
 
 

The Knightian Uncertainty Hypothesis: 
Unforeseeable Change and Muth’s Consistency Constraint 

in Modeling Aggregate Outcomes 
 

Roman Frydman,# SØren Johansen∗, Anders Rahbek* and Morten 
Nyboe Tabor* 

 

Working Paper No. 92 

February 26, 2019 

ABSTRACT 

This paper introduces the Knightian Uncertainty Hypothesis (KUH), a new approach to 
macroeconomics and finance theory. KUH rests on a novel mathematical framework that 
characterizes both measurable and Knightian uncertainty about economic outcomes. Relying on 
this framework and John Muth’s pathbreaking hypothesis, KUH represents participants’ 
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forecasts to be consistent with both uncertainties. KUH thus enables models of aggregate 
outcomes that 1) are premised on market participants’ rationality, and 2) yet accord a role to both 
fundamental and psychological (and other non-fundamental) factors in driving outcomes. The 
paper also suggests how a KUH model’s quantitative predictions can be confronted with time-
series data.  
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1 Introduction and Overview

In his classic book Risk, Uncertainty, and Profit, Frank Knight introduced a distinc-
tion between measurable uncertainty, which he called “risk,” and “true uncertainty,”
which cannot “by any method be reduced to an objective, quantitatively determined
probability” (Knight, 1921, p. 321). Knight argued that “true uncertainty” arises
from change that cannot be fully foreseen with probabilistic rules and whose conse-
quences for market outcomes, and thus payoffs from market participants’ decisions,
cannot be fully comprehended – even in hindsight. For Knight, recognizing such
unforeseeable change is the key to understanding profit-seeking activity in real-
world markets.

The rational expectations hypothesis (REH) and behavioral finance are widely
considered to have been the milestones in the development of models of aggre-
gate outcomes, resulting from market participants’ decisions, since the 1970s.1 Al-
though they differ in essential respects, the REH and behavioral-finance approaches
share a key feature: their models specify aggregate outcomes with a stochastic
process.2 By design, these models assume that economists do not face Knight-
ian uncertainty. By contrast, the Knightian uncertainty hypothesis (KUH) proposed
here enables economists to build models that acknowledge their own Knightian un-
certainty stemming from unforeseeable change in the process driving outcomes.

Recognizing uncertainty that cannot be represented with standard probabilis-
tic measures of risk is increasingly viewed as crucial to remedying shortcomings
of macroeconomic and finance theory. For example, in his Nobel lecture, Hansen
(2013, p. 399, emphasis added) argues that REH models “miss something essen-
tial: uncertainty [arising from] ambiguity about which is the correct model” of the
process driving aggregate outcomes.

Following a pioneering contribution by Hansen and Sargent (2008), a number
of recent papers build macroeconomic models that recognize ambiguity on the part

1Lucas’s (1972a,b) early contributions are usually cited as pioneering the application of REH to
macroeconomic theory. For authoritative surveys of the behavioral-finance approach, see Shleifer
(2000) and Barberis and Thaler (2003).

2Akerlof and Shiller (2009) is a notable exception in behavioral-finance literature. They rely on
a narrative mode of analysis, and thus ipso facto avoid formalizing behavioral findings with models
specifying aggregate outcomes with a stochastic process.
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of market participants. Although such models relate aggregate outcomes to partici-
pants’ demand and supply decisions, they represent these outcomes with a stochas-
tic process. They typically do not relate ambiguity to unforeseeable change in the
processes driving outcomes.

In a significant departure from this literature, Ilut and Schneider (2014) open
the New Keynesian (NK) model to unforeseeable change in the process driving the
model’s exogenous variable – total factor productivity (TFP). However, Ilut and
Schneider constrain precisely – with a probabilistic rule – their model’s representa-
tion of participants’ forecasts of TFP and how these forecasts drive aggregate out-
comes (for example, hours worked and the inflation rate). As a result, they represent
how aggregate outcomes unfold over time with a stochastic process, thereby assum-
ing that, unlike participants, economists do not face ambiguity about the process
driving these outcomes.

In this paper, we propose a new approach to building models of aggregate out-
comes that removes this incongruity from macroeconomic and finance theory. Our
approach, which we call the Knightian Uncertainty Hypothesis (KUH), recognizes
that, like market participants, economists also face Knightian uncertainty and the
ambiguity that such uncertainty engenders.

Like REH and behavioral finance, a KUH model represents the process driving
outcomes at a point in time with a stochastic process. However, in contrast to
these approaches, KUH rests on a novel mathematical framework that formalizes
both measurable and Knightian uncertainty about the process driving aggregate
outcomes. By assuming that, over time, a macroeconomic model’s coefficients
undergo unforeseeable change, KUH opens economists’ models to Knightian un-
certainty.3

By design, therefore, a KUH model does not represent outcomes with a sto-
chastic process, which rules out reliance on the standard (conditional) expectation

3An overwhelming majority of REH and behavioral-finance models constrain their specifications
– the set of variables that they include and their coefficients – to be unchanging over time. Whenever
these models recognize that the process underpinning outcomes undergoes change, they represent
such change with a probabilistic rule, such as Markov switching, determining completely how the
model’s specifications unfold over time. For a seminal development of models representing change
with probabilitic rules and an authoritative recent review, see Hamilton (1988, 2008). .
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to define the model’s predictions of future outcomes. Instead, KUH’s characteriza-
tion of Knightian uncertainty enables us to define a hitherto unavailable conception
of prediction applicable to outcomes that undergo unforeseeable change. To ensure
consistency between its models’ characterization of both kinds of uncertainties and
their representation of participants’ forecasts, KUH relies on Muth’s (1961) path-
breaking hypothesis.

Muth (1961) argued that market participants are “rational” in the dictionary
sense: they have some understanding – albeit imperfect – of the process driving
outcomes, and they make use of this understanding in pursuing their objectives, typ-
ically profit-seeking.4 Importantly, Muth advanced the seminal hypothesis that an
economist can represent participants’ diverse understandings of the process driving
aggregate outcomes with his own mathematical model of this process. Conse-
quently, Muth proposed that an economist specify participants’ forecasts of out-
comes by constraining them to be consistent with his model’s predictions of these
outcomes.

Muth emphasized that his hypothesis “does not assert that the scratch work of
entrepreneurs resembles [an economic model’s] system of equations in any way.”
(1961, p. 317, emphasis in the original). However, he believed that, although boldly
abstract, his hypothesis offered a “sensible” way to acknowledge participants’ ratio-
nality – that their forecasts are related to their understanding of “the way the econ-
omy works” – in economic models (1961, p. 315).5 After all, the very meaning
of model building is that it formalizes an economist’s hypothesis about the process
driving aggregate outcomes and how they actually unfold over time.

Invoking this hypothesis, Lucas argued in the early 1970s that representing mar-
ket participants’ forecasts of aggregate outcomes to be inconsistent with the model’s

4According to the Merriam-Webster Dictionary, an individual is “rational [if he] has a latent or
active power to make logical inferences and draw conclusions that enable [him] to understand the
world about him and relate such knowledge to the attainment of ends.”

5Muth explicitly contrasted his hypothesis with Simon’s (1959) “bounded rationality” approach.
Bounded rationality assumes that, faced with insuperable obstacles to understanding the structure
of the economy, participants rely on forecasting rules – for example, adaptive expectations – that
are not explicitly related to “the way the economy works.” Muth (1961, p.316) stressed that his
“hypothesis is based on exactly the opposite point of view: that dynamic economic models do not
assume enough rationality” on the part of market participants.
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predictions of them presumes ex ante that participants will ignore forecast errors,
thereby foregoing profit opportunities time and again over an indefinite future. As
Lucas recounts in his Nobel lecture (1995, p. 255), the implication that inconsis-
tent models presume participants’ irrationality played a crucial role in persuading
macroeconomists to embrace REH.6

REH implements Muth’s hypothesis in models representing outcomes with a
stochastic process. Although doing so eliminates irrationality, it also fully con-
strains an REH model’s representation of participants’ forecasts. Thus, once an
economist assumes that market participants are rational and that he does not face
Knightian uncertainty, he can no longer accord participants’ forecasts an autonomous
role in driving aggregate outcomes. As Sargent put it in his interview with Evans
and Honkapohja (2005, p. 566): “in rational expectations models, people’s beliefs
are among the outcomes of our [economists’] theorizing. They are not inputs” to an
economist’s model.

As in REH models, applying Muth’s hypothesis in a KUH model constrains the
model’s representation of participants’ forecasts in terms of the model’s coefficients
and moments of its stochastic innovations. However, because a KUH model recog-
nizes that an economist faces Knightian uncertainty, imposing consistency within
the model does not fully constrain its representations of forecasts. The KUH ap-
proach thereby uncovers the key implication of Knightian uncertainty for building
macroeconomic models: an economist faces ambiguity about how rational partici-
pants forecast outcomes and make decisions.7

6Lucas (1995, p. 255 and 2001, p.13) emphasized that macroeconomic models of the 1960s,
which relied on adaptive expectations, were based on a “glaring” inconsistency, and thus were “the
wrong theory” of time-series regularities. For an extensive discussion of this revolutionary develop-
ment in macroeconomic theory, see Frydman and Phelps (2013). For a formal illustration of Lucas’
point and further discussion of how his arguments apply to behavioral-finance models, see Sections
5 and 8.3.

7Analogously to its role in REH models, Muth’s hypothesis enables economists to make use
of calibration in confronting a KUH model with time-series data. However, because a KUH model
does not fully constrain the relationship between parameters characterizing participants’ preferences
and/or technology and model-implied coefficients of aggregate outcomes, microeconomic estimates
of such parameters cannot be used to calibrate the model. This implication of Knightian uncertainty
underscores the importance of Hansen and Heckman’s (1996, p. 90) argument that the calibration
methodology should be based on an "explicit econometric framework." We provide an illustration
of how this can be done in a KUH model in Section 9 and Appendix B.
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By recognizing this ambiguity, KUH opens a way to build macroeconomic mod-
els that accord participants’ diverse forecasts an autonomous role in driving aggre-
gate outcomes, without presuming that participants are irrational.8 In this sense,
the KUH approach enables economists to realize the vision that motivated Phelps’s
(1970, p. 22) pioneering micro-foundations approach: because market participants
“maximize relative to their” own imperfect and diverse understandings of how the
economy works, their forecasts play an autonomous role in driving aggregate out-
comes, such as the inflation and unemployment rates. By ruling out such a role for
participants’ forecasts, the REH approach preempted this vision.9

Moreover, reliance on models that represent outcomes with a stochastic process
has rendered the REH and behavioral finance approaches irreconcilable on logical
grounds. The raison d’être of behavioral finance is that psychological and other
non-fundamental factors exert an autonomous influence on participants’ forecasts.
However, in order to accord these forecasts an autonomous role in a model spec-
ifying aggregate outcomes with a stochastic process, an economist must rely on
inconsistent representations of participants’ forecasts.

Thus, once an economist hypothesizes that a stochastic process can represent
how outcomes unfold over time, he can follow either the REH or the behavioral-
finance approach. However, he cannot build models that synthesize the core ideas
underpinning each of these approaches.10

KUH reveals a novel way to build models that rest on a synthesis of Muth’s hy-
8Diversity refers to differences in how market participants interpret the relationship between

time-t information and future outcomes, though the KUH approach also allows for heterogeneity of
information about fundamental factors to which market participants have access. In this sense, the
diversity in our KUH prototype model arises from recognizing that an economist faces Knightain
uncertainty. We assume here that participants have access to the same information about fundamen-
tals, such as corporate earnings or productivity, and leave for future research the development of a
KUH intertemporal model that allows for both diversity and informational asymmetry.

9For an early discussion of how REH supplanted the core idea of the micro-foundations research
program – that according autonomy to participants’ forecasts is the key to understanding movements
of aggregate outcomes – see Frydman and Phelps (1983). For a comparison of the Phelps micro-
foundations approach with recently proposed post-REH representations of participants’ forecasts,
see Frydman and Phelps (2013).

10In a notable recent book, Gennaioli and Shleifer (2018) provide a behavioral-finance account of
the 2008 financial crisis, thereby advancing an argument that the profession should abandon REH
models due to their inability to represent the autonomous effect of participants’ forecast errors on
economic outcomes.
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pothesis – the core idea underpinning the REH approach – and the compelling evi-
dence that non-fundamental factors, such as market sentiment, exert an autonomous
influence on participants’ forecasts, especially in asset markets.11 As in REH mod-
els, imposing consistency within a KUH model relates participants’ forecasts of
aggregate outcomes to fundamentals. Remarkably, Muth’s hypothesis also plays a
central role in representing the influence of psychological and other non-fundamental
factors on how participants’ forecast outcomes in terms of fundamentals.12

In developing KUH, we build on the ideas that motivated Frydman and Gold-
berg’s (2007, 2013a,b) attempt to formulate an approach – which they called Imper-
fect Knowledge Economics (IKE) – that recognizes the importance for macroeco-
nomic theory of unforeseeable change in the process driving aggregate outcomes.
Lacking the appropriate mathematical framework to characterize Knightian uncer-
tainty in this process, Frydman and Goldberg could not rely on Muth’s hypothesis
to represent participants’ forecasts. Consequently, they could not develop a coher-
ent approach to building intertemporal models that recognizes that economists as
well as market participants face Knightian uncertainty about the process driving
outcomes. KUH offers such an approach.

