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ABSTRACT 

This paper considers the estimation problem in linear regression when endogeneity is present, 
that is, when explanatory variables are correlated with the random error, and also addresses the 
question of a priori testing for potential endogeneity. We provide a survey of the latent 
instrumental variables (LIV) approach proposed by Ebbes (2004) and Ebbes et al. (2004, 2005, 
2009) and examine its performance compared to the methods of ordinary least squares (OLS) 
and IV regression. The distinctive feature of Ebbes’ approach is that no observed instruments are 
required. Instead ‘optimal’ instruments are estimated from data and allow for endogeneity 
testing. Importantly, this Hausman-LIV test is a simple tool that can be used to test for potential 
endogeneity in regression analysis and indicate when LIV regression is more appropriate and 
should be performed instead of OLS regression. The LIV models considered comprise the 
standard one where the latent variable is discrete with at least two fixed categories and two 
interesting extensions, multilevel models where a nonparametric Bayes algorithm completely 
determines the LIV’s distribution from data. This paper suggests that while Ebbes’ new method 
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is a distinct contribution, its formulation is problematic in certain important respects. Specifically 
the various publications of Ebbes and collaborators employ three distinct and inequivalent 
statistical concepts exchangeably, treating all as one and the same. We clarify this and then 
discuss estimation of returns of education in income based on data from three studies that Ebbes 
(2004) revisited, where ‘education’ is potentially endogenous due to omitted ‘ability.’ While the 
OLS estimate exhibits a slight upwards bias of 7%,  8%,  and 6%,  respectively, relative to the 
LIV estimate for the three studies, IV estimation leads to an enormous bias of 93%,  40%,  and 
�24% when there is no consensus about the direction of the bias. This provides one 
instance among many well known applications where IVs introduced more substantial 
biases to the estimated causal effects than OLS, even though IVs were pioneered to overcome 
the endogeneity problem. In a second example we scrutinize the results of Ferguson et al. (2015) 
on the estimated effect of campaign expenditures on the proportions of Democratic and 
Republican votes in US House and Senate elections between 1980 and 2014, where 
‘campaign money’ is potentially endogenous in view of omitted variables such as ‘a 
candidate’s popularity.’ A nonparametric Bayesian spatial LIV regression model was 
adopted to incorporate identified spatial autocorrelation and account for endogeneity. The 
relative bias of the spatial regression estimate as compared to the spatial LIV estimate ranges 
between �17% to 18% for the House and between �25% to 7% for the Senate. 

JEL Codes: No. C01, C8, C36. 

Keywords: Endogeneity, instrumental variables, latent instrumental variables, omitted variables, 
regression, returns to education, return to campaign money in Congressional elections. 
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1 Introduction

In applied statistics, social science, and medicine the instrumental variable (IV) method has

been a near-miraculous statistical technique until recently as widely acclaimed in economet-

rics as the linear regression model Y = X� + " on which it is built. A crucial assumption

to the vigor of the ordinary least squares (OLS) approach in estimating the regression pa-

rameters � is that the random explanatory variables X and random error component " are

uncorrelated. X is then said to be exogenous. Otherwise when X is correlated with ",

X is said to be endogenous. In the latter event the OLS estimator for � may be biased,

inconsistent, and ine�cient, and thus lose all features that make it preferable over other

estimators. IVs were pioneered to overcome this troublesome issue in a variety of contexts,

such as the e↵ect of a change in the price of a product for estimating the elasticity of supply

and demand, education or training’s relation to income, annual income on consumption,

medical treatment or intervention on health, and policing on crime.

Wright [37] had developed the notion of IVs to estimate the elasticity of flaxseed demand

and supply in 1928, although, as Angrist and Krueger [3] point out, this econometric advance

went unnoticed in the literature until the rediscovery of the method in the 1940s. But the

IV method carries its own assumptions that often are challenging to meet and has its

own pitfalls. In many applications, IVs notoriously introduced more substantial biases to

the estimates of causal e↵ects than OLS estimation did and incidentally did not provide

the remedies that they were supposed to deliver. The standard IV model augments the

regression model with an equation X = Z⇧ + V that decomposes X into an exogenous

variable Z and an endogenous noise variable V, where Z is uncorrelated with the random

error term " and has no direct e↵ect on the regressor Y yet has e↵ect ⇧ on the explanatory

variable X, and thus explains part of the variability of X. The variable Z is said to be an

instrumental variable.

Endogeneity is known to arise in the following situations that feature: (1) omitted

relevant variables, (2) measurement error in the explanatory variables, (3) self-selection,

(4) simultaneity, and (5) serially correlated errors injected by lagged explanatory variables.

Ebbes [9] notes that Ruud [30] showed that scenarios (2)-(5) can be regarded as special

cases of (1). In estimating the causal e↵ect of education on earnings, for example, a typical

omitted variable that appears to be relevant is ability. Individuals with higher ability may

be more marketable and successful at earning higher wages. Yet, at the same time, they may

have acquired a higher degree of education, as measured in terms of number of years, say.
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Unobserved ability will thus a↵ect both education and earnings and introduce dependence

between the explanatory variable ‘education’ and the model error term.

The possible sources of endogeneity indicated in (1)-(5) and their consequences are

described in detail in Section 3 of this paper along with the shortcomings of the OLS method

in the presence of endogeneity and the benefits and pitfalls of IV regression. Section 4

reviews the standard latent instrumental variables (LIV) model where the latent variable

is discrete with at least two fixed distinct categories and examines a simulation study that

Ebbes [9] conducted. We also discuss the estimation of returns to education in income

based on data from three studies that Ebbes [9] revisited, where ‘education’ is potentially

endogenous due to omitted ‘ability.’ In Section 5 we consider two interesting extensions, two

multilevel models where a nonparametric Bayes algorithm completely determines the LIV’s

distribution from data and look at a simulation study that Ebbes [9] performed. Section 6

contains a second data example, where we scrutinize the results of Ferguson, Jorgensen,

and Chen [17] for the estimated e↵ect of total campaign expenditures on the proportions of

the Democratic and Republican votes in the US House and Senate elections between 1980

and 2014. Here ‘campaign money’ is potentially endogenous in view of omitted variables

such as ‘a candidate’s popularity.’ A nonparametric Bayesian spatial LIV regression model

was adopted for the data analyses in order to incorporate identified spatial autocorrelation

and accommodate endogeneity.

2 How to Avoid Endogeneity: Zero Correlation, E("|X) = 0,

or Independence of X and " ?

2.1 Endogeneity definition

First, however, it is necessary to look more closely at the concept of endogenity as put

forward in Ebbes [9] and Ebbes et al. [12, 10, 11]. It is unsettling that three distinct

and inequivalent statistical concepts closely connected with endogeneity are used totally

exchangeably without di↵erentiation and treated as one and the same concept throughout

[9, 12, 10, 11]. These three concepts are (i) linear association or correlation of two random

variables X and ", (ii) independence of X and ", and (iii) the requirement that E("|X) = 0.

However, these three requirements or concepts are not equivalent, as we will discuss below.

While one particular requirement can imply another among the three, the converse of this

step generally is false, that is, the second requirement does not imply the first requirement.
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For example, E("|X) = 0 implies zero correlation between X and ", if one also assumes

E(") = 0, but not vice versa, that is, zero correlation does not imply E("|X) = 0. Moreover,

independence implies E("|X) = 0, if one also assumes E(") = 0, but not vice versa. The

question emerges as to which of the three situations the LIV approach is supposed to

address: Correlation, E("|X) 6= 0, or dependence of X and "?

Having treated each of these concepts as one single concept in [9, 12, 10, 11] makes their

presentation of the LIV approach not only confusing t also leads to multiple recurring

incorrect conclusions about when biases emerge, properties of estimators are violated, and

the performance of algorithms is hampered. For example, since dependence does not imply

(nonzero) correlation, the condition of zero correlation may not be violated even when X

and " are dependent.

