomena that
emerge from the interaction of low level building blocks. Using the tools of simu-
lation, complexity works hand-in-hand with reductionism. When the interaction
rules for the low level building blocks are well understood, as they sometimes
are in physical science, the task of complex systems is relatively (but only rela-
tively!) easy; one constructs simulations, reproduces emergent phenomena, and
then seeks to quantify their regularities and discover more elegant mathematics
to characterize them.

In the more common case that the interaction rules are not well understood, or
the proper characterization of lower level building blocks is not clear, the problem
is much harder. This is almost always the case in biology and social science. (In
fact even for many physical problems, such as modeling the climate, the nature
of the low level interactions is far from well-understood). When the low level
building blocks and their interaction rules are uncertain, one is forced to work
from both ends, experimenting with the low level rules and using the emergence
of the correct higher level phenomena as a test for whether the low level rules are
correct.

Economists use computers in many ways, but surprisingly, there is very lit-
tle effort on simulation outside of the small field of agent-based modeling [8].
The reason that most economists would give for this is that, unlike physics, the
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low level rules of interaction are not well understood. Since the Lucas critique
economists have felt that any model of the economy needed to incorporate the
ability of agents to reason about their world. This has driven a push toward
models that are “micro-founded”, which in practice generally means the solution
of equilibrium conditions of a rational representative agent.

Econometric, DSGE and CGE models are solved on computers. But when I
say that these are not simulations I mean that they neglect most of the structural
and institutional features of real economies. Econometric models are statistical
time series models, that are entirely data driven, without a fundamental model;
DSGE models attempt a fundamental model, but in order to accommodate the
underlying equilibrium assumptions they are of necessity highly stylized. This is
in contrast to the models used elsewhere in science to simulate phenomena such
as weather, climate, traffic or epidemics, which attempt to capture the structural
features of the underlying systems they are targeted at understanding, building
in as much realism as needed.

To see the impact such a simulation model could have on economics it is useful
to compare to the role of large scale simulations in other fields. In meteorology, for
example, large comprehensive computer models sit at center stage. The numeri-
cal weather prediction models that the National Center for Atmospheric Research
uses incorporate the current best science. A great deal of effort goes into diag-
nosing the failures of the models, and these failures which provide feedback to
the entire field of meteorology and climate. For example, the failure of global
circulation models to yield good predictions for cloud formation has driven bet-
ter observation technology, new methods in artificial intelligence for identifying
clouds from satellite measurements, fundamental theory about cloud formation,
and the development of faster computers and better numerical methods. There
is no corresponding role for the simulation of large scale models in directing the
efforts of economists. The last statement needs to be qualified: The failures of
DSGE and econometric models do indeed inform the activities of many theoret-
ical macro-economists and econometricians, but as already mentioned, these are
not really large scale simulations of a real economy.

7 Behavioralism and the straight jacket of equi-
librium

Behavioral economics is one of the recent success stories in economics. Behavioral
models used to be unacceptable to the mainstream, but over the last twenty years
or so they have made their way in, as indicated by the Nobel prize to Daniel
Kahneman and Vernon Smith in 2002. So far, however, behavioral economics is
mainly about showing how the assumptions of rationality are violated, and has
made very little progress toward building a quantitative, positive theory that can
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be used to analyze policies or make conditional forecasts.

In my view, there are two principal reasons for this. The first is that most
studies in behavioral economics operate at too general a level. Behavioralists have
done a good job of showing how basic psychological biases cause major deviations
from rational behavior. For example, people (and men in particular) are highly
overconfident, they make characteristic errors in estimating probabilities, and
they are prone toward seeing patterns even when none exist. While it is essential
to understand these things, and why they make it clear why rational models fail
in many cases, they do not tell us what we need to know to understand market
phenomena such as a credit crisis. For this we need behavioral observations in
very specific real world contexts. For example, how will lenders behave when
they observe a previously trusted counterparty fail — is the resulting tightening
of credit rational, or is it exaggerated due to emotion?

The second problem is that the whole style of modeling that has built up in
economics based around rational expectations equilibrium is ill suited to incorpo-
rate behavioralism. Behavioral views are often inconsistent by their very nature,
and in many cases forcing them into an equilibrium context is inappropriate.

Agent-based models have the potential to allow behavioralism and experimen-
tal economics to realize their potential, and to take center stage as the founda-
tions for quantitative simulation models. The exercise of building an agent-based
model forces one to think through the key decisions that economic agents must
make. By performing experiments in controlled laboratory conditions one can un-
derstand how real agents will behave, formulate decision rules that incorporate
the key aspects of the decision making, and build these into agent-based models
that simulate the role of each agent in the economy. In a fairly simplified setting
such methods have been used by the group of Cars Hommes to build models of
speculative behavior [27].

8 Concluding remark

Bringing the complex systems approach into economics should be the central
agenda of New Economic Thinking.
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