Opening macroeconomics and finance models to unforeseeable change poses
considerable challenges in terms of testing their predictions. The development of a
methodology for testing models that recognize that econometricians, like everyone
else, face Knightian uncertainty is an important topic for future research. However,
in Section 9 and Appendix B, we illustrate how existing econometric methods, par-
ticularly econometrically-based calibration, as advocated by Hansen and Heckman
(1996), can be adapted to confront the KUH prototype intertemporal model’s pre-
dictions with time-series data on earnings, dividends, and stock prices of companies
included in the S&P 500 index, as well as indicators of market sentiment extracted

11For an authoritative review of empirical evidence on the role of market sentiment in driving
stock prices, see Barberis et al. (1998).

12We follow convention in referring to "fundamentals" as exogenous variables that an economist
includes in his specifications of his model’s endogenous variables. We call "non-fundamentals" the
psychological as well as fundamental factors that influence only participants’ forecasts of aggregate
outcomes, for example the stock price and the inflation rate. For further examples and discussion,
see Remark 6 in Section 8.
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from the narrative market reports.13

The plan of the paper is as follows. Sections 2-4 explain and formally present
the mathematical framework that underpins the KUH approach. We characterize
Knightian uncertainty in a prototype intertemporal model and define the predic-
tions of the model’s exogenous and endogenous variables. Relying on these pre-
dictions, Sections 5-6 show how KUH applies Muth’s hypothesis to represent, in
terms of fundamental factors, participants’ forecasts and aggregate outcomes un-
der Knightian uncertainty. In Section 7, we show how a KUH model represents
the autonomous role played by market participants’ forecasts in driving outcomes.
Section 8 provides two formal examples of how a KUH model represents the au-
tonomous influence of market sentiment on participants’ forecasts without presum-
ing that participants forego profit opportunities. In Section 9, we sketch how the
existing econometric methodology, including calibration, can be adapted to con-
front KUH models with time-series data, and we illustrate this methodology in as-
sessing the adequacy of the predictions of a simple model for stock prices. Section
10 concludes the paper. Appendix A contains mathematical proofs of the theorems
and lemmas presented in the paper. Appendix B describes the data and presents the
details of our calibration methodology and econometric specifications, as well as
graphs and tables of the results.

2 Characterizing Knightian Uncertainty

Macroeconomic and finance models are intertemporal in the sense that they assume
that aggregate outcomes, such as the inflation rate and the stock price, are driven
at each point in time by market participants’ forecasts of these outcomes’ future
values. Regardless of the context, in order for the intertemporal representation of
an aggregate outcome to generate implications for time-series data, an economist
must represent participants’ forecasts in terms of some exogenous variables – for
example, corporate earnings in a present-value model of stock prices or total factor

13Shiller (2017) has argued that narrative market reports contain relevant information for build-
ing formal macroeconomics and finance models and confronting them with quantitative empirical
evidence. Section 8 and Appendix B.4 illustrate the particular importance of Shiller’s arguments
for building mathematical models of outcomes under Knightian uncertainty, which, by definition,
cannot be represented with a stochastic process.
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productivity in a New Keynesian macroeconomic model.14

In order to present how the KUH approach formalizes both risk and Knightian
uncertainty, we consider a variable, denoted by xt, which we refer to as corporate
earnings in the following. We formalize “risk” in the process driving earnings with
a standard stochastic specification at a point in time. Importantly, we formalize the
Knightian uncertainty faced by an economist by allowing the specification of the
process driving earnings to undergo change at times and in ways that cannot be
represented ex ante with a probabilistic rule such as Markov switching.

To focus on the key features of KUH’s mathematical framework, we employ
a particularly simple specification of the earnings process. We assume that log-
earnings follow a random walk with time-varying drift coefficients:

∆ log xt = µt + "x,t, (1)

for t = 1, 2, . . ., and where {µt}t=1,2,... is a sequence of deterministic constants and
"x,t are independent over time with mean zero and variance σ2x.

The conditional moments of the probability distribution of the stochastic inno-
vation "x,t, particularly its variance, represents (probabilistic) risk. Recognizing
that an economist faces Knightian uncertainty about the process driving earnings,
KUH does not specify a stochastic process for how the drift coefficient, µt, unfolds
over time. Instead, KUH hypothesizes that such change can be characterized with
ex ante conditions that constrain the values of µt to unfold between upper and lower
bounds.15

Specifically, at any time t, we constrain the coefficients,
{
µt+k

}
k=1,2,...

, to take
any value within time-varying intervals, which depend on these coefficients’ values
at t or earlier. We denote these intervals as follows:

µt+k 2 I
µ
t:t+k =

[
Lµt:t+k, U

µ
t:t+k

]
, (2)

where [L,U ] indicates an interval with lower and upper bounds given by L and
14See Section 3, for futher discussion and references to these models.
15Although the KUH approach bounds the extent of change in the model’s coefficients, it is com-

patible with large-scale unforeseeable change in how the models’ variables unfold over time.
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U . We write that µt+k 2 I
µ
t:t+k to indicate that µt+k lies within this interval, when

viewed from time t.
We refer to the constraints, such as in (2), as Knightian uncertainty (KU) con-

straints. A KUH model relies on such constraints to characterize Knightian uncer-
tainty in the processes driving its exogenous and endogenous variables. In order to
explicate how the KU constraint in (2) enables us to specify such characterizations
for earnings, we first note that the specification in (1) implies that earnings at time
t+ k are given by:

xt+k = xt exp(
kP
j=1

"x,t+j) exp(
kP
j=1

µt+j). (3)

When viewed from time t, the representations in (3) specifies earnings at any fu-
ture time t + k, xt+k, in terms of (i) earnings at time t, xt, (ii) the sequence of
i.i.d. stochastic innovations, {"x,t+j}, j = 1, 2, . . . , k, and, (iii) the sequence of de-
terministic drift coefficients

{
µt+j

}
j=1,2,...,k

, which undergo unforeseeable change
between t and t + k. Thus, the probability distribution of the future xt+k, condi-
tional on the time-t realization of earnings, xt and given the time-t values of the
drift coefficient µt, is not defined in a KUH model.

However, the KU constraint in (2) on the future values of the drift coefficients
enable us to specify at each point in time t, the probability measure, Pt, of the end-
points of the stochastic intervals within which xt+k lies, conditional on xt and given
the value of µt. The following theorem specifies this probability measure in terms
of the sequence of i.i.d. stochastic innovations, {"x,t+j}j=1,2,...,k:

Theorem 1 The KU constraint in (2) on the future values of the coefficients
{
µt+j

}
,

with 1 ≤ j ≤ k, implies that future earnings lie within the stochastic interval, Ixt:t+k,
when viewed from time t:

xt+k 2 Ixt:t+k =
[
Lxt:t+k, U

x
t:t+k

]
. (4)
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where the end-points of the interval Ixt:t+k in (4) are given by

Lxt:t+k= xt exp(
kP
j=1

"x,t+j) exp(
kP
j=1

Lµt:t+j), (5)

Uxt:t+k= xt exp(
kP
j=1

"x,t+j) exp(
kP
j=1

Uµt:t+j). (6)

This specifies the probability distribution in terms of {"x,t+j}j=1,2,..,k conditional on
xt and for the given time-t value of µt.

The specification in (5)-(6) of the end-points of the stochastic intervals within
which xt+k lies, when viewed from time t, defines a family of the time-t conditional
probability distributions, one of which represents earnings at t+k, according to the
model. However, recognizing that an economist faces Knightian uncertainty, KUH
does not specify at time t which of these distributions represents xt+k. Because this
ambiguity about the correct representation of the processes driving a KUH model’s
variables arises from unforeseeable change in these processes, we refer to the speci-
fications of the stochastic intervals in (5)-(6) as a time-tKnightian uncertainty (KU)
characterization of xt+k.

2.1 Knightian Uncertainty Constraints
The KU characterization in (5)-(6) depends on the specifications of the KU con-
straints that an economist chooses ex ante to represent the extent of unforeseeable
change in the drift coefficient

{
µt+j

}
j=1,2,...,k

. As with any economic model, an
economist would constrain change in a KUH model’s coefficients on the basis of
empirical relevance, conceptual plausibility, and tractability.

We consider a simple ex ante condition constraining the coefficients, µt+1, to
take any value within intervals the bounds of which depend on the values of µt. We
state this condition, which we refer to as the Knightian uncertainty (KU) constraint,
as follows:

Assumption 1 Given the value µt, µt+1 can take any value within the interval given

10



by:

µt+1 2 I
µ
t:t+1 = [L

µ
t:t+1, U

µ
t:t+1] = [µ− + ρµ

(
µt − µ−

)
, µ+ + ρµ

(
µt − µ+

)
], (7)

where µ− < µ+, 0 ≤ ρµ < 1 and the initial condition is µ− ≤ µ1 ≤ µ+.

Assumption 1 neither imposes conditions on exactly how µt will unfold over
time nor specifies a probabilistic rule to determine which value the coefficient µt+1
will take within the interval Iµt:t+1. However, the condition (7) specifies the end-
points of this interval in terms of the lower and upper bounds, µ− and µ+, respec-
tively, and an autoregressive parameter, ρµ.

The key implication of the KU constraint in (7) is that, when viewed from time
t, Knightian uncertainty about µt at any future t+k is characterized by the set of ex-
ogenously fixed constants, (µ−, µ+, ρµ), which we refer to as Knightian uncertainty
(KU) parameters. We state this property as a lemma:

Lemma 1 The KU constraint (7) implies that, viewed from time t, for j ≥ 1,

µt+j 2 I
µ
t:t+j = [L

µ
t:t+j, U

µ
t:t+j], (8)

Lµt:t+j =µ− + ρ
j
µ

(
µt − µ−

)
, and Uµt:t+j = µ+ + ρ

j
µ

(
µt − µ+

)
, (9)

and that the end-points of the intervals satisfy the following intertemporal monotonic-
ity property:

Lµt:t+j+1 ≤ L
µ
t+1:t+j+1 and Uµt:t+j+1 ≥ U

µ
t+1:t+j+1. (10)

Assumption 1 formalizes the idea that, when viewed from time t, Knightian un-
certainty about the future values of µt+j increases with the time horizon j. That is,
for 0 < ρµ < 1, the size of the interval I

µ
t:t+j within which µt+j lies, when viewed

from time t, widens with the increase in horizon j. In this sense, Knightian uncer-
tainty about the future values of µt+j increases with the time horizon.16 However,

16For ρµ = 0, the interval also reduces to Iµt:t+j =
[
µ−, µ+

]
for all j, thereby characterizing

Knightian uncertainty about future µt+j to be the same for all time horizons j.
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as j !1, Knightian uncertainty about µt+j converges to
[
µ−, µ+

]
.17

By assuming that the evolution of the drift parameter depends on its history,
and that ascertaining its range of possible values becomes increasingly difficult at a
more distant horizon, the constraint in (8) provides a plausible and tractable way to
characterize Knightian uncertainty in a variety of economic contexts. Because this
constraint is specified in terms of a parsimonious set of parameters, a calibration
methodology can be used to assess its relevance, thereby confronting a KUH model
with time-series data.18

Section 9 presents an example of a quantitative calibration of our prototype
model of the stock price on the basis of data for earnings, dividends, and stock prices
of companies included in the S&P 500 Index. The results indicate that µ− < 0 and
µ+ > 0, that is, µt could take both positive and negative values. Moreover, the
empirical value of ρµ satisfies, 0 < ρµ < 1, which supports the idea, formalized by
(8) that, viewed from time t, the extent of Knightian uncertainty increases with the
time horizon j.19

In the next section, we show how the KU constraint in (8) underpins KUH’s
characterization of Knightian uncertainty in the process driving earnings.

2.2 Parametric Characterization of Knightian Uncertainty in
Earnings

The moments of the stochastic innovation "x,t in the specification of the earnings
process in (1) characterize measurable uncertainty in this process at a point in time.
The KU parameters (µ−, µ+, ρµ) play a role analogous to such moments in char-
acterizing Knightian uncertainty in how the process driving earnings unfolds over
time. The following lemma presents such a parametric characterization of KU in
the earnings process:

17For ρµ = 1, the constraint in (8) reduces to µt+j = µt+j−1 for all t and j, thereby assuming
that an economist does not face Knightian uncertainty about the earnings process.

18For a pioneering argument in favor of representing outcomes in terms of a parsimonious set of
exogenous parameters to facilitate the use of calibration methodology, see Prescott (1986).

19The econometric calibration of the model in Section 9 indicates that ρµ is roughly 0.7, and
hence that KU increases (decreases) fast to µ+ (µ−).
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Lemma 2 The KU constraint in (8) on the bounds within which µt+j , j = 1, 2, . . . , k,
lie specifies the end-points of the stochastic interval, in (4), within which xt+k lies,
when viewed from time-t, in terms of xt, µt and a set of exogenously fixed KU pa-
rameters (µ−, µ+, ρµ):

Lxt:t+k= xt exp(
kP
j=1

"x,t+j) exp(
kP
j=1

(µ− + ρ
j
µ(µt − µ−))), (11)

Uxt:t+k= xt exp(
kP
j=1

"x,t+j) exp(
kP
j=1

(µ+ + ρ
j
µ(µt − µ+))). (12)

3 A Simple Prototype Intertemporal Model

The time-t KU characterization of exogenous variables, such as earnings, in (11)
and (12), enables economists to characterize Knightian uncertainty of endogenous
variables in models of a wide range of aggregate outcomes. In order to present
the key features of how the KUH approach can be used to build macroeconomics
and finance models, we consider a simple intertemporal model for one aggregate
outcome: the stock price. The model assumes that participants bid this price to the
level that satisfies the following relationship:

pt = γ (Ft (dt+1) + Ft (pt+1)) , (13)

where pt is the stock price, dt denotes dividends, Ft (·) stands for the time-t values
of the market’s (an aggregate of its participants’) forecasts of dividends and stock
prices at time t+ 1, and γ is a discount factor, which is assumed to be constant.20

Shiller (1981, p. 424) points out that the intertemporal representation of the
stock price in (13) can be interpreted as a no-arbitrage condition, because this rep-
resentation follows from equating the market’s forecast of the one-period holding
return from buying a stock at time t and selling it at time t+ 1 with the one-period
rate of interest. He relies on (13) in his pathbreaking argument that the REH-based
present-value model for the stock price is inconsistent with time-series data.21 Al-

20Using a prototype model based on (13) to exposit the KUH approach is analogous to Barberis
et al.’s (1998) reliance on a model assuming risk-neutrality and a constant discount rate to represent
their approach to behavioral finance.