Let us be more specific on the issues at stake and briefly look at some instances in

[9, 12, 10, 11] where one definition was mistaken for the other. It is stated in [9], page 1,

and in slightly rewritten form in [12], ‘Abstract’, that

‘... we propose a new method to estimate regression coe�cients in linear regression models where

regressor-error correlations are likely to be present. ... the Latent Instrumental Variables (LIV)

method utilizes a discrete latent variable model that accounts for dependencies between regressors

and the error term.’

These initial lines have set the stage for either correlations or dependencies. Further down,

at the bottom of page 1 going into page 2, one continues to read about these, namely,

‘We focus on a situation where the regressor is random and possibly correlated with the disturbance,

in which case it is not ‘exogenous’ but ‘endogenous.’... The standard inferential methods are invalid

if regressor-error dependencies exist.’

A close look, however, reveals that while Ebbes, Wedel et al. [12] just defined ‘endogeneity’

as regressor-error correlations in the ‘Abstract,’ within the first ten lines of the ‘Introduc-

tion,’ right underneath the ‘Abstract,’ they change their mind to define ‘non-endogeneity’

or ‘exogeneity’ as independence of the explanatory variables X from the random (error)

components.

‘An important assumption in these models is the independence of the explanatory variables Xand

random (error) components ". In this case the regressors are said to be ‘exogenous’ ...’

Or perhaps, dependence was simply mistaken for correlation; equivalently, independence

was mistaken for zero correlation. Another paragraph further down, Ebbes et al. [12] do

indeed confirm that the latter definition for endogeneity relating to dependence between

regressor and error will be relied on going forward:
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‘Unfortunately, in many similar situations the assumption of regressors and error independence is

not satisfied. In this case the regressors are often said to be ‘endogenous’...’

Four years later, Ebbes et al. [11] change back. They base the definition of endogenous

regressor upon correlation:

‘These studies show that when regressors and errors are correlated, and regressors are said to be

endogenous, traditional inferential techniques for multilevel models yield biased and inconsistent es-

timates of the model parameters. ... We view this extension of the LIV method as critical because

the problem of regressor-error dependencies in multilevel models is even more complicated than for

one-level regression models.’

Now, on page 15, [9], there is a subsection entitled ‘Bias in OLS when E("|X) 6= 0,’ where a

bias does not necessarily exist since E("|X) 6= 0 does not imply that E(�̂OLS � �) 6= 0. Of

course, it is possible that E(�̂OLS��) 6= 0 but it is not forced by the condition E("|X) 6= 0

and we may well have E(�̂OLS � �) = 0. Ebbes et al. [10], ‘Introduction’, reach similar

conclusions:

‘When the assumption of independence of regressors and errors does not hold (i.e. when E("|X) = 0)

it follows immediately that the OLS estimator is biased.’

Furthermore on page 35 in [9] we are falsely reassured that

‘In applying the classical linear regression model, the assumption that E("|X) = 0 ... may not hold.

As a consequence, the OLS estimator is biased.’

Not far below, we arrive at a statement that says that zero correlation between " and Z is

equivalent to E("|Z) = 0 :

‘Instruments mimic the troublesome regressors but are uncorrelated with the error term

(i.e. E("|Z) = 0...).’

But, as we already remarked and we will prove below, zero correlation is not equivalent

to E("|Z) = 0. Another instance where these two definitions are exchangeably referred to

happens on the same page:

‘This method has as drawbacks that instruments need to be available and that once they are available,

they may be weak and/or correlate with the error (i.e., E("|Z) = 0 may not hold).’

On page 36, Ebbes [9] continues to focus on zero correlation between the error term and

explanatory variable:

‘...the ‘latent instrumental variable (LIV) method’... introduces an (unobserved) discrete binary

variable to decompose x into a systematic part that is uncorrelated with " and one that is possibly

correlated with ".’

Upon a brief look back at page 35, [9], the condition E("|X) = 0 gains importance in view
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of the following assertion:

‘... Thus, one would like to test a priori whether E("|X) = 0 holds.’

The same statement emerges in [12], page 366. Next, on page 37, [9], apparently the defi-

nitions of dependence and correlations are freely exchanged, and in fact, they were traded

at once for E("|X) = 0, which was suggested as a claim to be tested:

‘Furthermore, we suggest a method which is based on a Hausman-test (Hausman, 1978) to test di-

rectly for regressor-error dependencies ... This instrument-free test can be used to assess a priori

the presence of regressor-error correlations...’

It will become evident in Section 4 that the exogenous instrumental variable Z is un-

correlated with the error term ". Yet, for the purpose of answering the question as to

which requirements the LIV approach is intended to assure among (i) zero correlation,

(ii) E("|Z) = 0, and (iii) independence of the exogenous variable Z and ", we present a few

observations next.

2.2 From dependence to correlation: A few observations

Throughout this subsection we assume that E(") = 0, unless otherwise stated. This as-

sumption is commonly imposed on the random error term in the regression equation. Note

that, since E(") = 0, the correlation ⇢(", X) = 0 if and only if E("X) = 0 by the definition

of the correlation ⇢(", X) between X and ". In other words, X and " are correlated, that

is, ⇢(", X) 6= 0 if and only if E("X) 6= 0.

Observation 1. IfX and " are independent random variables, then E("|X) = E(") = 0.

Equivalently, if E("|X) 6= 0, then X and " are not independent, thus, dependent.

Observation 2. If E("|X) = 0, then E("X) = E[X E("|X)] = E[X · 0] = E(0) = 0,

that is, X and " are uncorrelated. Equivalently, if X and " are correlated, then E("|X) 6= 0.

Observation 3. Zero correlation ⇢(", X) = 0 does not imply that E("|X) = 0. Equiv-

alently, E("|X) 6= 0 does not imply that X and " are correlated.

This is highlighted by the following counterexample. Suppose that E("|X) = C for

some real constant C 6= 0 and let X have zero mean. We obtain E("X) = E[X E("|X)] =

E(X C) = C E(X) = C·0 = 0. Thus, X and " have zero correlation even thoughE("|X) 6= 0.

Observation 4. E("|X) = 0 does not imply that X and " are independent. Equiva-

lently, if X and " are dependent, it does not follow that E("|X) 6= 0.
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This may be seen in the following example. Assume that X and Y are two independent

random variables that come from a normal distribution N(0, 1). Furthermore, assume that

" is defined, conditional on X, namely, "|X = Y if X > 0 and "|X = Y 3 if X  0. We

see that E("|X) = E(Y ) when a positive value of X is observed, while E("|X) = E(Y 3)

when a nonpositive value of X is observed. Hence, E("|X) = 0 because E(Y ) = 0 and

E(Y 3) = 0. However, the value of " obviously depends on the value of X, thus, " depends

on X. Consequently, " and X are not independent.

Observation 5. Zero correlation ⇢(", X) = 0 does not imply that X and " are in-

dependent. Equivalently, if X and " are dependent, it does not follow that X and " are

correlated.

The following example sheds light on this observation. Assume that " is distributed

⇠ N(0, 1) and let X = "2. We verify that E("X) = E("3) = 0. Thus, X and " are not

correlated. But it is immediately clear that X and " are dependent, since X is a function

of ".

Remark. It is noteworthy that there is a unique instance when zero correlation and inde-

pendence are equivalent definitions and concepts, namely, when (X, ") is a bivariate normal

random variable. Unfortunately, this is exactly one of the situations that is excluded as

possible scenario in the LIV approach proposed in [9]. This particular scenario corresponds

to the case where the latent instrumental variable equals a constant with probability 1,

and thus, the discrete distribution of the latent variable has only m = 1 category. It is

mentioned in [9] that in this case the LIV model is underidentified and the parameters are

nonidentifiable. Consequently, X could not come from a normal distribution. Thus, for all

practical purposes, we can assume that (X, ") does not have a bivariate normal distribution.