21However, the subsequent literature uncovered evidence that the discount factor is not constant,
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though, for the sake of concreteness, we refer to the representation in (13) as “a
no-arbitrage condition” and to the variables pt and dt as the “the stock price” and
“dividends,” our objective in this paper is not to present a fully developed KUH
model of the stock price that would enable us to reexamine Shiller’s findings re-
garding the adequacy of the present-value model under Knightian uncertainty.

We set the discount factor to a constant and make other simplifying assumptions
to expound KUH’s potential for building consistent intertemporal models under
Knightian uncertainty and deriving their predictions for time-series data.22 More-
over, notwithstanding the simplifying assumptions underpinning the representation
of the stock price in (13), this intertemporal specification captures the key feature of
the models that are typically used in other contexts in macroeconomics and finance
theory. For example, analogously to the representation in (13), the New Keynesian
(NK) model relates the inflation rate to participants’ forecasts of its future values.23

4 The Knightian Uncertainty Expectation

The no-arbitrage condition (13) relates the stock price at time t to an aggregate of
market participants’ forecasts of dividends and stock prices in future periods. KUH
relies on Muth’s (1961) hypothesis to constrain the specification of participants’
forecasts to be consistent with the model’s prediction of these outcomes. In order to
implement Muth’s hypothesis in a KUH model based on the representation in (13),
we must define the model’s predictions of dividends and prices under Knightian
uncertainty.

Because KUH opens an economist’s model to unforeseeable change, the model
does not represent outcomes with a stochastic process, which renders the standard
(conditional) expectation undefined. Instead, we rely on KUH’s characterization
of Knightian uncertainty in the model’s exogenous variables, such as earnings, to

leading proponents of REH to question Shiller’s interpretation of his findings as a decisive rejection
of the REH present-value models. For an insightful and authoritative survey of this evidence, viewed
through the lens of REH models, see Cochrane (2011).

22Developing a KUH model of asset prices that would allow for a time-varying discount factor
and relax other simplifying assumptions of the prototype model is left for future research.

23See Clarida et al. (1999) for formal examples, an extensive review of the NK models, and
further references. For a classic treatment of the New Keynesian approach to monetary theory and
policy, see Woodford (2003).
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define the model’s predictions of dividends and prices.

4.1 Characterizing Knightian Uncertainty in the Relationship
Between Dividends and Earnings

As in REH models, in order to derive the model-implied relationship between the
stock price and earnings, we first relate dividends to earnings. Here, we specify a
linear relationship between dividends dt and earnings xt, according to which the im-
pact of earnings on dividends is given by a sequence of time-varying deterministic
coefficients {bt}t=1,2,...,

dt = btxt + "d,t, (14)

where "d,t are independent over time with mean zero and variance σ2d. Moreover,
we allow bt to undergo unforeseeable change, but, analogously to (2), we constrain
the coefficients {bt}t=1,2,..., to take any value within time-varying intervals:

Ibt:t+k =
[
Lbt:t+k, U

b
t:t+k

]
. (15)

Analogously to the argument leading to the Theorem 1’s characterization of KU in
the earnings process, the specifications in (1) and (14) imply that dividends at time
t+ k are given by:

dt+k = xtbt+k exp(
kP
j=1

"x,t+j) exp(
kP
j=1

µt+j) + "d,t+k. (16)

When viewed from time t, the representation in (16) specifies dividends at any fu-
ture time t + k, dt+k, in terms of (i) earnings at time t, xt, (ii) the sequence of
i.i.d. stochastic innovations,{"x,t+j} , j = 1, 2, . . . , k, and "d,t+k, and, (iii) the time-
varying coefficients (

{
µt+j

}
j=1,2,...,k

, bt+k), which undergo unforeseeable change
between t and t + k.24 Thus, the probability distribution of the future dt+k, con-
ditional on the time-t realization of earnings, xt and given the time-t values of the

24This contrasts with the KUH model’s REH and behavioral-finance counterparts, which, con-
ditional on (µt, bt), would specify future values of these coefficients,

({
µt+j

}
j=1,2,...,k

, bt+k

)

precisely – to be either unchanging over time or changing according to a probabilistic rule, such as,
for example, Markov switching.
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model’s coefficients (µt, bt), is not defined in a KUH model.
However, the KU constraints, in (2) and (15), on the future values of the model’s

coefficients enable us to specify at each point in time t, the probability measure, Pt,
and the corresponding expectation, Et, of the end-points of the stochastic inter-
vals, conditional on xt and given the values of µt and bt. The following corollary
to Theorem 1 specifies this probability measure in terms of the sequence of i.i.d.
stochastic innovations, {"x,t+j}j=1,2,...,k and "d,t+k.

Corollary 1 The KU constraints in (2) and (15) on the future values of the coef-
ficients {µt+j}, j = 1, 2, ..., k, and bt+k imply that future dividends lie within the
stochastic interval, Idt:t+k, when viewed from time t, in terms of (µt, bt),

dt+k 2 Idt:t+k =
[
Ldt:t+k, U

d
t:t+k

]
, (17)

where the end-points of the interval Idt:t+k in (17) are given by

Ldt:t+k= xtL
b
t:t+k exp(

kP
j=1

"x,t+j) exp(
kP
j=1

Lµt:t+j) + "d,t+k, (18)

Udt:t+k= xtU
b
t:t+k exp(

kP
j=1

"x,t+j) exp(
kP
j=1

Uµt:t+j) + "d,t+k. (19)

This specifies the probability distribution in terms of {"x,t+j}j=1,2,..,k conditional on
xt and for the given time-t values of µt and bt.

4.2 Parametric Characterization of Knightian Uncertainty in
Dividends

The specifications in (18) and (19) show that the stochastic interval within which
dt+k lies depends on the particular specification of the KU constraint that an econo-
mist chooses ex ante to bound the coefficients bt+k and µt+k. Although in some
contexts, an economist may characterize unforeseeable change in the relationship
between the two variables with different ex ante conditions than those characteriz-
ing such change in µt, here we specify the KU constraint for bt+k analogously to
the constraint in (7) bounding the drift of the earnings process:
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Assumption 2 Given the value bt, bt+1 can take any value within the interval given
by

bt+1 2 Ibt:t+1 = [L
b
t:t+1, U

b
t:t+1] = [b− + ρb (bt − b−) , b+ + ρb (bt − b+)] , (20)

where b− < b+, 0 ≤ ρb < 1 and the initial condition is b− ≤ b1 ≤ b+.

Analogously to Lemma 1, the following lemma specifies the KU constraint for
bt+j , for j ≥ 1.

Lemma 3 The KU constraint (20) implies that viewed from time t, for j ≥ 1,

bt+j 2 Ibt:t+j =
[
Lbt:t+j, U

b
t:t+j

]
, (21)

Lbt:t+j = b− + ρ
j
b (bt − b−) , and U bt:t+j = b+ + ρ

j
b (bt − b+) , (22)

and that the end-points of the intervals satisfy the following intertemporal monotonic-
ity property:

Lbt:t+j+1 ≤ L
b
t+1:t+j+1 and U bt:t+j+1 ≥ U

b
t+1:t+j+1, (23)

where b+ > b− and 0 ≤ ρjb < 0.

If b_ > 0, then Assumption 2 formalizes the qualitative regularity that earn-
ings have a non-negative impact on dividends at all points in time. Although the
condition (21) does not specify a particular value that bt+j will take at t + j, this
condition does constrain the value of bt+j to lie within the interval, Ibt:t+j , when
viewed from time t.25 The following lemma states the implication of this constraint
for the parametric specification of Knightian uncertainty in the dividend process:

Lemma 4 Lemmas 2 and 3 specify the end-points of the stochastic interval, in (17)
within which dt+k lies, when viewed from time-t, in terms of µt, bt and a set of

25As its counterpart for µt+j in (8), the KU constraint in (21) seems plausible in representing a
time-varying relationship between dividends and earnings. In Section 9, we provide some empirical
support for this condition on the basis of data for companies included in the S&P 500 stock index.
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exogenously fixed parameters (µ−, µ+, ρµ, b−, b+, ρb) :

Ldt:t+k= xtL
b
t:t+k exp(

kP
j=1

"x,t+j) exp(
kP
j=1

Lµt:t+j) + "d,t+k, (24)

Udt:t+k= xtU
b
t:t+k exp(

kP
j=1

"x,t+j) exp(
kP
j=1

Uµt:t+j) + "d,t+k, (25)

where Lbt:t+k, U bt:t+k, L
µ
t:t+j, and U

µ
t:t+j are given in (22) and (8) respectively.

4.3 The Knightian Uncertainty Expectation of Dividends
Lemma 4 shows how the KU characterization of xt+k, in (11) and (12) enables us to
characterize the Knightian uncertainty in dt+k. The model-implied representations,
in (24) and (25), of the limits of the stochastic interval within which dt+k lies,
when viewed from time t, specify a family of the time-t conditional probability
distributions. Although one of these distributions represents dividends at t + k,
a KUH model, recognizing that an economist faces Knightian uncertainty, does
not specify at time t which of them represents the process that will actually drive
dt+k. Thus, the (standard) time-t conditional expectation of dt+k is undefined in the
model.

However, the KU characterization of dt+k in Lemma 4 enables us to specify the
interval within which the future value of dt+k is expected to lie, when viewed from
time t. We refer to this interval as the Knightian uncertainty expectation (KE) of
dt+k and formally define this as the Et expectation of the end-points of the interval
Idt:t+k, in (24) and (25), within which dt+k is expected to lie, conditional on xt and
for the given values of µt and bt:

KEt (dt+k) =
[
Et
(
Ldt:t+k

)
, Et

(
Udt:t+k

)]
. (26)

Computing Et of the end-points in (24) and (25) we find that,

KEt (dt+k) = xtv
k
[
ldt:t+k, u

d
t:t+k

]
, (27)
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where v = E exp ("x,t) and

ldt:t+k=
(
b− + ρ

k
b (bt − b−)

)
exp(

kP
j=1

(µ− + ρ
j
µ(µt − µ−))), (28)

udt:t+k=
(
b+ + ρ

k
b (bt − b+)

)
exp(

kP
j=1

(µ+ + ρ
j
µ(µt − µ+))). (29)

The interval KEt (dt+k) in (27) represents the time-t prediction of the range of
values within which dividends are expected to lie at t+ k in terms of xt, µt, bt,, the
set of exogenously fixed KU parameters, (µ−, µ+, ρµ, b−, b+, ρb), and the moments
of the innovation, "x,t.

Note that if we consider the conditional expectation of dt given xt there is no
role for Knightian uncertainty in how dividends unfold over time. But we can for-
mally define the Knightian expectation as the point (a degenerate interval) given
by,

KEt (dt) = Et (dt) = btxt.

4.3.1 Iterated Knightian Uncertainty Expectations

The analysis of the implications of the no-arbitrage condition in (13), involves iter-
ations of KE, such as KEt (KEt+1(dt+2)). This involves two (or more) iterations.
First, as discussed above,KEt+1(dt+2) is computed asEt+1 of the end-points of the
stochastic interval implied by the KU constraints for dt+2, when viewed from time
t + 1. The end-points of the resulting interval, KEt+1(dt+2), depend on the time
t+1 values of bt+1 and µt+1, as well as earnings, xt+1; thus, the conditional expecta-
tion Et of these end-points is not well defined at time t. However, applying the KU
constraints again, as well as iterating xt+1, enables us to express these end-points
in terms of bt and µt (and xt). This renders Et of the end-points of KEt+1(dt+2),
and thus KEt (KEt+1(dt+2)), well-defined. The following theorem derives such
iterated Knightian expectations and shows that the constraints for bt+j and µt+j , in
(22) and (9), imply that the analog of the law of iterated expectations holds under
Knightian uncertainty expectations.

Theorem 2 With KEt (dt+k) defined in (26), it follows for k ≥ 0 under the KU

19



constraints in (8) and (21) that:

KEt (dt)= btxt, (30)

KEt (dt+k)= xt[L
b
t:t+kv

k exp(
kP
j=1

Lµt:t+j), U
b
t:t+kv

k exp(
kP
j=1

Uµt:t+j)], (31)

where v = E exp ("x,t), and Lbt:t+k, U bt:t+k, L
µ
t:t+j , and U

µ
t:t+j are specified in (22)

and (9). Furthermore, the following iterative property of KE holds:

KEt (dt+k) = KEt (KEt+1 (. . . KEt+k−1 (dt+k) . . .)) . (32)

Remark 1 The property in (32) may be viewed as a law of iterated Knightian un-
certainty expectations. It holds for the characterizations of Knightian uncertainty
in the dividends process in (24)-(25).26

5 Muth’s Hypothesis Under Knightian Uncertainty

KUH’s representations of market participants’ forecasts of outcomes, such as divi-
dends and stock prices, rest on the premise that participants are rational, in the sense
that they are goal-oriented (typically assumed to mean profit-seeking) and relate the
forecasts of payoff-relevant outcomes to some understanding, albeit imperfect, of
the process driving these outcomes. Muth (1961) argued that an economist can
relate participants’ forecasts to rational considerations by representing their under-
standings of the processes driving dividends and stock prices with his own under-
standing of these processes, as formalized by his model.

Muth (1961, pp. 315-317) was well aware that “there are considerable [...]
differences of opinion” about the processes driving outcomes. Importantly, he em-
phasized that his hypothesis should not be “confused [...] with a pronouncement
as to what [rational participants] ought to do,” and that it does not assert that their
forecasts, are "perfect." Muth believed that, although boldly abstract, representing
participants’ forecasts as being consistent with models’ predictions of outcomes

26This property may, or may not, hold for a different KU characterizations. This is in contrast to
REH models where the complete stochastic specifications for all variables implies that the law of
iterated expectations always applies. We leave for future research the characterization of a general
class of KU constraints under which the property in (32) holds.
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was a “sensible” way to acknowledge participants’ rationality – that their forecasts
are related to “the way the economy works.” That, after all, is precisely what an
economist hypothesizes and formalizes with his own model.

Relying on this premise, Lucas (1995, p. 254-255) argued that Muth’s hypoth-
esis should be considered “the principle” of coherent model building in macroeco-
nomic and finance theory. He pointed out that when an economist relates partic-
ipants’ forecasts to how “the economy works” in a way that is inconsistent with
the predictions of his own model, he contradicts his model’s hypothesis: that it
represents how outcomes actually unfold over time.

By imposing consistency within an intertemporal model, REH removed the
“glaring” inconsistency that characterized the intertemporal macroeconomic mod-
els of the 1960s. Analogously, KUH relies on Muth’s hypothesis to construct co-
herent models that recognize that not only market participants, but economists as
well, face Knightian uncertainty about the process driving outcomes.

5.1 REH’s Implementation of Muth’s Hypothesis
In order to highlight the main distinctive features of KUH’s application of Muth’s
hypothesis, we first briefly consider REH’s application of the hypothesis in the
context of the specifications of earnings and dividends in (1) and (14).

Constraining µ+ = µ− = µ and b+ = b− = b, in (7) and (20), formalizes
the assumption that the processes driving earnings and dividends do not undergo
unforeseeable change, thereby reducing our KUH prototype to its REH counterpart.

As we next illustrate formally, REH’s application of Muth’s hypothesis about
how economists’ models can recognize that participants rely on rational considera-
tions has a crucial implication: the conditional expectation of an economist’s own
stochastic specification of dividends represents precisely how every market partici-
pant understands and forecasts dividends.

To this end, we let F i
t (dt+k) and F

j
t (dt+k) denote the values of the forecasts of

dt+k selected by any two market participants, say i and j. The REH version of our
prototype represents the time-t forecasts of dividends by every participant, as well
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as the market, at any t+ k for k ≥ 1 and for any (participants) i and j as follows:

F i
t (dt+k) = F

j
t (dt+k) = Ft(dt+k) = 'xt, (33)

where Ft(dt+k) denotes the value of the market’s (an aggregate of its participants)
forecast, and

' = vkb exp (kµ) . (34)

Remark 2 The representation in (34) illustrates the key implication of assuming
that the process driving outcomes, such as dividends, does not undergo unforesee-
able change. Applying Muth’s hypothesis in such models, as REH does, constrains
representations of participants’ forecasts of dividends at each t + k, dt+k, to be
uniform, in the sense that every market participant is assumed to select exactly the
same quantitative forecast of dividends in making his demand and supply decisions.
Moreover, REH fully determines the singular representation of the so-called “rep-
resentative agent’s” forecasts in terms of the model’s coefficients, (b, µ) and the
moments of its stochastic innovations, v.

5.2 Relating Participants’ Forecasts of Dividends to Earnings
under Knightian Uncertainty

Having defined an economic model’s predictions under Knightian uncertainty, we
apply Muth’s hypothesis in our prototype KUH model. As with REH models, the
hypothesis enables an economist using a KUH model to acknowledge rationality
in participants’ forecasting, thereby relating the specification of their forecasts of
aggregate outcomes, such as the stock price, to fundamental factors, such as earn-
ings. However, in contrast to REH’s representations, imposing consistency in a
model that recognizes an economist’s Knightian uncertainty yields neither precise
nor uniform representations of participants’ forecasts.

A KUHmodel formalizes an economist’s understanding that the process driving
outcomes undergoes unforeseeable change. KUH implementsMuth’s hypothesis by
constraining the model’s representations of participants’ forecasts of dividends and
stock prices to be consistent with its predictions of these outcomes. Consequently,

22



the model does not represent how participants forecast these outcomes with a sto-
chastic process. Applying Muth’s hypothesis in a KUH model thus represents that
market participants also understand that the process driving outcomes undergoes
unforeseeable change.

To demonstrate this formally, we show how our KUH prototype represents par-
ticipants’ forecasts of dividends in terms of earnings. The KE expectation in (31)
specifies the interval within which dt+k is expected to lie, according to the KU char-
acterization of dividends in (24)-(25). Applying Muth’s hypothesis, we represent
the value of the ith participant’s time-t forecast of dt+k to be one of the points within
the KE interval in (31):

F i
t (dt+k) = '

i
t:t+kxt 2 KEt (dt+k) . (35)

The expression for KEt (dt+k) in (31) implies that, according to the model, the
interval, I't:t+k, within which 'i lies is given by

'it:t+k 2 I
'
t:t+k =

[
L't:t+k, U

'
t:t+k

]
= vk

[
ldt:t+k, u

d
t:t+k

]
, (36)

where ldt:t+k and udt:t+k are specified in (28) and (29).
The representation in (35)-(36) formalizes the idea that recognizing that an

economist faces Knightian uncertainty means that his model does not determine
completely which particular value of F i

t (dt+k) a market participant will select at
time t.27 However, although Muth’s hypothesis neither determines the particular
values that the coefficients 'it:t+k in (36) take for any i, nor restricts these coeffi-
cients to be the same for all i, the hypothesis does constrain the values of all 'it:t+ks
to lie within the interval I't:t+k, in (36). Denoting an aggregate of 'it:t+ks by 't:t+k,
and the corresponding aggregate of F i

t (dt+1) by Ft (dt+1)), we formally state this:

Ft (dt+k) = 't:t+kxt, (37)
27If an economist were to specify a probabilistic rule that would enable him to represent which

specific value F it (dt+k) takes within the intervalKEt (dt+k), in (35), he would be able to represent
aggregate outcomes with a stochastic process, thereby assuming that he does not face Knightian
uncertainty. For an example of such an approach and further discussion, see Ilut and Scheider
(2014).
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where 't:t+k 2 I
'
t:t+k =

[
L't:t+k, U

'
t:t+k

]
, and the model does not specify the partic-

ular value that 't:t+k takes within the interval I
'
t:t+k.

Herein lies the true significance of Muth’s hypothesis for macroeconomics and
finance theory, as well as macroeconometrics under Knightian uncertainty. Once
an economist recognizes that the process driving aggregate outcomes undergoes
unforeseeable change, he faces ambiguity about the precise values of the forecasts
that underpin rational participants’ decisions. However, because KUH character-
izes Knightian uncertainty with ex ante constraints on the extent of unforeseeable
change, applying Muth’s hypothesis in the model enables an economist to impose
bounds on his ambiguity about these values.

As we show in the remainder of this paper, such bounds on representations of
participants’ forecasts of dividends are essential to a KUH model’s derivation of
the relationship between the stock price and earnings. Moreover, because Muth’s
hypothesis does not constrain a KUH model’s representation of participants’ fore-
casts fully, the hypothesis enables economists to represent the roles played by both
fundamental and non-fundamental factors, such as market sentiment, in how par-
ticipants forecast dividends and stock prices. KUH thus reveals a path to building
macroeconomics and finance models that synthesize the core ideas underpinning
the REH and behavioral-finance approaches in a way that is compatible with the
diversity and rationality that characterize participants’ forecasts.

6 The Stock Price under Knightian Uncertainty

In Section 5.1, we illustrated how the REH counterpart of our KUH prototype de-
termines the particular values of the model-consistent representation of Ft (dt+1).
As is well known, applying REH in the intertemporal representation in (13),

pt = γ (Ft (dt+1) + Ft (pt+1)) , (38)

determines the particular values of the stock price set by the market at time t, pt
in terms of the REH model’s coefficients and the moments of its stochastic innova-
tions.

Like its REH counterpart, a KUHmodel assumes that the no-arbitrage condition
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in (38) summarizes how market participants’ demand and supply decisions – made
on the basis of the specific values of their forecasts of dividends and prices, as
aggregated by Ft (dt+1) and Ft (pt+1) – set the value of pt . However, recognizing
Knightian uncertainty on the part of an economist, a KUH model does not specify
the particular value of the market’s quantitative forecast, Ft (dt+1). Instead, from
(37), the model represents this forecast to lie in the interval, that is, Ft (dt+1) 2
KEt (dt+1). Consequently, the KUH model does not represent the particular value
of the stock price. However, as we show next, the model specifies the interval within
which the value of the price pt set by the market, according to (38) lies at each t.

6.1 A No-Arbitrage Price Interval
In this section, we define the concept of a no-arbitrage interval Ipt that satisfies the
interval analog of the no-arbitrage condition in (38). Moreover, we show that at any
point in time, pt 2 Ipt , while Ft (dt+1) 2 KEt (dt+1) and Ft (pt+1) 2 KEt

(
Ipt+1

)
.

In order to define Ipt , we make the following assumption, which is the interval
version of the well-known transversality condition.

Assumption 3 Assume that γ is chosen such that γv exp
(
µ+
)
< 1, where v =

E exp ("x,t).

Given this assumption, we define Ipt as follows.

Definition 1 Using the representation of the KE intervals in (31) within which dt+k
is expected to lie, we define the following interval:

Ipt =
1P
k=1

γkKEt (dt+k) . (39)

Because, as the following theorem establishes, pt 2 Ipt and I
p
t satisfies the

interval analogue of the (pointwise) no-arbitrage condition in (38), we refer to Ipt
as a no-arbitrage price interval.

Theorem 3 Under Assumption 3, the interval Ipt in (39) is well-defined, and satis-
fies the no-arbitrage interval condition,

Ipt = γ
(
KEt (dt+1) +KEt

(
Ipt+1

))
. (40)
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Moreover, Ipt is given by,

Ipt =
1P
k=1

γkKEt (dt+k) = xt [L
p
t , U

p
t ] , (41)

where

Lpt =
1P
k=1

γkvkLbt:t+k exp(
kP
j=1

Lµt:t+j), (42)

Upt =
1P
k=1

γkvkU bt:t+k exp(
kP
j=1

Uµt:t+j), (43)

and the model-implied bounds Lbt:t+k, U bt:t+k, L
µ
t:t+j , and U

µ
t:t+j are specified in (9)

and (22).

Remark 3 In the special case in which ρµ = ρb = 0, in (9) and (22), the Knightian
uncertainty about future bt+k and µt+k is the same for all horizons, k, and the no-
arbitrage stock-price interval in (39) simplifies to Ipt = xt [Lp, Up], with

Lp = b−
γv exp(µ−)

1−γv exp(µ−)
and Up = b+

γv exp(µ+)

1−γv exp(µ+)
.

Remark 4 Constraining µ+ = µ− = µ and b+ = b− = b, reduces our KUH proto-
type to its REH counterpart. This collapses the no-arbitrage stock-price interval in
Theorem 3 to the point that represents the value of the stock price set by the market
precisely and determines it completely in terms of the model’s coefficients and the
moments of its stochastic innovations:

pt = θxt, with θ = b γv exp(µ)
1−γv exp(µ) . (44)

Like its REH counterpart in (44) a KUH model’s representation in (41) relates
stock prices to earnings, which we may write as

pt = θtxt 2 Ipt , (45)

where, with Lpt and U
p
t defined in (42) and (43), θt 2 [L

p
t , U

p
t ] such that θt is a time-

varying coefficient. However, in contrast to its REH counterpart’s representation
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for pt in (44), the KUH model does not imply the specific value of θt and thus pt, at
any t.

Remark 5 Although a KUH model does not specify the particular values that θt,
and thus pt, actually take within their respective intervals, the model-implied speci-
fications of the intervalsKEt (dt+k), in (37), mean that pt lies within the interval Ipt
in (41). From (9) and (22), the end-points of this interval, in (42) and (43), depend
on xt, µt, bt, the set of exogenously fixed KU parameters, (µ−, µ+, ρµ, b−, b+, ρb),
and the moments of the innovation, "x,t.28

6.2 Relating Participants’ Forecasts of Stock Prices to Earnings
Under Knightian Uncertainty

As we did in representing participants’ forecasts of dividends, we rely on Muth’s
hypothesis to constrain the model’s representation of Ft (pt+1). To this end, we
note that the specification of the no-arbitrage interval in Ft (pt+1) implies that Ipt+1
depends on xt+1, the values of which are expected to lie within the interval (4) for
k = 1, when viewed from time t.Thus, the time-tKnightian uncertainty expectation
of Ipt+1 is given by:

KEt
(
Ipt+1

)
= xt[L

φ
t , U

φ
t ], (46)

where

Lφt =
1P
k=1

γkvk+1Lbt:t+1+k exp(
k+1P
j=1

Lµt:t+j), (47)

Uφt =
1P
k=1

γkvk+1U bt:t+1+k exp(
k+1P
j=1

Uµt:t+j). (48)

Applying Muth’s hypothesis, the KUH model represents an ith participant’s fore-
cast, F i

t (pt+1), to be a point in the interval KEt
(
Ipt+1

)
within which the price set

28Such model-implied parameterization of the interval within which the price actually set by the
market at time t lies enables us to confront the interval predictions of a KUH model with econo-
metric estimates of the model’s time-varying coefficients and the moments of the model’s stochastic
innovations. In Section 9 and Appendix B.3, we illustrate such a quantitative calibration exercise,
which combines Kydland and Prescott’s (1982) original calibration methodology with an explicit
econometric framework, as advocated by Hansen and Heckman (1996).
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by the market at t+ 1 is expected at time t to lie:

F i
t (pt+1) 2 KEt

(
Ipt+1

)
.