Hence, independence of X and " is distinctively di↵erent from zero correlation between X

and ".

2.3 OLS and the Gauss Markov theorem

While the question remains open as to whether the LIV approach is supposed to handle

situations when X and " are correlated, E("|X) 6= 0, or X and " are not independent, we

are inclined to think that E("|X) 6= 0 may be su�ciently relevant that it should not be

ignored. This view is informed by the following well known results about OLS estimators.

In the linear regression model Y = X� + " with non-random matrix X, where " is a
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vector of uncorrelated errors with mean zero and the same finite variance �2
"

(that is,

the errors are homoscedastic), the OLS estimator for � given by �̂OLS = (X 0X)�1X 0Y is

unbiased for �, consistent, and e�cient (e.g. see [26]). Here e�cient means that �̂OLS has the

smallest variance among all linear unbiased estimators, and thus is the best linear unbiased

estimator (BLUE) for �. This result is known as the Gauss-Markov theorem, named after

Carl Friedrich Gauss and Andrey Markov. The errors do not need to be independent and

identically distributed nor do they need to be normal. However, �̂OLS is only best possible

within this specific class of unbiased estimators. There are smaller variance estimators that

are biased. Furthermore, the mean square error S2 = (Y �X�̂OLS)0(Y �X�̂OLS)/(n� p),

defined as the squared error term corrected for the degrees of freedom n� p (n = number

of observations, p = number of model parameters) is an unbiased estimator for the error

variance �2
"

. The generalized least squares (GLS) or Aitken estimator extends the Gauss-

Markov theorem to the case when the error vector has a non-scalar covariance matrix. This

estimator is also a BLUE (Aitken [1], 1934).

When X is random, an appropriate framework in econometrics, the assumptions of the

Gauss-Markov theorem are stated conditional on X. It is assumed that E(" |X) = 0 and the

variance-covariance matrix is stated conditional on X. The OLS estimator �̂OLS is unbiased,

consistent, and e�cient.

3 Instrumental Variables

3.1 Sources of endogeneity

Next we highlight five reasons for the pitfalls that create endogeneity. For references to the

literature, we refer the reader to [9].

(1) Omitted Variables. Endogeneity rooted in omitted relevant variables occurs in

marketing models used in research studies where the response variable is consumer behavior

and the explanatory variables include price of a product but omit unobserved local market

information or product characteristics such as coupon availability, local competition, and

taste changes that impact both, the price and consumer behavior. In the omitted variables

model with conditional expected response

E(Y |(X,!)) = X� + !�

that Judge [25] examined, where ! denotes the latent or unobserved variables and X the

observed variables, OLS estimation provides the estimator �̂OLS = (X 0X)�1X 0Y and in-
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troduces the expected bias E(�̂OLS � � |(X,!)) = ⇧� with ⇧ = (X 0X)�1X 0!. When X is

known but without knowledge of !, the best linear estimator of � that minimizes the mean

square error is given by the conditional expectation E(Y |X) = X� + E(!|X)�. However,

this estimation is biased because E(Y |X) is di↵erent from X�, unless � = 0, that is, the

omitted explanatory variables are irrelevant, or E(!|X) = 0.

(2) Measurement Error. One is confronted with measurement error in the explana-

tory variables X when the observed variables di↵er from those that are specified to be of

interest. Examples for questionable variable representations are IQ substituted for intelli-

gence or ability, net or gross household income for household wealth, list price for transaction

price that depends on vendors and geographic regions, instances of incorrectly aggregated

and pooled measures from di↵erent data sources such as GDP, price inflation, unemploy-

ment rate, and work productivity, and questionnaire items and rating scales that collect

assessments of perceptions, attitudes, and beliefs for which physical measures are not avail-

able. Biases in estimating �1 via OLS are potentially reinforced when these assessments

are additionally exposed to interviewer biases and ‘halo e↵ects.’ Similarly in the model to

explain income, it is evident that ‘years of schooling completed’ neglects an individual’s

on-the-job training or evening and weekend studies. Both, measurement error and omitted

variables were recognized as sources of position endogeneity in paid search data, where one

is interested in assessing the purchase conversion performance of individual keywords in

paid search advertising (see Rutz et al. [31]). That measurement error leads to correlation

between the explanatory and noise variables, and thus, endogeneity is easily illustrated in

the simple linear regression model on the variable of interest X̃ given by

Y = �0 + �1X̃ + "

with �1 6= 0, where X = X̃ + ⌫ is observed instead of X̃. Assume expectations E(") =

E(⌫) = 0, variances Var(") = �2
"

> 0 and Var(⌫) = �2
⌫

> 0, and zero covariances E(" ⌫) =

E(X̃") = E(X̃⌫) = 0. Consequently, E(X ") = 0. Rewrite Y as a regression on the observed

variable X given by

Y = �0 + �1X + "̃

with corrected error component "̃ = " � �1⌫. We see that E("̃) = 0. If X were exogenous,

by definition X and "̃ would be uncorrelated, equivalently, E(X "̃) = 0. However, E(X "̃) =

E[X(" � �1⌫)] = ��1E(X⌫) = ��1E[(X̃ + ⌫)⌫] = ��1E(⌫2) = ��1 �
2
⌫

> 0, which is a

contradiction. We conclude that X and "̃ are correlated, thus, X is not exogenous.
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(3) Self-Selection. It is inevitable that certain individuals are more frequent internet

consumers than others or are more likely to attend to activities streamlined through the

internet, click on web pages, purchase products online, and fill in online feedback or survey

forms. Unobserved personal characteristics, employment type and other circumstances

may play a role. Analyzing research data to estimate the causal e↵ect on purchase power

within such subpopulations that are formed by group membership defined by web usage,

a treatment, or another intervention can lead to misguided and ill-informed decisions, for

example, when investigating quantities of products that need to be purchased and stored for

online sale. Some causal questions can be tackled with randomized experiments. Yet often

in practical situations, randomized trials are di�cult to implement. But even in randomized

medical trials where a key interest lies in estimating the treatment e↵ect, not everyone is

treated as intended. For instance, non-compliance issues may happen because of treatment

related adverse events. Lower compliance may relate to a weaker treatment response [13].

At the same time, control subjects at times benefit from experimental interventions or

concomitant therapies and medications. Self-selection models can be regarded as special

cases of omitted variables models, where the omitted variable is a binary indicator that is

correlated with the model error term. How self-selection may lead to endogeneity can be

seen in the simple self-selection model with the equation being expressed at the observation

level for i = 1, . . . , n as

Y
i

= X 0
i

� + S
i

X 0
i

� + "
i

,

where the dummy variable S
i

= 1 if i 2 S and S
i

= 0 if i 62 S indicates membership of

individual i to a set S of states that represent treatment or another intervention. When

E("
i

|S
i

) 6= 0, then S
i

and "
i

possibly are correlated. The reason consists in the observation

that E("
i

S
i

) = E[S
i

E("
i

|S
i

)] = P(S
i

= 1)E("
i

|S
i

= 1), which is 6= 0 for P(S
i

= 1) > 0,

unless E("
i

|S
i

= 1) = 0. Hence, E("
i

|S
i

= 1) 6= 0 implies that S
i

and "
i

are correlated,

while E("
i

|S
i

= 1) = 0 implies that S
i

and "
i

are uncorrelated. In the event of nonzero

correlation, endogeneity is present and OLS estimation fails in this regression in the sense

that the estimator for � may be biased, inconsistent, and ine�cient.