Denoting by Ft (pt+1) the market’s (aggregate) forecast of pt+1, the expressions for
KEt (pt+1) in (46)-(48) imply that, according to the model,

Ft (pt+1) = φtxt, (49)

where φt 2 I
φ
t = [L

φ
t , U

φ
t ].

7 How Fundamentals Drive Stock Prices: An Autonomous Role
for Participants’ Forecasts

We have shown that imposing consistency within a KUHmodel, in contrast to doing
so within its REH counterpart, does not fully constrain representations of partici-
pants’ forecasts of dividends and prices. In this sense, a KUH model formalizes
the idea that participants’ forecasts play an autonomous role in driving aggregate
outcomes, such as the stock price. To present this point formally, we note that by
Theorem 3, the no-arbitrage condition in (38), implies that

pt 2 Ipt = γ(KEt (dt+1) +KEt
(
Ipt+1

)
). (50)

Thus, the model represents the price actually set by the market to be one of the
points within the interval Ipt . Moreover, although the model does not specify the
particular value that pt takes, it does assume that this price satisfies the intertemporal
relationship pt = γ (Ft (dt+1) + Ft (pt+1)). Using the representation of Ft (dt+1),
in (37) for k = 1, and the representation of Ft (pt+1) , in (49), we can formally
write pt as follows:

pt = γ('t + φt)xt, (51)

where't 2 I
'
t:t+1 =

[
L't:t+1, U

'
t:t+1

]
and φt 2 I

φ
t =

h
Lφt , U

φ
t

i
, whileL't:t+1, U

'
t:t+1, L

φ
t

and Uφt are specified in (36) and in (47)-(48). Also to simplify notation, 't stands
for 't:t+1.
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Recognizing that an economist’s faces Knightian uncertainty, KUH does not
represent the precise values that 't and φt, and thus Ft (dt+1) and Ft (pt+1), take
within their respective intervals. Thereby, KUH implies that an economist faces
ambiguity about how rational participants forecasts drive their demand and supply
decisions, which, in turn, result in the price pt set by the market at t. This am-
biguity – that an economist’s model does not fully constrain its representations of
participants’ forecasts – is just another way of stating that these forecasts play an
autonomous role in how the model represents the price at t, pt.

The autonomy of participants’ forecasts in setting the stock price at a point in
time implies that participants’ revisions of their forecasts play an autonomous role
in driving the movements of aggregate outcomes, such as the stock price, over time.
Using (51), we state this formally as follows using (51):

∆pt = γ ('t + φt)∆xt + γ (∆'t +∆φt) xt−1, (52)

where∆pt = pt−pt−1. The term γ ('t + φt)∆xt represents the effect of the change
in earnings on stock prices between t− 1 and t, while the term γ (∆'t +∆φt) xt−1
represents the effect of the change in the coefficients, which may depend on other
factors (for example, market sentiment) on how participants forecast dividends and
prices between these periods as illustrated in the next sections.

8 Reconciling Model Consistency with Behavioral Evidence

Imposing consistency within a KUH model relates participants’ forecasts of ag-
gregate outcomes to fundamentals. By reconciling Muth’s hypothesis with the
autonomy of participants’ forecasts, KUH opens a way to build macroeconomic
and finance models that represent the influence of psychological and other non-
fundamental considerations on how participants forecast outcomes in terms of fun-
damentals, and thus aggregate outcomes, without presuming that participants are
irrational.

Remark 6 As we mentioned in the Introduction, we follow the convention in refer-
ring to "fundamental" and "non-fundamental" factors as exogenous variables that,
respectively, an economist includes and does not include in his specification of div-
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idends, in (14). Thus, our KUH prototype includes only one fundamental factor:
corporate earnings. Although we refer to all other factors as non-fundamentals,
they can include both psychological considerations and other factors, such as ag-
gregate economic activity or sales, which influence participants’ forecasts of div-
idends and stock prices directly (rather than through their effect on dividends, as
specified by the model).

8.1 Participants’ Reliance on Non-Fundamental Factors as an
Implication of Model Consistency

AKUHmodel implies that, like the economist, market participants also face Knight-
ian uncertainty. Thus, the model implies on logical grounds that a profit-seeking
participant understands that any statistical model at best approximates some incom-
plete aspect of the process driving outcomes. Moreover, unforeseeable change may
occur at any point in time, thereby rendering any stochastic approximation of the
process underpinning outcomes inconsistent with how outcomes actually unfold.
Thus, a KUH model’s consistency implies that a market participant faces ambigu-
ity about which stochastic specification approximates the past relationships between
dividends, prices, and earnings, let alone which specifications might approximate
these relationships in the future.

Consequently, in selecting a particular quantitative forecast to underpin his de-
mand and supply decisions, a rational market participant relies on a variety of
factors and methods. These include the predictions of a multitude of economic
models on offer, as well as assessments of the effects of psychological and other
non-fundamental considerations, such as market sentiment or political events, on
the future course of aggregate outcomes.

8.2 Formal Representation of Market Sentiment
By constraining the model-consistent coefficients of representations of participants’
forecasts only partly, a KUH model formalizes the relevance of myriad factors that
drive participants’ forecasts but that an economist cannot build into his necessarily
parsimonious and abstract model. In this section, we sketch two examples of how
our KUH prototype can represent the autonomous influence of non-fundamental
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factors on participants’ forecasts of dividends and stock prices with mathematical
conditions that constrain the model-consistent intervals of the model’s representa-
tions of these forecasts.

To this end, we define an exogenous variable, st, which, for the sake of con-
creteness, we refer to as an aggregate of market participants’ sentiment about the
future course of corporate earnings, dividends, and/or stock prices. We specify st
to take three discrete values, which we refer to as the state of this market sentiment:

st =

8
><

>:

1, if the market (sentiment) is optimistic,
0, if the market (sentiment) is neutral,
−1, if the market (sentiment) is pessimistic.

(53)

Remark 7 In an economic model, market sentiment affects the representation of
participants quantitative forecasts of outcomes. However, the “sentiment” itself
stands for the influence of a variety of factors, including psychological, political,
and other qualitative as well as quantitative factors that participants consider rele-
vant, but that an economist has not included in his mathematical model.29

8.3 Behavioral Finance: Representing the Role of Market Sen-
timent with Inconsistent Models

Behavioral-finance theorists have amassed compelling empirical evidence that mar-
ket sentiment has significant autonomous effect on aggregate outcomes, especially
in asset markets. However, they often represent their findings with models that
specify with a stochastic process how outcomes unfold over time, thus not includ-
ing unforeseeable change. This led them to rely on inconsistent models.

We illustrate such behavioral-finance representations by constraining the coef-
ficients µt and bt in (1) and (14) to be equal to constants, µ and b, thereby reducing
representations of Ft (dt+1) and Ft (pt+1) in our prototype to their REH counter-

29Sentiment measures are constructed on the basis of narrative reports covering various historical
events and market participants’ interpretations of them – specifically, whether participants consider
these events positive (negative) for the future course of the economy. See Section 9 and Appendix
B.4 for the use of such measures in confronting our prototype model with time-series data and further
references.
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parts:
Ft(dt+1) = 'rehxt, and Ft(pt+1) = φrehxt, (54)

where, from (1), (33), and (44):

'reh = vb exp (µ) , and φreh = bγ(v exp(µ))
2

1−γv exp(µ) . (55)

Having represented their empirical findings with models that rule out unforesee-
able change in how market sentiment influences participants’ forecasts, behavioral-
finance theorists have had no option but to represent these forecasts with incon-
sistent models. A particularly simple example of such a representation hypothe-
sizes that, conditional on the time-t earnings, xt, when the market is optimistic
(pessimistic) its forecasts of dividends and prices exceed (fall short of) their REH-
implied values. This behavioral hypothesis can be formally specified as constraints
on participants’ forecasts of dividends and prices, such that when the market is
optimistic, st = 1:

Ft(dt+1) = 'optxt, and Ft(pt+1) = φoptxt, (56)

where 'opt > 'reh and φopt > φreh. Likewise, for the case of pessimisim, st = −1:

Ft(dt+1) = 'pesxt, and Ft(pt+1) = φpesxt, (57)

where 'pes < 'reh and φpes < φreh, with
(
'opt,φopt

)
and ('pes,φpes) constants.

Remark 8 Constraints in (56) and (57) illustrate the key features of behavioral-
finance representations of the influence of market sentiment (as well as other non-
fundamental factors) on participants’ forecasts:

1. These representations are necessarily inconsistent with how outcomes such
as dividends or prices actually unfold over time, as hypothesized by an economist’s
model.

2. They assume that market sentiment has the same influence on every par-
ticipant’s forecasts and that this effect is either unchanging over time or can be
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represented with a probabilistic rule, such as Markov switching.30

Thus the representations in (56) and (57) presume that when participants are
optimistic (pessimistic), they necessarily forego profit opportunities. In the next
section, we formulate a KUH analog of the behavioral-finance representation in (56)
and (57). We show how recognizing that an economist faces Knightian uncertainty
enables him to represent the diverse, autonomous influences of market sentiment
on participants’ forecasts, and thus on stock prices, in a way that does not presume
that, when they are optimistic (pessimistic) they forego profit opportunities.

8.4 KUH: Representing the Role of Market Sentiment in Con-
sistent Models

As we summarized in Remark 8, behavioral-finance models suffer from theoretical
and (likely) empirical difficulties, owing to their assumption that neither economists
nor market participants face Knightian uncertainty. However, the idea underpin-
ning Barberis et al.’s. (1998) behavioral-finance constraints in (56) and (57) – that
optimism (pessimism) leads participants to select forecasts that tend to be higher
(lower) than those chosen when the market is in a neutral state – nonetheless seems
a sensible way to represent the influence of market sentiment on participants’ fore-
casts.

However, in contrast to REH models, applying Muth’s hypothesis in a KUH
model does not represent participants’ forecasts of dividends and prices with pre-
cise values. This opens a way to represent the influence of market sentiment (and
other non-fundamental factors) on participants’ forecasts as a constraint on the
model-consistent consistent KE intervals within which participants’ forecasts lie,
according to the model.

There are a number of ways to formulate an analog of the constraints in (56) and
(57) in a KUH model. Here, we present two examples of such representations.31

30These features characterize a seminal behavioral-finance model of the role of market sentiment
in driving stock prices by Barberis et al. (1998). They formulate the model for a “representative
investor” whose forecasts switch between two models of earnings, each inconsistent with an econo-
mist specification, according to a Markov switching rule.

31A more complete exposition of how KUH can represent the insights of behavioral finance in
consistent models, that is, without presuming that market participants are irrational, is beyond the
scope of this paper.
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8.4.1 Modifying Bounds for Representations of Participants’ Forecasts

We state the representations of optimism and pessimism as the following hypothe-
sis:

Hypothesis 1
(i) When the market is optimistic, its forecasts lie within the following upper

subintervals of the model-consistent KE intervals,KEt(dt+1) in (31) andKEt(Ipt+1)
in (46):

Fopt
t (dt+1)2 I't:t+1(st = 1) =

[
L't:t+1(st = 1), U

'
t:t+1

]
, (58)

Fopt
t (pt+1)2 Iφt (st = 1) = [L

φ
t (st = 1), U

φ
t ], (59)

where

L't:t+1 (st = 1)=L
'
t:t+1(1− η) + U

'
t:t+1η, (60)

Lφt (st = 1)=L
φ
t (1− η) + U

φ
t η, (61)

and 0 ≤ η ≤ 1. We note that as η increases, the lower end-points of the restricted
intervals, L't:t+1(st = 1) and Lφt (st = 1) increase. We therefore refer to η as the
sentiment effect.

(ii) When the market is pessimistic, its forecasts lie within the following lower
subintervals of the model-consistent KE intervals,KEt(dt+1) in (31) andKEt(Ipt+1)
in (46):

Fpes
t (dt+1)2 I't:t+1(st = −1) =

[
L't:t+1, U

'
t:t+1(st = −1)

]
, (62)

Fpes
t (pt+1)2 Iφt (st = −1) =

h
Lφt , U

φ
t (st = −1)

i
, (63)

where

U't:t+1 (st = −1)=U
'
t:t+1(1− η) + L

'
t:t+1η, (64)

Uφt (st = −1)=U
φ
t (1− η) + L

φ
t η, (65)
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and 0 ≤ η ≤ 1.

Remark 9 The constraints representing the effect of optimism and pessimism on
participants’ forecasts, in Hypothesis 1 (i) and (ii), highlight how recognizing that
an economist faces Knightian uncertainty enables him to remedy the difficulties
inherent in the behavioral-finance formalizations of market sentiment in (56) and
(57). In contrast to Remark 8:

(i) By design, the representations implied by KU constraints in (58)-(59) and (62)-
(63) are model-consistent, thus avoiding behavioral-finance models’ presump-
tion that participants’ optimism (pessimism) leads them to forego profit op-
portunities.