(4) Simultaneity. When the value of an explanatory variable such as product price is

determined at the same time as that of the response variable such as demand and supply,

endogeneity will emerge. In this instance, one equates two interrelated equations that both

depend on the price in order to determine the equilibrium price. Consequently, the model

error term once again may be correlated with the price, and thus, the explanatory variable
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is endogenous. Another example arises when individuals make simultaneous or intertwined

choices about labor market participation and embarking on additional educational oppor-

tunities.

(5) Serially Correlated Errors. If lagged response variables show up in the explana-

tory variables and we e↵ectively deal with a time series model, the exogeneity assumption is

violated so that OLS estimation is no longer suitable. For example, promotional activities

at time t may depend on promotional activities at time t � 1. The frequency of catalogue

mailings may be based on the chance of customers’ purchasing a product, other customers’

behaviors in the past, and passed sales. Consider the model

Y
t

= X 0
t

�1 + Y
t�1 �2 + "

t

and "
t

= � "
t�1 + ⌫

t

,

where |�2| < 1, � 6= 0, and |�| < 1. Assume that, for all t, we have E("
t

) = E(⌫
t

) = 0,

E(X
t

"
t

) = 0, Var("
t

) = �2
"

> 0, and ⌫
t

is uncorrelated with Y
s

for s  t� 1. Furthermore,

assume weak stationarity of {Y
t

}
t>0 and the existence of second moments. Y

t

and X
t

may

represent the sales and promotional activities, respectively, at time t. Observe that "
t

Y
t�1 =

� "
t�1 Yt�1 + ⌫

t

Y
t�1 and E("

t

Y
t�1) = �E("

t�1 Yt�1) because ⌫
t

is uncorrelated with Y
t�1.

Since E(X
t

"
t

) = 0, we see that E("
t

Y
t

) = �2E("
t

Y
t�1) +Var("

t

) = �2 �E("
t�1 Yt�1) + �2

"

.

Next, thanks to the stationarity assumption, we obtain E("
t

Y
t

) = E("
t�1 Yt�1) and

E("
t�1 Yt�1) = E("

t

Y
t

) = �2
"

/(1� �2 �) and E("
t

Y
t�1) = ��2

"

/(1� �2 �)

for all t, where we again rely on E("
t

Y
t�1) = �E("

t�1 Yt�1). Now, if "
t

and Y
t�1 were

uncorrelated, this would imply that E("
t

Y
t�1) = 0. However, this contradicts E("

t

Y
t�1) =

��2
"

/(1 � �2 �) 6= 0 and E("
t

Y
t

) = �2
"

/(1 � �2 �) 6= 0. We conclude that "
t

and Y
t�1 are

correlated and E("
t

|Y
t�1) 6= 0. Therefore, the exogeneity assumption is violated in this

regression model.

3.2 OLS method’s shortcomings in the face of endogeneity

In the situations that meet with endogeneity and the condition E(" |X) 6= 0, as we elabo-

rated in the previous subsection, OLS estimation often falls short. When exogeneity indeed

is violated and E("X) 6= 0 and E(" |X) 6= 0, the OLS estimator

�̂OLS = � + (X 0X)�1X 0" (3.1)

ceases to be appealing, because it no longer possesses basic key features expected of good

estimators for model parameters such as unbiasedness, consistency, and e�ciency. First,
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when E(" |X) 6= 0, then E(�̂OLS�� |X) = E[(X 0X)�1X 0") |X] = (X 0X)�1X 0E(" |X) 6= 0.

Second, since E(�̂OLS � �) = E[(X 0X)�1X 0E(" |X)] = E[(X 0X)�1X 0")], it follows that

�̂OLS is biased, unless E[(X 0X)�1X 0E(" |X)] = 0. Furthermore, the mean square error

S2 = (Y �X�̂OLS)0(Y �X�̂OLS)/(n � p), defined as the squared error term corrected for

the degrees of freedom n�p (n = number of observations, p = number of model parameters),

that is routinely engaged as an unbiased estimator for the error variance �2
"

may not be

an unbiased estimator either, unless E[(X 0X)�1X 0"] = 0. When �2
"

is underestimated, the

model’s accuracy is overestimated. Since the standard error of � is proportional to S, un-

derestimating �2
"

also means underestimating the standard error of �̂OLS and overestimating

the precision of �̂OLS.

In addition, the OLS estimator is inconsistent when exogeneity is compromised, that is,

�̂OLS does not converge to � with probability 1 as the sample size increases without bound

(e.g. see [33]). This signifies that increasing the sample size will not rectify the problems of

biases in the parameter and error variance estimates but the biases may be equally large or

larger for a larger number of observations.

Moreover, biases in estimating � also a↵ect the e�ciency in the estimation. The OLS

estimator is e�cient under the assumption that the errors have finite variance and are ho-

moscedastic, which means that E("2 |X
i

) does not depend on i for i = 1, 2, . . . , n. This is

assured by the Gauss-Markov theorem, which states that �̂OLS provides the BLUE for � in

the sense that �̂OLS has minimal variance among all linear unbiased estimators. Since there

are biased estimators with smaller variance, the requirement of unbiasedness is necessary

and cannot be relaxed. Let us add that, when E(" |X) = 0 but the errors are corre-

lated or heteroscedastic, thus, the conditional covariance matrix of the errors is expressed

by Var(" |X) = ⌦, GLS estimation (Aitken [1]) produces an estimator that is unbiased,

consistent, e�cient, and asymptotically normal. The GLS estimator is given by

�̂GLS = (X 0⌦�1X)�1X 0⌦�1 Y. (3.2)

These properties hold because GLS estimation can be regarded as OLS estimation after

a transformation has been applied to the variables X that standardizes the errors and

removes the correlation between them, thus, created a perfect setting for the OLS method

to perform.
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3.3 IV regression model

In instances of endogeneity, the IV model expressed by the two simultaneous equations

Y = X�+" and X = Z ⇧+V, where the observable instruments Z 2 Rn⇥q are uncorrelated

with " but explain a portion of the variability of the endogenous variables X 2 Rn⇥k, was

spearheaded to overcome potential problems that the OLS technique can create. Here Z

is exogenous and also comprises the exogenous variables in X, whereas V is endogenous

and accounts for the correlation with ". It is assumed that q � k and rank(Z) = q < n in

order to assure identifiability of the model parameters. Since the IV model turns out to

be a special case of a simultaneous equation model (SEM), estimation techniques in SEMs

can be adopted to estimate �. The 2-stage least squares (2SLS) estimator and the limited

information maximum likelihood (LIML) estimator are among the most widely used. 2SLS

is available in many software packages. We remark that, while the instrument Z is observed,

⇧ and Z ⇧ are not observable and an estimate for ⇧ is arrived at by regressing X on Z.

The IV estimator is the GLS estimator given by

�̂IV = (X 0 P
Z

X)�1X 0 P
Z

Y (3.3)

with P
Z

= Z(Z 0Z)�1Z 0, which is the usual projection matrix in regressing X on Z to obtain

an estimate for ⇧ and is the projection operator onto the space spanned by the columns of Z.

Hence, we gather from (3.2) that P
Z

plays the role of ⌦�1 = [Var(" |X)]�1 in the usual GLS

estimation of �, which minimizes the squared Mahalanobis length (Y �X�)0⌦�1 (Y �X�)

of the residual vector.

An important point to take note of is that, while 2SLS and other IV estimators are

consistent, generally E(�̂IV��) = E[(X 0P
Z

X)�1X 0 P
Z

"] 6= 0 and �̂IV is not unbiased. Un-

biasedness of an estimator �̂ means that E(�̂) = � for any fixed sample size, in other words,

in average the unknown parameter � is estimated precisely for any sample size. However,

the 2SLS IV estimator �̂IV has an expected bias of E(�̂IV��) = E[(X 0P
Z

X)�1X 0 P
Z

"] 6= 0

for any finite samples. This is true for exogenous IVs. For invalid IVs, the bias can be sub-

stantially greater, as we shall discuss below. This IV estimator’s bias under exogenous Z is

in the same direction as the bias of the OLS estimator �̂OLS in the presence of endogeneity,

which possesses expected bias E(�̂OLS � �) = E[(X 0X)�1X 0"] 6= 0.

Consistency means that, with increasing sample size, the error in the estimation of �

is as small as possible with probability 1. Thus, while for small or medium sample sizes,

the IV estimator is expected to estimate � with a bias or error, the bias will decrease with

growing sample size. Therefore, researchers who adopt the IV approach should rely on large
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samples and keep in mind that standard errors that software packages routinely post are

only approximate standard errors.

3.4 Benefits and pitfalls of IV regression

From an application point of view, the IV approach essentially is nearly as simple as an

ordinary linear regression analysis, even though a few of the latter’s favorable estimator

properties are lost. But the IV method seems to present the advantage of avoiding the

troubling shortcomings of OLS estimation when that method meets with endogeneity. It

thus is not surprising that, during the last eight to nine decades, the IV method has become

a flowering and celebrated one-size-fits-all method in economics and empirical applications

for modeling linear associations and causal relations in the presence of endogeneity. Yet it

is revealing to reflect about the questions of where and how to find suitable and relevant

IVs in practical situations and how to confirm their suitability and relevance post hoc.

While additional variables that can be incorporated as IVs in the model indeed may be

uncorrelated with the model error term or explain a substantial amount of the variability,

the real di�culty is to ensure both requirements are satisfied simultaneously. Should these

requirements not be valid at the same time, one needs to be aware of two other avenues

that wreak havoc with the IV regression’s success, which have frequently been witnessed

in empirical studies. On the one hand, instrumental variables that are strongly correlated

with the endogenous variables may also be correlated with the model error term. On the

other hand, IVs that are uncorrelated with the model error component may only be weakly

correlated with the endogenous variables and be poor IVs. The occurrence of such flawed

IV candidates is well reviewed and documented in the literature [3, 9]. Finding relevant

IVs that are exogenous reportedly is challenging [3]. However one does not have to go as

far to encounter another issue and possibly walk into another dead end. It is not always

obvious at the outset that IVs are necessary and IV estimation should be favored over OLS

estimation, especially, since IV estimates are biased while OLS estimates are unbiased.

Suspected endogeneity may not be present after all. Endogeneity can be statistically tested

for in the framework of IVs. Yet, the pitfall of this option is a circular problem, because

the endogeneity test relies on IVs. Thus, strikingly, IVs need to be available a priori

to test whether they are indeed required. Since IVs often are hard to find, evidently, the

burdensome line of pursuit to first address the challenge to identify IVs that are relevant and

exogenous and hence fulfill the two key conditions and then possibly conclude in a second

step that no IVs are needed because of absent endogeneity in the explanatory variables
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seems to be more trouble than most situations warrant. It is di�cult to imagine that

one would embark on such e↵orts. On the other hand if the IVs are weak, it should

be obvious that these may be misleading and misinform conclusions. Let us elaborate

on these hidden traps that are (1) endogenous instruments, (2) weak instruments, and

(3) endogeneity testing based on flawed IVs.

Trap 1: Non-Exogenous Instruments. One of the two requirements of a valid

instrument is exogeneity. It is apparent that exogenous instruments need to avoid all

sources of endogeneity which are (1) omitted relevant variables, (2) measurement error

in the explanatory variables, (3) self-selection, (4) simultaneity, and (5) serially correlated

errors caused by lagged explanatory variables. A typical example for issue (5) would be

when lagged prices or promotional variables are used as instruments in marketing response

models. Employing IVs for price from other markets is problematic when promotional or

advertising activities are synchronized across markets or price shocks synchronize globally,

which exemplifies the issue in (4). In each of situations (1)-(5), the primary problem arises

from an instrument that is correlated with omitted relevant variables, thus, with the error

term, which is equivalent to issue (1) above. As Angrist and Krueger [3] put it, ‘seemingly

appropriate instruments can turn out to be correlated with omitted variables on closer

examination...’ They illuminate this point in an example of weather in Brazil that may well

shift the supply curve for co↵ee, and thus, be a plausible instrument to estimate the e↵ect

of price on demand. In addition, the Brazilian weather might possibly shift the demand

curve for co↵ee in the exchange, where co↵ee futures are traded, if traders use weather

data to adjust holdings in anticipation of price increases that may not even materialize.

Angrist and Krueger [3] go on to remark that ‘especially worrisome is the possibility that

an association between the IVs and omitted variables can lead to a bias in the resulting

estimates that is much greater than the bias in OLS estimates....’ In order to illustrate

this phenomenon and its magnitude, in Section 4 below, we look to some concrete numbers

in three data set examples examined in [9]. High biases of the IV estimates compared to

the OLS estimates were confirmed [9] by applying the LIV method that he proposed that

should be adopted instead, which we will describe in detail in Section 4, as well. For return

to schooling, he reported that the IV estimate is about 80% higher than the OLS estimate

in the NLSY data, based on an indicator variable for proximity, about 30% higher for the

Brabant data based on instruments that are education levels of respondents’ parents, and

about 30% higher for the PSID data.
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Yet, other troubling instances commonly arise where the IVs only a↵ect a subgroup of

the study sample or target population. Thus, the IV approach provides an estimate for the

causal e↵ect of the instrument only for the particular subgroup of individuals whose be-

havior is changed by the instrument. For example, the quarter-of-birth instrument changed

the level of schooling of some individuals (see Angrist and Krueger [2] for a discussion). Al-

ternatively, IV regression estimates the e↵ect of the instrument for those individuals whose

behavior would be changed by the instrument if it were assigned to them entirely at random

in a trial (Imbens and Angrist [24]). When an IV merely partially explains the variation in

an explanatory variable due to this sort of heterogeneity, it should be obvious that the inter-

pretation of the IV estimates is problematic at best. Consider as an example the subgroup

of patients randomized to active treatment in a clinical trial. An IV that has an indirect

e↵ect on the e�cacy for patients in the active group is non-compliance to treatment. Typi-

cally, the same IV’s e↵ect is de-emphasized in the control group. Here the treatment e↵ect

is supposed to be estimated of the subjects who will take the study treatment that was

assigned (see [13]). In trials with substantial noncompliance, an IV estimate sometimes is

obtained, as well, in order to consistently estimate the average treatment e↵ect in those

subjects who comply with the treatment assignment. Yet the IV estimate is not always

consistent, which was shown in [32].

Let us return to the e↵ect of schooling on later earnings. IVs that are suitable for some

individuals may have no e↵ect on individuals who pursue higher education and academic

degrees with a higher chance. In turn, these longer-term students will likely move up into a

higher income class when they graduate from additional years of education. But the same

IVs may a↵ect individuals’ return on schooling in terms of later income who have a higher

chance to quit school as early as possible [3]. In sum, in all these situations where the

exogeneity property must be questioned, the IV method is at risk of creating biases in the

estimates that possibly exceed any bias induced by OLS estimation by orders of magnitudes.