(ii) KUH representations are compatible with the diversity of market sentiment’s
influence on individual participant’s forecasts.

(iii) These representations recognize that whether the market is in an optimistic,
neutral, or pessimistic state, and how this state influences participants’ fore-
casts, changes at times and in ways that cannot be represented with a sto-
chastic process.

The Empirical Consequences of Hypothesis 1 According to the no-arbitrage
condition in (38), and given the representations in (58)-(59) , (62)-(63), optimistic
(pessimistic) participants bid the stock price to lie within the upper (lower) subin-
tervals of the no-arbitrage interval, Ipt in (41):

poptt 2 Ipt (st = 1) = γ
(
I't:t+1(st = 1) + I

φ
t (st = 1)

)
xt, (66)

ppest 2 Ipt (st = −1) = γ
(
I't:t+1(st = −1) + I

φ
t (st = −1)

)
xt, (67)

where poptt and ppest denote the values of prices set by the market when its partici-
pants are optimistic or pessimistic.

The subintervals, within which poptt and poptt in (66) and (67) lie, depend on
xt, the model’s KU parameters

(
µ−, µ+, ρµ, b−, b+, ρb

)
, and the sentiment effect,

η. Thus, contingent on whether the market is optimistic or pessimistic, we can
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confront the model’s predictions about the influence of sentiment on participants’
forecasts by assessing whether the time-series observations on pt actually lie within
the subintervals (66) and (67). In Section 9 and Appendix B.4, we illustrate how
this can be done using an econometric calibration methodology and the proxy for
market sentiment extracted from narrative market reports.

Remark 10 Representations in (66) and (67) highlight the essential role of Muth’s
hypothesis in building intertemporal models under Knightian uncertainty. Imposing
consistency within a KUH model enables an economist to represent and test the
influence of non-fundamental factors (market sentiment) on aggregate outcomes
(stock prices).

8.4.2 Market Sentiment in Participants’ Forecast Revisions

As we demonstrated in Section 6, although a KUH model generates quantitative
predictions about the interval within which the values of pt lie at a point in time,
conditional on xt, the model does not generate quantitative predictions about how
pt and xt co-move over time. Moreover, a KUH model’s qualitative predictions
about the co-movements in time-series data are contingent on whether and, if so,
how the model specifies change in its representations of participants’ forecasts.32

For example, as is apparent from (52), leaving changes in the coefficients, ∆'t
and ∆φt, in the representations of Ft (dt+1) and Ft (pt+1) unconstrained renders
even the model’s qualitative predictions ambiguous, in the sense that the model is
compatible with both positive and negative co-movement between pt+k and xt+k, at
any time horizon k.33

Remark 11 The ambiguity of a KUH model’s predictions is just another way of
stating that, under Knightian uncertainty, the coefficients of the model-consistent

32We refer to a macroeconomic model’s predictions as contingent if they depend on some vari-
ables (events), the effects of which cannot be specified ex ante with a stochastic process. Recog-
nizing that an economist faces Knightian uncertainty means that he cannot specify completely how
future events will affect the process driving outcomes. Thus, under Knightian uncertainty, predic-
tions of co-movements in time-series data are necessarily contingent. An exploration of this point
and related issues is beyond the scope of this paper.

33This is in contrast to REH models, which generate unambiguous quantitative and qualitative
time-t predictions of the co-movement between pt+k and xt+k, for each time horizon k.
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representations of participants’ forecasts are partly autonomous: they are not com-
pletely determined in terms of the model’s KU parameters,

(
µ−, µ+, ρµ, b−, b+, ρb

)
,

its coefficients at time t, µt and bt, and the moments of its stochastic innovations.

The autonomy of a KUH model’s representation of participants’ forecasts thus
reveals one of the key implications of recognizing an economist’s Knightian uncer-
tainty in an intertemporal model. For a consistent model to generate even qualitative
predictions of the co-movements in time-series data, an economist must appeal to
a non-fundamental factor and formalize its effect with constraints on the change in
the parameters of his model’s representation of participants’ forecasts.

Given 't−1 and φt−1, constraining ∆'t = 't − 't−1 and ∆φt = φt − φt−1 in-
volves constraining 't and φt to lie within the subintervals I

'
t:t+1 and I

φ
t specified in

(31) and (46). Here, we consider a particularly simple example of such constraints:
optimistic (pessimistic) participants’ revisions of forecasts, in terms of earnings, are
represented by constraining ∆'t > 0 and ∆φt > 0 (∆'t < 0 and ∆φt < 0).

8.4.3 Representations of Participants’ Forecast Revisions

We next consider Hypothesis 2 given by:

Hypothesis 2
(i) If the market is optimistic at time t, that is, if st = 1, and 't−1 < U

'
t:t+1 and

φt−1 < U
φ
t , then

'optt 2 [max('t−1, L
'
t:t+1), U

'
t:t+1], (68)

φoptt 2 [max(φt−1, L
φ
t ), U

φ
t ]. (69)

(ii) If the market is pessimistic at time t, that is, if st = −1, and 't−1 > L
'
t:t+1

and φt−1 > L
φ
t , then

'pest 2 [L't:t+1,min('t−1, U
'
t:t+1)], (70)

φpest 2 [Lφt ,min(φt−1, U
φ
t )]. (71)

We note that ('optt ,'
pes
t ,φ

opt
t ,φ

pes
t ) lie within their respective model-consistent

intervals, if the constraints 't−1 < U't:t+1 and φt−1 < Uφt ('t−1 > L't:t+1 and
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φt−1 > L
φ
t ) hold. If these constraints are not satisfied, it is impossible that φt 2 I

φ
t

such that ∆φt > 0 when st = 1. Likewise for 't. The following lemma establishes
sufficient conditions for the constraints.

Lemma 5 If µt > µt−1, in (1) and bt > bt−1 in (14) the constraints 't−1 < U
'
t:t+1

and φt−1 < Uφt in Hypothesis 2 are satisfied. Analogously if µt < µt−1 and bt <
bt−1, the constraints 't−1 > L

'
t:t+1 and φt−1 > L

φ
t are satistfied.

Remark 12 Lemma 5 reveals the theoretical importance of behavioral finance’s
empirical findings that non-fundamental factors exert an autonomous, significant
influence on how market participants revise their forecasts. The relevance of factors
such as market sentiment may enable economists to build models that generate
empirically verifiable predictions of co-movements in time-series data.34

The Empirical Consequences of Hypothesis 2 Applying Hypothesis 2 to con-
strain∆'t and∆φt in the expression for change in the stock price,∆pt = γ ('t + φt)∆xt+
γ (∆'t +∆φt) xt−1, illustrates one such prediction:

(i) If st = 1 and ∆xt > 0, then (68) and (69) imply that ∆pt > 0.

(ii) If st = −1 and ∆xt < 0, then (70) and (71) imply that ∆pt < 0.

9 Confronting a KUHModel’s Predictions with Time-Series Data:
An Illustration of the EconometricMethodology with the S&P
Stock-Price Index

Recognizing that economists face Knightian uncertainty about how outcomes un-
fold over time, poses considerable challenges for assessing the empirical relevance
of macroeconomic and finance models’ predictions. Here, we sketch how the exist-
ing econometric methods, particularly econometrically-based calibration, as advo-
cated by Hansen and Heckman (1996), can be adapted to meet this challenge.

34The conditions under which the constraints in (68)-(71) are compatible with model consistency
at t− 1 and t , depend on the change in the model’s coefficients and its KU parameters.
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We focus on our prototype’s quantitative predictions that stock prices lie within
the no-arbitrage intervals that depend on earnings. The details of our calibration
methodology, econometric specifications, graphs and tables of the results are pre-
sented in the Appendix B.

The core premise of KUH is that any fixed stochastic model eventually ceases to
approximate time-series data adequately, owing to unforeseeable structural change
in the process driving aggregate outcomes. While such change cannot be repre-
sented ex ante with a stochastic process, it can be approximated ex post on the basis
of historical time-series data. As new data accrue, the econometric model must be
re-estimated, new potential structural changes must be identified, and the adequacy
of the re-estimated model must be assessed.

In our econometrically-based calibration approach, we build on the generalized
autoregressive score (GAS) approach.35 We estimate approximations of earnings
and dividend processes, in (1) and (14), for the sample of stock prices and earn-
ings of the companies included in the S&P 500 Index, spanning the period from
1960(4) to 2017(3). These approximations allow for both time-varying coefficients
and structural breaks. We rely on standard misspecification tests to assess the ade-
quacy of the econometric model as an approximation of the data. This enables us
to suggest estimates of the sequences {µt, bt}t=1,2,...,T .

Given that the estimated econometric model is an adequate approximation of the
past data, we can assess the quantitative predictions of the KUH model. All these
predictions depend on the Knightian uncertainty parameters

(
µ−, µ+, ρµ, b−, b+, ρb

)
.

To compute the empirical counterpart of the stock-price interval Ipt in (41), we use
the estimated sequences {µ̂t, b̂t}t=1,2,...,T , and we choose values for the Knightian
uncertainty parameters, the discount factor γ, and v. This leads us to compute how
often the observed stock prices take values within these empirical intervals. As de-
scribed in Appendix B.3 we find that the observed stock price pt lies in the empirical
stock price intervals in 96 percent of the observations.

To assess the KUHmodel’s predictions contingent on market sentiment, we rely
on a numerical proxy for sentiment. This enables us to assess the adequacy of the
empirical implications of Hypothesis 1, in Section 8.4.1, by computing, contingent

35Creal et al. (2012) gives an overview of the GAS approach and its applications.
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on whether the market is optimistic (st = 1) or pessimistic (st = −1), how often
the observed stock prices are within the upper (lower) subintervals, in (66) or (67)
The results are summarized in Appendix B.4. We find that the observed stock price
lies in the respective intervals in 74 of the 76 observations where st = 1 or st =
−1 for η = 0.2. Finally, we assess the adequacy of the empirical implications
of Hypothesis 2, in Section 8.4.3 by computing how often, contingent on whether
st = 1 (st = −1) and ∆xt > 0 (∆xt < 0), the observed stock prices co-move
positively with earnings. We find that the stock price increases in 21, or 75 percent,
of the 28 observations where earnings increase and the market is optimistic. The
stock price decreases in nine, or 60 percent, of the 15 observations where earnings
decrease and the market is pessimistic.

Rigorous assessment of the consequences of Hypothesis 1 and 2 as well as other
representations of the influence of non-fundamental factors, such market sentiment,
requires the development of a methodology for testing models that formalize both
measurable and Knightian uncertainty about the process driving aggregate out-
comes. Thus, although the results we present are broadly supportive of a KUH
prototype’s predictions, we view them as strictly preliminary.

An assessment of the empirical relevance of the KUH present-value model of
stock prices also requires developing extensions of our prototype model, which
would allow for the time-varying discount factor and generalize the model’s other
simplifying specifications. However, illustrating how our prototype’s predictions
can be confronted with time-series data has enabled us to highlight some of the es-
sential features of the econometric methodology needed to test models that recog-
nize that an econometrician faces Knightian uncertainty, which, by definition, can-
not be characterized with a stochastic process.

10 Concluding Remarks

For Knight, recognizing unforeseeable change and the true uncertainty that such
change engenders is the key to understanding profit-seeking activity in real-world
markets. As he put it:

“if all changes [...] could be foreseen for an indefinite period in advance of
their occurrence [...] profit or loss would not arise” (Knight 1921, p. 198).
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But if Knight is correct in arguing that an inherent feature of profit seeking is
that market participants are alert to unforeseeable change and revise their decision-
making accordingly, we would expect that the process driving aggregate outcomes
that result from participants’ demand and supply decisions undergoes unforeseeable
change as well.

To be sure, econometric analysis cannot decisively reject REH and behavioral-
finance models’ core premise that an economist can represent change in an econ-
omy’s structure over an indefinite future with probabilistic rules. After all, “un-
foreseeable change” refers to the possibility of representing future change, whereas
econometric analysis, ipso facto, can ascertain only whether particular models missed
structural changes that an econometrician had not specified in the past.

There is ample evidence that the process driving outcomes, especially in as-
set markets, undergoes quantitative structural change. The key question regarding
the empirical relevance of Knightian uncertainty is how to ascertain whether this
structural change is, at least in part, unforeseeable. The findings of a number of
econometric studies point to the key reason why this is the case: structural change
in models of outcomes, especially in financial markets, seems to occur contempo-
raneously with historical events that are not exact repetitions of similar events in
the past. These events give rise to change in the economy’s structure that could not
have been represented ex ante with probabilistic rules.36

Kaminsky’s (1993) largely overlooked study of currency markets shows that
historical events may trigger change in the parameters of the probabilistic rule,
which is often used to represent change in the process driving outcomes. She finds
that the Markov model’s transition probabilities are not only time-varying, but that
they also depend on who is Fed chair and the credibility of the incumbent’s policies.
Moreover, Kaminsky shows that the predictions of Engel and Hamilton’s (1990)
Markov model, which ignores such change, are inconsistent with the actual turning
points in currency movements. Frydman and Goldberg’s (2007) analysis of struc-
tural change in major currency markets lends support to Kaminsky’s conclusion that

36For evidence that structural change in models of stock returns is related to historical events
that are to some extent novel, see Pettenuzzo and Timmermann (2011) and Ang and Timmermann
(2012). Frydman et al. (2015) provide evidence that 20% of events that triggered movements in US
stock prices between 1993 and 2009 were, at least in part, non-repetitive.
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historical events are among the major triggers of inflection points.
In a series of papers and books, David Hendry has traced macroeconomic mod-

els’ empirical difficulties to their structural instability. He has demonstrated not
only that macroeconomic models experience structural breaks, but also that these
breaks are often triggered by historical events. The novel mathematical framework
that underpins KUH enables economists to specify models of outcomes that un-
dergo such inherently unforeseeable structural change.37

Moreover, relying on this framework and Muth’s hypothesis, KUH offers a co-
herent approach to building intertemporal macroeconomics and finance models that
recognize that economists as well as market participants face Knightian uncertainty
about the process driving aggregate outcomes. KUH thus opens a way to con-
struct macroeconomics and finance models premised on market participants’ ratio-
nality that accord a role to both fundamental and psychological (and other non-
fundamental) considerations in driving aggregate outcomes. We have provided ex-
amples of how a KUH model can represent the autonomous influence of market
sentiment on participants’ forecasts, leaving a more complete presentation of “be-
havioral finance under Knightian uncertainty” to a follow-up paper. Much work
remains to be done to develop KUH models that specify key features of processes
driving outcomes in specific contexts or markets.