Trap 2: Weak Instruments. In addition to the exogeneity feature, a valid instrument

needs to meet the requirement to be correlated with the explanatory variables and display

a high degree of explanatory power. Stock, Wright and Yogo [34] express that ‘Finding

exogenous instruments is hard work, and the features that make an IV plausibly exogenous

[...] can also work to make the instrument weak.’ An instrument is termed ‘weak’ if it is

poorly correlated with the endogenous explanatory variables X. It is important to note that

the statistical properties of IV estimators and the deduced inferential methods and results
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are sensitive to the choice and validity of the instruments, even for large sample sizes. An

obvious implication is that when the instruments are not valid, the statistical inferential

methods are not applied successfully and are invalid, too. Nor are the deduced estimates,

confidence intervals, hypothesis tests, and other inferential statistics robust in situations

of deviations from valid instruments and statistical properties are futile. It is inevitable

that di↵erent researchers who engage di↵erent weak instruments end up with drastically

di↵erent IV estimates and divergent conclusions. These unpleasant consequences are simi-lar

to those caused by another lurking pitfall, non-identifiability, which yet another key

concept that researchers who rely on regression analysis need to be cautious about. When

IVs do not exhibit a high degree of predictive power for the endogenous variables (or the

number of instruments is large), a variety of weaknesses of the instruments emerge, even in

the presence of exogeneity. Again the IV estimates may possibly be more biased than OLS

estimates, inconsistent, and exhibit lower precision than anticipated. They thus lose all

properties expected of estimators and become worthless. Consequently, confidence intervals

and hypothesis tests based on IV estimates become unreliable, inaccurate, and meaningless.

Aside from the nonzero finite sample bias E[(X 0P
Z

X)�1X 0 P
Z

"] of �̂IV, weak instruments

bring about another flaw in the estimation, which is a poorly performing asymptotic ap-

proximation of the sampling distribution of IV estimators to the true but unknown value

of �. This finite sample bias increases with the number of less relevant instruments that

are added to the model. Bound, Jaeger and Baker [5] and Hahn and Hausman [21] argue

that the bias is inversely related to the F-statistic of the first stage regression of X onto

Z. These two observations combined imply that the partial R2 and F statistics of the first

stage regression give an indication of the quality of the IV estimates, and for that reason,

should be routinely reported.

It is worthwhile to examine the magnitude of the relative inconsistency of the IV estima-

tor compared to the OLS estimator and the finite sample bias of �̂IV when the instruments

are weak and not exogenous. In this case, the finite sample bias is substantially more mag-

nified. For this purpose, consider the simplest IV model with one explanatory variable and

one instrument. Let ⇢
Z,"

, ⇢
X,"

, and ⇢
X,Z

denote the respective correlation between " and

Z, " and X, and between X and Z. Notice that exogeneity of Z is equivalent to ⇢
Z,"

= 0.

Endogeneity of X is equivalent to ⇢
X,"

6= 0. A weak instrument Z will have a relatively

small value of |⇢
X,Z

|. Bound, Jaeger and Baker [5] demonstrate that, when Z is not exoge-

nous, that is, ⇢
Z,"

6= 0, the relative inconsistency of the IV estimator compared to the OLS
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estimator is equal to
�̂IV � �

�̂OLS � �
=

⇢
Z,"

⇢
X,"

· ⇢
X,Z

.

Thus, when the instrument Z is weak, which is expressed in terms of a small value of ⇢
X,Z

,

this relative inconsistency blows up, possibly, to the extent render the inconsistency of

the IV estimator larger than the one of the OLS estimator. This occurs if |⇢
Z,"

/(⇢
X,"

⇢
X,Z

)| >

1. In conclusion, when the instruments are weak, even in large samples, the large sample

asymptotic approximations are poor, which invalidates the classical results that are vital for

statistical inference such as the construction of confidence intervals and hypothesis testing of

the overall model or parameters (Nelson and Startz [29]).

Trap 3: Endogeneity Testing Based on IVs. In the presence of endogeneity, it would

be beneficial to test whether externally available IVs are exogenous and provide explanatory

power for the endogenous X. Hahn and Hausman [20] developed a validity test for IVs that

simultaneously addresses exogeneity and strength. Rejecting the null hypothesis indicates

either a lack of the assumed exogeneity or weakness of the instruments. The initial exogeneity

test procedure of Hausman [23] obviously relies on external instruments, since it depends on

the di↵erence between the OLS and IV estimates. However, amid the dilemmas one possibly

encounters with IV regression, it would be advantageous to test potential regressor error

correlation prior to having to find instruments. This would avoid the search for suitable

instruments that frequently is problematic in practice, for the sake of only coming to the

conclusion later on that there is no need for the instruments because OLS estimation

performs equally well. One possible outcome of performing the Hausman test for endogeneity

is the conclusion that previously identified instruments are not needed. An additional

complication with this circular problem that the Hausman test creates the failure to reject

the suitability of the OLS estimator simply because of the bias that weak instruments

introduced in the test statistic (see Hahn and Hausman [21]).

4 Latent Instrumental Variables Approach

The latent instrumental variables method that Ebbes [9] presented attempts to solve these

circular problems. This is an instrument-free approach that utilizes a latent variable to

estimate regression parameters when endogeneity is present. The endogenous explanatory

variable is decomposed into an exogenous part and an endogenous error term, where the

exogenous term is an unobserved discrete variable and the model parameters are identified
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and estimated via maximum likelihood methods. Hence observed IVs are not required.

Interestingly, ‘optimal’ IVs are estimated from the data and endogeneity can be tested as

well. Mixture modeling techniques [27] estimate a grouping associated with the discrete

latent variable simultaneously with the other parameters.

4.1 Model

Suppose we fit an LIV model to n available independent and identically distributed (i.i.d.)

observations (Y1, X1)0, . . . , (Yn, Xn

)0. The LIV model is assumed to have the form

Y
i

= �0 + �1Xi

+ "
i

(4.4)

X
i

= ⇡0Z
i

+ ⌫
i

,

where ⇡ = (⇡1,⇡2, . . . ,⇡m)0 for m � 2, the Z
i

are unobserved categorical variables that are

assumed to be uncorrelated with the errors (", ⌫) and follow a multinomial (1,�) distribution

with jth group mean �
j

> 0 and
P

m

j=1 �j

= 1, and the errors (", ⌫) are assumed to obey

the normal distribution F = N(0,⌃) with variance-covariance matrix

⌃ =

2

4 �2
"

�
"⌫

�
"⌫

�2
v

3

5 . (4.5)

Hence, the correlation ⇢(X
i

, "
i

) between X
i

and "
i

is fully captured by the correlation

⇢(⌫
i

, "
i

) between ⌫
i

and "
i

, whereas ⇢(Z
i

, "
i

) = 0. Let us investigate the implications of this

structure on the unconditional and conditional distributions of (Y
i

, X
i

)0, given the group

membership of Z
i

, in the case when m = 2. Denote e1 = (1, 0)0 and e2 = (0, 1)0. The

conditional distribution L((Y
i

, X
i

)0 |Z
i

= e
j

) = N(µ
j

,⌦), given that Z
i

belongs to the jth

group, has expectation

µ
j

= E

0

@

0

@ Y
i

X
i

1

A |Z
i

= e
j

1

A =

0

@ �0 + �1⇡j

⇡
j

1

A (4.6)

and variance-covariance matrix

⌦ =

2

4 �2
1�

2
v

+ 2�1�"⌫ + �2
"

�2
1�

2
v

+ �1�"⌫

�2
1�

2
v

+ �1�"⌫ �2
v

3

5 . (4.7)

The marginal probability density function (pdf) of (Y
i

, X
i

)0 is the pdf of a mixture [27] of

two bivariate normals

f(y
i

, x
i

) = �f1(yi, xi) + (1� �)f2(yi, xi) (4.8)
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with mean

µ
y,x

=

0

@ �0 + �1[�⇡1 + (1� �)⇡2]

�⇡1 + (1� �)⇡2

1

A (4.9)

and variance-covariance matrix

⌦
y,x

= ⌦+ �(1� �)(⇡1 � ⇡2)
2(�1, 1)

0(�1, 1), (4.10)

where f
j

denotes the bivariate normal pdf, given Z
i

= e
j

. The parameters �0,�1,⌃,⇡1,⇡2,

and � that need to be estimated turn out to be identifiable in this model. Specifically, Ebbes

[9] showed that, if m � 2 is fixed and all group means ⇡
j

are di↵erent, all parameters in-

cluding the mixture probabilities can be uniquely determined (up to a possible permutation

of the group labels) for the LIV model with normally distributed errors.

Importantly, however, a normal distribution for the unobserved instrument results in

an underidentified model where the parameters are unidentifiable. Apparently the same

situation emerges when m = 1 and the instrument equals a constant. A speculation in [9]

has it that if the error distribution of " is assumed to be non-normal, a normal distribution

for the latent instrument may be feasible.

Ebbes [9] mentions that incorporating analytical expressions of the gradient vector and

Hessian matrix in numerical optimization techniques such as the quasi-Newton routines,

for instance, the BFGS method drastically increases the algorithmic convergence speed and

provides more stable results than numerically approximating the gradient and Hessian.

Equipped with the LIV estimate �̂LIV for �, Ebbes [9] proposed a Hausman exogeneity

test of the explanatory variables X that relies on the Hausman-LIV test statistic

HLIV = (�̂LIV � �̂OLS)
0 ⌃̂�1

HLIV
(�̂LIV � �̂OLS), (4.11)

⌃̂

2
1

where �̂OLS is the OLS estimate for � and HLIV is the estimated asymptotic covariance of

the di↵erence �̂LIV � �̂OLS. The null hypothesis is that both the OLS and LIV estimates are

consistent, while the alternative hypothesis asserts that only �̂LIV is consistent. Under

the null hypothesis, HLIV has an asymptotic � distribution. Importantly, since this LIV

variant of the Hausman test does not require any observed IVs, it eliminates the circular

problem that the IV approach poses and avoids potential traps that weak IVs inject in the

test procedure.
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4.2 Simulation study

Beyond the solution to the identifiability issue that was covered in the last subsection,

a couple of obvious questions emerge in the LIV approach. Whether the LIV estimates

are unbiased and consistent is not addressed from a mathematical point of view in [9]

but the performed Monte Carlo simulation in various scenarios establishes that potential

endogeneity issues are adequately resolved. In contrast with OLS, the LIV estimates are

approximately unbiased, the parameters of interest can be recovered e↵ectively, and the

statistical power of the Hausman-LIV test is judged to be satisfactory. Thus, the test is

su�ciently powerful to suitably identify endogeneity. Importantly, the exact choice of the

number of categories of the unobserved discrete instrument is not sensitive to the final

outcomes when the LIV method is applied. Subsequent sensitivity analysis for the simple

LIV model, based on the specifications that the unobserved discrete instrument has three or

four categories, reveals no significant impact on the estimation results nor on the statistical

power estimates of the Hausman-LIV test.

In the Monte Carlo (=MC) simulations that explored the consistency of the model

parameters and accuracy of the estimation, Ebbes [9] considers various scenarios for the true

number of instruments m̃ 2 {2, 4, 8}, the distribution of group allocation ⇡, and correlation

⇢ 2 {0.0, 0.1, 0.2, . . . , 0.5} of the endogenous variable X with ". It is assumed that µ
X

= 0

and �2
X

= 2.5 in all simulations. The resulting distribution includes unimodal and bimodal

distributions and a skewed distribution. Note that the constant can be estimated in an

unbiased way via the OLS method because µ
X

= 0. Data were generated for n = 1000

observations and 250 Monte Carlo replications. We focus on the model parameters �1 and

�
"

that apparently are of principal interest. The estimation of the remaining parameters is

discussed [9], as well. In the presented bias plots for �1 and �
"

, the simple LIV model with

m = 2 is contrasted with the OLS estimate �̂OLS = � + (X 0X)�1X 0". Only one OLS bias

plot is shown, which may indicate that the OLS estimate was not sensitive to the di↵erent

scenarios that the MC simulations highlighted.

Bias Plots for Estimates of �1. A first observation in Figure 3.1, [9], is that the OLS

estimate only performs well in the situation of perfect exogeneity, in which it is known to

provide the ‘best linear unbiased’ estimator in terms of smallest possible variance among

all unbiased linear estimators. However, in all other situations of nonzero correlation ⇢,

the OLS estimate carries a substantial bias across the majority of MC replications. The

magnitude of bias begins to be increasingly and outstandingly high for ⇢ � 0.3. Moreover,
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since the predicted uncertainty of the OLS estimator remains small across various degrees

of endogeneity, this estimator is extremely misleading not only because the estimate’s bias

is strikingly large but it also gives the false impression of being highly precise at the same

time that it is highly inaccurate. Its distribution is narrowly centered around a blatantly

wrong estimate. A second observation is that, with n = 1000 data points, the simple

LIV estimate provides an asymptotically unbiased estimator across all scenarios including

with no, small, or high correlation ⇢, where a higher degree of endogeneity decreases the

amount of uncertainty of the estimate. The precision of the LIV estimator is reasonably

high for none or small correlation ⇢ and is high for medium to high correlation ⇢. Further-

more, when the true instrument has an obvious cluster structure, it is well approximated

by the assumed discrete instrument. When there are four or eight instruments in the as-

sumed unimodal distribution for the group allocation and the model is mis-specified, some

e�ciency is lost with the simple LIV approach, since the model approaches the vicinity

of the non-identifiability region. Lower information in the mixture models translates into

lower e�ciency of the LIV estimate. When the true number of categories is larger, it is ex-

pected that the distribution of X becomes closer to a normal distribution. We know that if

the unobserved instrument has a normal distribution, this results in an unidentified model.

This particular phenomenon is more emphasized for none or minor endogeneity. Yet, this

only is a minor concern at best, since in that case one can resort to the OLS approach.

Bias Plots for Estimates of �
"

2. We gather from Figure 3.2, [9], that the LIV esti-

mates appear to be asymptotically unbiased in all cases. For the skewed and two bimodal

distributions for the group allocation, the simple LIV estimation results in high precision

even without endogeneity. When there are four or eight instruments in the assumed uni-

modal distribution, the distribution of the LIV estimate is slightly positively skewed across

scenarios. With increasing endogeneity, the variance of the estimates marginally increases,

which is expected since Y and E(Y |X) tend to be further apart. Similarly as we remarked

for �1, the OLS estimator for ⇢ > 0.2 experiences a substantial bias, which is a downward

bias, that becomes significantly more emphasized with increasing endogeneity. Again the

OLS estimator turns out to be utterly misleading, as it falsely indicates high precision,

which at best would be high precision around a glaringly wrong estimate.

Estimated Power of Hausman-LIV Test. For the distributions that were selected

for the MC simulation study [9], the test exhibits reasonably good power for a wide range

of levels of statistical significance and is robust under model mis-specification with a minor
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tendency towards rejecting the null hypothesis too often. The power of the test is the

lowest for the unimodal distributions and highest for the bimodal distributions and skewed

distribution, which reflects on the simple LIV model adequately representing the di↵erent

clusters. Yet when endogeneity is lacking, the Hausman-LIV test too frequently rejects

the null hypothesis for the skewed distribution and unimodal distributions with m̃ = 2 or

m̃ = 4. The latter instance is caused by lacking information in the mixture models.

Choice of Number of Clusters. Making the right choice for the value of m is not

crucial in successfully applying the Hausman-LIV test. Sensitivity analyses in [9] that rely

on m = 3 and m = 4 instead of m = 2 demonstrate that the conclusions relating to the

statistical power and estimation of �1 and �
"

remain intact.