We have also suggested how the existing econometric methods – involving cal-
ibration, estimation of models with time-varying parameters, and reliance on in-
formation extracted from narrative market reports – can be adapted to confront
KUH models with time-series data. The development of the statistical method-
ology needed to test models of outcomes characterized by Knightian uncertainty is
another area that we plan to explore in future research.
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Appendix (For online publication)

A Proofs of Lemmas and Theorems

Proof of Lemmas 1 and 3. Proof of (8) and (9): We give the proof of

µt+k ≥ L
µ
t:t+k = µ− + ρ

k
µ

(
µt − µ−

)
,

because the proofs for Uµt:t+k, Lbt:t+k and U bt:t+k are similar. For k = 1, this follows
from Assumption 1 and the general result by induction. We give the proof for
k = 2. We use the result for k = 1 and t replaced by t+ 1, and find

µt+2≥µ− + ρµ
(
µt+1 − µ−

)
≥ µ− + ρµ

(
µ− + ρµ

(
µt − µ−

)
− µ−

)

=µ− + ρ
2
µ

(
µt − µ−

)
= Lµt:t+2,

which completes the proof.

Proof of Lemma 4. Proof of (24): From

dt+1 = bt+1xt+1 + "d,t+1 = bt+1xt exp
(
"x,t+1 + µt+1

)
+ "d,t+1,

we apply the bounds for bt+1 and µt+1 and find

dt+1 ≥ Lbt:t+1xt exp
(
"x,t+1 + L

µ
t:t+1

)
+ "d,t+1 = L

b
t:t+1,

which proves the result for k = 1. The general proof is by induction. We give the
proof for k = 2. We apply the result for k = 1 and t replaced by t + 1, and find
using,

Lµt+1:t+2 = µ− + ρµ
(
µt+1 − µ−

)
≥ µ− + ρ

2
µ

(
µt − µ−

)
= Lµt:t+2,
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that

dt+2≥Lbt+1:t+2xt+1 exp
(
"x,t+2 + L

µ
t+1:t+2

)
+ "d,t+2

=Lbt+1:t+2xt exp
(
"x,t+1 + L

µ
t:t+1

)
exp

(
"t+2 + L

µ
t+1:t+2

)
+ "d,t+2

≥xt exp(
2X

j=1

"x,t+j)L
b
t:t+2 exp(

2X

j=1

Lµt:t+j),

which completes the proof.

Proof of Theorem 2. That (30) and (31) apply follows from the definition of
KEt (dt+k) in (26) and the expressions for the end-points of Idt:t+k in (28) and (29).

The proof of (32) follows by induction. Consider the case of k = 2,

KEt (KEt+1 (dt+2)) .

Using (31) for t+ 2, KEt+1 (dt+2) is the interval given by

Et+1
(
Idt+1:t+2

)
=
[
Et+1

(
Ldt+1:t+2

)
, Et+1

(
Udt+1:t+2

)]
,

where, again by definition,

Et+1
(
Ldt+1:t+2

)
= xt+1vL

b
t+1:t+2 exp

(
Lµt+1:t+2

)

= xt exp
(
µt+1 + "x,t+1

)
vLbt+1:t+2 exp

(
Lµt+1:t+2

)
,

and likewise for Et+1
(
Udt+1:t+2

)
. Thus, the end-points of the intervalKEt+1 (dt+2)

contain µt+1 and bt+1 which have not been introduced at time t. We bound the
interval KEt+1 (dt+2), and find that KEt+1 (dt+2) is contained in an interval, with
lower end-point,

xt exp
(
Lµt:t+1 + "x,t+1

)
vLbt:t+2 exp

(
Lµt:t+2

)
.
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Similarly for the upper end-point. Collecting terms, we find,

KEt (KEt+1 (dt+2)) = KEt
(
E(Idt+1:t+2

)

= xtv
2
[
bL,t:t+2 exp

(
µL,t:t+1 + µL,t:t+2

)
, bU,t:t+2 exp

(
µU,t:t+1 + µU,t:t+2

)]
.

The identity,
KEt (KEt+1 (dt+2)) = KEt (dt+2) ,

can be seen by using the monotonicity properties in (23),

dt+2 2 Idt+1:t+2 ⊆ I
d
t:t+2 =

[
Ldt:t+2, U

d
t:t+2

]
,

with

Ldt:t+2= xt exp ("x,t+1 + "x,t+2)L
b
t:t+2 exp

(
Lµt:t+1 + L

µ
t:t+2

)
+ "d,t+2,

Udt:t+2= xt exp ("x,t+1 + "x,t+2)U
b
t:t+2 exp

(
Uµt:t+1 + U

µ
t:t+2

)
+ "d,t+2,

which completes the proof.

Proof Theorem 3. Note that by definition, Ipt+1 =
P1

i=1 γ
iKEt (dt+1+i|Xt+1)

where KEt (dt+1+i) has lower and upper end-points given by,

vixt+1L
b
t+1:t+1+i exp(

iX

j=1

Lµt+1:t+1+j), and vixt+1U
b
t+1:t+1+i exp(

iX

j=1

Uµt+1:t+1+j),

which are functions of µt+1, bt+1 and "x,t+1. Using Lemmas 1 and 3 the lower
end-point can be bounded by,

vixt+1L
b
t+1:t+1+i exp(

iX

j=1

Lµt+1:t+1+j) ≥ v
ixt exp ("x,t+1)L

b
t:t+1+i exp(

iX

j=0

Lµt:t+1+j).

Collecting terms, it follows that Ipt+1 has the lower bound given by,

1X

i=1

γivixt exp ("x,t+1)L
b
t:t+1+i exp(

i+1X

j=1

Lµt:t+j).
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Hence the lower end-point ofKEt
(
Ipt+1

)
is given by,

1X

i=1

γivi+1xtL
b
t:t+1+i exp(

i+1X

j=1

Lµt:t+j).

Next, recall that KEt (dt+1) has the lower end-point,

vxtL
b
t:t+1 exp

(
Lµt:t+1

)
,

such that the lower end-point of the right hand side of (40) therefore is given by,

γ(vxtL
b
t:t+1 exp

(
Lµt:t+1

)
+

1X

i=1

γivi+1xtL
b
t:t+1+i exp(

i+1X

j=1

Lµt:t+j))

=
1X

i=1

γivixtL
b
t:t+i exp(

iX

j=1

Lµt:t+j),

which is the lower end-point of Ipt as desired. Similarly for the upper end-point
which proves the claimed result.

Proof Lemma 5. We prove the result for the upper bounds. From (8), (22), (31)
and (43) we find the expressions

Uµt:t+k=µ+ + ρ
k
µ(µt − µ+),

U bt:t+k= b+ + ρ
k
b (bt − b+),

U't:t+1= vU
b
t:t+1 exp(U

µ
t:t+1),

Uφt =

1X

k=1

γivkU bt:t+k exp(

kX

j=1

Uµt:t+j).

It is seen that Uµt:t+k depends linearly on µt with a positive coefficient, ρkµ, so that
Uµt:t+k is increasing in µt, such that if µt−1 < µt,

Uµt−1:t−1+k = µ+ + ρ
k
µ(µt−1 − µ+) < µ+ + ρ

k
µ(µt − µ+) = U

µ
t:t+k.

A similar expression shows that U bt:t+k is increasing in bt. It follows that U
'
t:t+1 and
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Uφt are increasing functions of both µt and bt. Thus, for µt−1 < µt and bt−1 < bt, it
follows that U't−1:t < U

'
t:t+1 and U

φ
t−1 < U

φ
t .

A consequence of U't−1:t < U
'
t:t+1 is that

't−1 ≤ U
'
t−1:t < U

'
t:t+1,

which completes the proof.

B Econometric Methodology, Data and Results

We confront the KUH prototype’s predictions with time-series data in the context
of approximations of earnings and dividend processes, in (1) and (14), for the sam-
ple of stock prices and earnings of the companies included in the S&P 500 Index,
spanning the period from 1960(4) to 2017(3). The data are described in Appendix
B.5.

B.1 Econometric Models
In our econometric approach, we specify time-varying coefficients equivalent to
µt and bt. To this end, we build on the generalized autoregressive score (GAS)
approach by including structural breaks. We rely on standard misspecification tests
to assess the adequacy of the econometric model as an approximation of the data.
This allows us to suggest estimates of the sequences {µt, bt}t=1,2,...,T .

There are, of course, potentially many other econometric models that might ap-
proximate the historical time-series data. In principle, one could estimate several
econometric models; as long as they provide adequate approximations of the his-
torical data, the KUH model’s predictions should hold.

Specifically, we first consider modeling log-changes in earnings as:

∆ log xt=µt + γ
0
xFx,t + "x,t, (B.1)

µt= µ̃t + δ
0
xSx,t, (B.2)

µ̃t=!µ + αµ1µ̃t−1 + αµ2µ̃t−2 + βµ"x,t−1, (B.3)

for t = 1, 2, . . . , T , where "x,t ∼ i.i.d.N (0,σ2x) and the initial value are set to
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µ0 = ∆ log x0 and µ−1 = ∆ log x−1. The vector Fx,t includes a set of six dummy
variables corresponding to the observations of extreme changes in earnings from
2008 to 2010 as evident from Panel (c) in Figure 4 in Appendix B.5. The vector Sx,t
consists of 12 subsample dummies that take the value 1 during specific subperiods,
and zero otherwise. In the estimations, we treat the variables Fx,t and Sx,t as fixed.
Prior to estimation of the model in (B.1)-(B.3), the subsample dummy variables in
Sx,t have been selected using the Autometrics algorithm in OxMetrics.38

We model dividends as:

dt= btxt + γ
0
dFd,t + "d,t, (B.4)

bt= b̃t + δ
0
dSd,t, (B.5)

b̃t=!b + αb1b̃t−1 + αb2b̃t−2 + βb
"d,t−1
xt−1

, (B.6)

for t = 1, 2, . . . , T , where "d,t ∼ i.i.d.N (0,σ2d) and the initial values are set to b0 =
d0/x0 and b−1 = d−1/x−1. The vector Fd,t includes a set of four dummy variables
for the observations during the financial crisis, while Sd,t is a vector of subsample
dummies that take the value 1 during specific subperiods, and zero otherwise. Prior
to estimation of the model in (B.4)-(B.6), the subsample dummy variables in Sd,t
have been selected using the Autometrics algorithm in OxMetrics, see Doornik
(2009). Details and a full description of Fd,t and Sd,t are given in Appendix B.6.

The models in (B.1)-(B.3) and (B.4)-(B.6) specify the time-varying coefficients
µt and bt as observation-driven autoregressive processes combined with structural
breaks in the levels due to the inclusion of the subsample dummies Sx,t and Sd,t.

B.2 Empirical Results
We estimate the models in (B.1)-(B.3) and (B.4)-(B.6) by Gaussian maximum like-
lihood using time-series data for the real S&P500 dividends and earnings, which
generates an effective sample of T = 228 observations covering the period from
1960(4) to 2017(3). Plots of the time-series data are shown in Figure 4 in Appendix
B.5. To assess the adequacy of the econometric model as an approximation of the

38See Doornik (2009). Details, including a full description of Fx,t and Sx,t, are provided in
Appendix B.6.
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historical data, we rely on standard misspecification tests.
The estimation results and misspecification tests are shown in Table 1. For the

model of the log-changes in earnings, the tests for no autocorrelation of order 1 and
order 1-4 are not rejected with p-values of 0.30 and 0.15. Moreover, the test for no
ARCH of order 1-4 is not rejected with a p-value of 0.22, and normality of the esti-
mated residuals is not rejected with a p-value of 0.48. As the misspecification tests
are not rejected, we conclude that the estimated model is an adequate approxima-
tion of the log-change in earnings over the sample period considered. Importantly,
restricting δx = 0 – that is, assuming that there are no structural breaks in the time-
varying coefficient µt – renders the model inadequate as an approximation of the
earnings process.

For the model of dividends, the tests for no autocorrelation of order 1 and order
1-4 are not rejected with p-values of 0.97 and 0.75, respectively.39 Importantly,
restricting δd = 0 – that is, assuming that there no structural breaks in the time-
varying coefficient bt – renders the model inadequate as an approximation of the
dividends process.

B.3 Empirical Stock-Price Intervals
Given the estimated sequences {µ̂t, b̂}t=1,2,...,T and values for the parameters ρµ,
µ−, µ+, ρb, b−, b+, γ, v and σ2x, we can compute the empirical counterparts of the
intervals Iµt:t+1 in (7), Ibt:t+1 in (20), and the stock-price interval I

p
t in (41).

We first use the estimates in Table 1 to set the parameters ρµ, ρb, and v. We
set the parameter ρµ to the modulus of the largest inverse root of the characteristic
polynomial for µ̃t, given by αµ (z) = 1 − α1µz − α2µz2. Equivalently, we set
the parameter ρb to the modulus of the largest inverse root of the characteristic
polynomial for b̃t, given by αb (z) = 1 − α1bz − α2bz2. That gives the parameter
values ρµ = 0.743 and ρb = 0.738. Moreover, we use the estimate σx = 0.028 to
set the parameter value v = E exp ("x,t) = exp (−σ2x/2) = 0.9996 and we set the
discount factor to γ = 0.94.

39However, no ARCH and normality of the estimated residuals are both rejected with p-values of
0.000. This is caused by a few potential outliers and a tendency for the variance σ2d to increase over
the sample period, which have not been accounted for in the model. We leave an investigation of
these specification problems for future development of a model of stock prices.
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Model for earnings in (1)–(3) Model for dividends in (4)–(6)
Coefficient Estimate Std.Error Coefficient Estimate Std.Error
γ
(t=2008(4))
x -1.071 0.030 γ

(t=2008(4))
d 1.222 0.058

γ
(t=2009(1))
x -0.795 0.033 γ

(t=2009(1))
d 3.248 0.065

γ
(t=2009(2))
x 0.052 0.035 γ

(t=2009(2))
d 2.731 0.048

γ
(t=2009(3))
x 0.481 0.035 γ

(t=2009(3))
d 1.326 0.054

γ
(t=2009(4))
x 1.381 0.036
γ
(2010(1)≤t≤2010(2))
x 0.098 0.028
δ(1987(3)≤t≤1988(2))x 0.110 0.023 δ

(1972(3)≤t≤1981(2))
d -0.003 0.016

δ(1988(3)≤t≤1991(4))x -0.033 0.014 δ
(1981(3)≤t≤1990(4))
d -0.011 0.022

δ(1992(1)≤t≤2000(3))x 0.028 0.010 δ
(1991(1)≤t≤1994(1))
d -0.024 0.026

δ(2000(4)≤t≤2001(1))x -0.073 0.027 δ
(1994(2)≤t≤1999(3))
d -0.027 0.029

δ(2001(2)≤t≤2001(3))x -0.199 0.031 δ
(1999(4)≤t≤2001(2))
d -0.034 0.030

δ(2001(4)≤t≤2002(1))x -0.053 0.030 δ
(2001(3)≤t≤2003(1))
d 0.023 0.033

δ(2002(2)≤t≤2002(3))x 0.075 0.032 δ
(2003(2)≤t≤2003(3))
d -0.066 0.034

δ(2002(4)≤t≤2002(4))x -0.067 0.030 δ
(2003(4)≤t≤2007(3))
d -0.108 0.038

δ(2003(1)≤t≤2003(4))x 0.156 0.025 δ
(2007(4)≤t≤2008(1))
d -0.058 0.038

δ(2004(1)≤t≤2007(2))x 0.013 0.015 δ
(2008(2)≤t≤2008(3))
d -0.012 0.042

δ(2007(3)≤t≤2008(3))x -0.099 0.023 δ
(2009(4)≤t≤2013(1))
d -0.062 0.048

δ(2010(3)≤t≤2017(3))x 0.016 0.011 δ
(2013(2)≤t≤2015(1))
d -0.058 0.048
δ
(2015(2)≤t≤2017(3))
d -0.063 0.048

!µ -0.001 0.003 !b 0.035 0.010
α1µ 0.953 0.069 α1b 1.474 0.046
α2µ -0.551 0.079 α2b -0.545 0.045
βµ 0.559 0.066 βb 1.490 0.064
σx 0.028 σd 0.798
Log-likelihood 488.359 Log-likelihood -217.965
Ljung-Box 1-1 χ2(1) = 1.08 [0.30] Ljung-Box 1-1 χ2(1) = 0.00 [0.97]
Ljung-Box 1-4 χ2(4) = 6.72 [0.15] Ljung-Box 1-4 χ2(4) = 1.94 [0.75]
No ARCH 1-4 F (4, 219) = 1.44 [0.22] No ARCH 1-4 F (4, 219) = 5.13 [0.00]
Normality χ2(2) = 1.47 [0.48] Normality χ2(2) = 52.28 [0.00]

Table 1: The table shows the estimates of the model for the log-change in earnings
in (B.1)-(B.3) and the model for dividends in (B.4)-(B.6). Both models are esti-
mated for an effective sample of T = 228 observations covering the sample from
1960(4) to 2017(3). P-values in square brackets for the misspecification tests.
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We next calibrate the parameters
(
µ−, µ+, b−, b+

)
such that the empirical stock-

price intervals bIpt match the range of historical stock prices, and such that a suffi-
ciently high percentage of (µ̂t+1, b̂t+1), given the values of (µ̂t, b̂t), lie within the
computed empirical intervals for Iµt:t+1 and Ibt:t+1. Moreover, we set µ+ = 0.047

to ensure that the transversality condition of the theoretical model is satisfied. Not
taking the uncertainty of µ̂t into account, however, we note that almost ten percent
of the estimates µ̂t lie above this value. The parameter values are shown in Table 2.

We compute the empirical intervals Îµt:t+1 and Îbt:t+1 given the parameter values
in Table 2 and the estimates µ̂t and b̂t. Panel (a) in Figure 1 shows the estimates of
µ̂t+1 (red line) and the computed empirical intervals Î

µ
t:t+1 (vertical grey lines). We

find that µ̂t+1 lies within these intervals in 139, or 61 percent, of the 228 observa-
tions. Panel (b) in Figure 1 shows the estimates of b̂t+1 (red line) and the computed
empirical intervals Îbt:t+1 (vertical grey lines). We find that b̂t+1 lies within these
intervals in 207, or 91 percent, of the 228 observations.

Parameter Value
ρµ 0.743
µ+ 0.047
µ− −0.095
ρb 0.738
b+ 0.805
b− 0.262
v 0.9996
γ 0.94

Table 2: The table shows the choices of parameters.

We compute the empirical stock-price intervals bIpt by calculating the sum in
(46) for i = 1, 2, . . . ,M with M chosen such that remainder terms are of order
10−m, m ≥ 7. Panel (a) in Figure 2 shows the observed stock-prices pt (red line)
and the computed empirical stock-price intervals bIpt (vertical grey lines). We find
that the stock price lies within the computed stock-price intervals in 220, or 96
percent, of the 228 observations.
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Figure 1: The figure shows the estimated time-varying coefficients and their com-
puted intervals. Panel (a) shows the estimates µ̂t+1 (red line) and the computed
empirical intervals Îµt:t+1 (grey vertical lines). Panel (b) shows the estimates b̂t+1
(red line) and the computed empirical intervals Îbt:t+1 (grey vertical lines).

B.4 The Influence of Market Sentiment on Stock Prices
For sentiment data st described in Appendix C for the sample of 124 quaterly obser-
vations from 1984(1) to 2014(4), we compute the sentiment dependent stock price
intervals in (66) and (67),

Ipt (st=1) = γ
(
I't:t+1(st = 1) + I

φ
t (st = 1)

)
xt,

Ipt (st=−1) = γ
(
I't:t+1(st = −1) + I

φ
t (st = −1)

)
xt.

As described in Hypothesis 1 the change in the intervals depend on η, and we dis-
play here the empirical intervals for η = 0.2 and η = 0.5.
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(b) Price-earnings ratios p t /x t  and computed intervals for the price-earnings-ratio Î t

p / x t  (grey vertical lines)

Figure 2: The figure shows the observed stock price and price-earnings ratio with
their computed intervals. Panel (a) shows the observed stock price pt (red line) and
the computed empirical intervals bIpt (grey vertical lines). Panel (b) shows the ob-
served price-earnings ratio pt/xt and the computed empirical intervals bIpt /xt (grey
vertical lines).

For η = 0.2, we find that the observed stock prices pt lie within the computed
empirical intervals bIpt (st = 1) in 38 of the 39 observations where st = 1. For
η = 0.5, the number reduces to 5 of the 39 observations. We find that the observed
stock prices lie within the computed empirical intervals bIpt (st = −1) in 36 of the
37 observations where st = −1 for η = 0.2, and in 26 of the 37 observations when
η = 0.5. Figure 3 illustrates this graphically.
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p ( s t = 1 )  for η = 0 .5
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Figure 3: The figure shows the observed stock prices pt (black lines) and the com-
puted empirical intervals bIpt (st) for η = 0.2 and η = 0.5. Panels (a) and (c) show
the computed empirical intervals bIpt (st = 1) (vertical green lines) for η = 0.2 and
η = 0.5, respectively, for those observations where st = 1. Panels (b) and (d) show
the computed empirical intervals bIpt (st = −1) (vertical red lines) for η = 0.2 and
η = 0.5, respectively, for those observations where st = −1.

B.5 Data Description
The data for the empirical analysis has been downloaded from Robert Shiller’s
website40 in March, 2018. Real measures of the stock price index, earnings, and
dividends are computed using the consumer price index (CPI). Monthly data is
available, but as the earnings and dividends series are interpolated from quarterly
observations we consider only the quarterly observations corresponding to March,
June, September, and December.

The time-series data for real stock prices, dividends, and earnings are shown in
Panels (a) and (b) in Figure 4. The log-change in real earnings is shown in Panel

40http://www.econ.yale.edu/~Shiller/data.htm
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(c).

B.6 Definition of the Dummy Variables and Subsample Dummy
Variables

The vector of dummy variables Fx,t is defined as Fx,t =
(
F 1x,t, F

2
x,t, . . . , F

6
x,t

)0 with:

F 1x,t=1 (t = 2008 (4)) , F
2
x,t = 1 (t = 2009 (1)) , F

3
x,t = 1 (t = 2009 (2)) ,

F 4x,t=1 (t = 2009 (3)) , F
5
x,t = 1 (t = 2009 (4)) , F

6
x,t = 1 (2010 (1) ≤ t ≤ 2010 (2)) ,

where 1 (·) is an indicator variable that takes the value 1 when the expression in (·)
is true, and zero otherwise.

Before estimating the full model in (B.1)-(B.3), the variables in Sx,t have been
selected using step-indicator saturation (SIS) with Autometrics, see Castle et al.
(2015). The selection is done in the restricted model with !µ = αµ1 = αµ2 = βµ =
0 and with a target size of 0.001 in the Autometrics algorithm. The twelve subsam-
ple dummies in Sx,t selected by Autometrics are given by the expression, Six,t =
1 (τx,i ≤ t ≤ τx,i+1 − 1) for i = 1, 2, . . . , 12, where the breakpoints τx,i occur at
observations 1987 (3), 1988 (3), 1992 (1), 2000 (4), 2001 (2), 2001 (4), 2002 (2),
2002 (4), 2003 (1), 2004 (1), 2007 (3), and 2010 (3), and where τx,13 = 2017 (4).

The vector of dummy variables Fd,t is defined as Fd,t =
(
F 1d,t, F

2
d,t, F

3
d,t, F

4
d,t

)0

with F 1d,t = 1 (t = 2008 (4)), F 2d,t = 1 (t = 2009 (1)), F 3d,t = 1 (t = 2009 (2)), and
F 4d,t = 1 (t = 2009 (3)).

Before estimating the full model in (B.4)-(B.6), the variables in Sd,t have been
selected using multiplicative-indicator saturation (MIS) with Autometrics, see Ki-
tov and Tabor (2018). The selection is done in the restricted model with !b = αb1 =
αb2 = βb = 0 and with a target size of α = 0.001 in the Autometrics algorithm.
The thirteen subsample dummies in Sd,t selected by Autometrics are defined by the
expression, Sid,t = 1 (τ d,i ≤ t ≤ τ d,i+1 − 1) for i = 1, 2, . . . , 13, where the break-
points τ d,i occur at observations 1972 (3), 1981 (3), 1991 (1), 1994 (2), 1999 (4),
2001 (3), 2003 (2), 2003 (4), 2007 (4), 2008 (2), 2009 (4), 2013 (2), and 2015 (2),
and where τ 14 = 2017 (4).
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C The Proxy for the Market Sentiment

Based on Mangee (2017) we define the proxy for the market sentiment as follows:
Define the ratio, rt = post−negt

post+negt+1
, where post is the number of positive words and

negt is the number of negative words in the Wall Street Journal’s “Abreast of the
Market” columns for the 124 quarterly observations for the period from 1984(1) to
2014(4). The market sentiment st is next defined as representing optimism (st = 1)
when rt > τ+, pessimism (st = −1) when rt < τ−, and neutral otherwise. We set
the threshold values τ− and τ+ to the 33.3 and 66.7 percentiles of rt. The measure
rt and the threshold values are shown in Panel (d) of Figure 4.

1960 1970 1980 1990 2000 2010

1000

2000

(a) Stock-prices p t
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(b) Dividends d t  (red line) and earnings x t  (black line)

1960 1970 1980 1990 2000 2010
-1
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(c) Log-change in earnings ∆ log x t
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-0.3
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Figure 4: The figure shows the time-series data used in the empirical analysis. Panel
(a) shows the stock-prices pt, while Panel (b) shows the dividends dt (red line) and
earnings xt (blue line). Panel (c) shows the log-change in earnings ∆ log xt. Panel
(d) shows the measure rt (red line) and the threshold values τ− and τ+ (black lines)
used to compute the proxy for the market sentiment st.
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