4.3 Estimating the returns to education: Application of LIV method

Whether time spent in education completely or partially explains who lands the top earning

jobs in the market at a given time and the impact of education on income in general are

topics of wide public interest and attention. It is apparent that other factors than education

tenure, such as ability, may predict income in subsequent years and would need to be taken

into account to avoid biases in the statistical inference. For this reason and by means of

various comparisons, the OLS estimate based on linear regression of income on years of

education has been believed to be biased. This example seems to be a quintessential arena

to resort to instrumental variables as remedy – we will mention another example, as well, in

Section 6. Strikingly, though, when indeed other explanatory variables are included in the

regression and IV regression is adopted rather than OLS regression because of suspected

endogeneity, the injected bias in the estimated explanatory power of education for income

often has been reported to be stupendous. In order to put the biases by OLS and IV

regression on scale, Ebbes [9] applied the LIV approach to three empirical datasets to

investigate the return of education on income. Consider the following linear regression

Y
i

= �0 + �1Si

+X
i

�2 + "
i

, (4.12)

where Y
i

denotes the logarithm of a measure of earnings, S
i

a measure of education and X
i

is

a collection of other explanatory variables that are assumed to influence Y
i

. The coe�cient

�1 measures the e↵ect of education on income when adjustments are incorporated for other

variables X
i

and is expected to be positive. The error term "
i

absorbs the remaining factors

that may influence Y
i

that are not captured in this equation.
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2
S

2
S

We gather from the findings in [9] that the results based on the LIV approach are more

consistent than those based on the classical IV approach. There are strong indications

that the observed instruments that have been engaged are either weak or endogenous in

two of the three applications. Judging from the LIV estimates, the OLS estimate of �1

exhibits a moderate upward bias of around 7%, which supports the ability bias hypothesis.

However, relying on IV estimates to gauge bias had previously indicated a bias of the OLS

estimate that stunningly ranges from �80% to 30% for these three data applications. This

lucidly illuminates the crucial major concern that if, for a particular research problem,

one uses di↵erent sets of instrumental variables that are not all suitable because of issues

with potential weakness or endogeneity, one is gravely misled about the magnitude and

direction of bias in estimating model parameters. Bias produced by OLS estimation can be

dramatically over- or underestimated, while there are no tools to double-check whether the

IV approach was applied suitably or with minor or serious flaws. The resulting extremely

slim agreement in the direction and magnitude of the potential bias is not at all surprising

since the multitude of bias sources have their own specific impact on direction and magnitude

and may o↵set or reinforce each other in ways that cannot be assessed.

Violation of the zero correlation assumption of education, the variable X, with the error

term " has been attributed in the literature to the pitfalls of omitting ability, measurement

error, and heterogeneity among others. As an example, we illustrate the implied ‘ability’

bias when one presumes that ability enables some individuals to secure higher income than

they would without that ability. When individuals with higher ability tend to acquire more

education, the ability bias is further reinforced. If education is the only explanatory variable

besides education tenure, equation (4.12) becomes Y
i

= �0 + �1Si

+ �2Ai

+ "
i

, where the

coe�cient �2 associated with ability represents the e↵ect of ability on income. It is expected

that �2 > 0 because in average higher ability and more years in education should benefit

income. When ability is unobserved, the OLS estimator for the e↵ect of education on income

is falsely exaggerated by approximately �2 �SA/� , where � denotes the variance of S
i

and

�SA the covariance of ability and the earnings quantity. Whenever the linear association

between ability and earnings is positive, this causes an upward bias. However, this upward

bias can be o↵set by a downward bias of the OLS estimate, for instance, if the measure

for education is imperfect or other other explanatory variables are omitted. Griliches [19]

argued that, if ‘years of schooling’ does not fully capture total education, a large downward

bias may be triggered but the latter may itself be o↵set by other omitted relevant variables.

In an overview of studies that employ IVs to estimate the returns to education, Card



Latent Instrumental Variables 24

[7, 8] distinguishes between IVs based on (i) institutional features of the school system and

(ii) family background characteristics. In the former case, the produced IV estimates are

approximately 30% higher than the OLS estimates, which is in contradiction with the

current belief about ability bias in the literature (see Card [7, 8] for possible explanations).

In the latter case, when, for example, measures on education levels of family members

are incorporated in the model, Card [7] shows that the IV estimator is at least as biased

upwards as the OLS estimator if the OLS estimator is biased, and the IV bias might exceed

the OLS bias. Card’s [7] approach that uses twins or siblings data exploits information on

the twins or siblings and attempts to eliminate biases by correcting for omitted variables

or measurement error. He concludes that the OLS estimator exhibits a slight upward bias

of around 10%� 15%. A possible pitfall of this avenue is that these results may not readily

generalize to non-twins and the assumption of identical abilities of identical twins or siblings

may be questionable and violated.

Next we describe the three empirical datasets to gauge the biases that were encountered

in the results from OLS or IV regression to examine the return of education on income by

means of the LIV method.

NLSY Data. The US National Longitudinal Survey of Young Men (NLSY) data set

with observations drawn in 1976 on 3010 men aged between 24 � 34 years followed since

1966 that contains several supposedly exogenous variables and one dummy IV indicator for

the presence of a nearby college was analyzed in [6] and [35].

Brabant Data. This data set was originally sampled from the Dutch province ‘Noord-

Brabant’ in 1952 and contains observations on 833 men who were contacted 30 years later

when expected to hold a stable labor market position. Available variables are educational

level, income, and social background, several exogenous explanatory variables, and quan-

tities on the educational level of the respondents’ father and mother (see [22] for a more

detailed description of the data).

PSID Data. The University of Michigan Panel Study of Income Dynamics (PSID) data

set which contains observations on 424 working married white women between the ages of 30

and 60 in 1975 was analyzed by Wooldridge [36] and Mroz [28]. Available variables include

several exogenous explanatory variables and the educational level of the respondents’ father,

mother, and husband.

Results. We compare the results between the LIV, OLS, and IV methods presented in

[9] on the estimated schooling e↵ect on income for these three datasets. Of vital interest are
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the biases of the OLS and IV estimates, when the LIV estimates are used to gauge the bias.

It turns out, while for each of the data sets, the OLS estimate slightly over-estimates the

returns to education, the IV estimate substantially over-estimates the return to schooling

for the NLSY and Brabant data sets but noticeably under-estimates the return for the PSID

data set. It is important to note that, while the IV approach utilized the available observed

instruments mentioned above, the LIV approach was applied without them. When detailing

the LIV estimates, we turn to the optimal group size m⇤ for the latent variable identified

based on BIC and AIC3. This optimal cluster size is m⇤ = 5, 4, 5 for NLSY, Brabant, and

PSID, respectively. The LIV results are fairly stable across di↵erent choices of m.

Table 1: LIV, OLS, and IV Estimates and Bias of OLS and IV Estimates Relative to LIV

Estimate for NLSY, Brabant, and PSID Data Sets

Data Set �̂LIV
1 (SE) �̂OLS

1 (SE) �̂IV
1 (SE) Bias (%) of �̂OLS

1 Bias (%) of �̂IV
1

NLSY 0.069 (0.004) 0.074 (0.004) 0.133 (0.052) 7.25 92.75

Brabant 0.040 (0.005) 0.043 (0.004) 0.056 (0.008) 7.5 40

PSID 0.096 (0.014) 0.102 (0.014) 0.073 (0.032) 6.25 �23.96

For NLSY, Brabant, and PSID, the respective estimate �̂LIV
1 (SE) is given by 0.069 (0.0040),

0.040 (0.0049), and 0.096 (0.0142), the estimate �̂OLS
1 (standard error) is 0.074 (0.0035),

0.043 (0.0044), and 0.102 (0.0139), and the estimate �̂IV
1 (standard error) is 0.133 (0.0518),

0.056 (0.0075), and 0.073 (0.0321). We observe that the OLS estimates are above the LIV es-

timates in all cases, while the IV estimates exceed the OLS and LIV estimates for the NLSY

and Brabant data but lie below the OLS and LIV estimates for the PSID data. Hence, the

LIV approach leads to disagreement about the direction of the OLS bias across the three

data sets. Let us examine the relative errors of the OLS and IV estimates compared to the

LIV estimate, derived as 100%(�̂OLS
1 /�̂LIV

1 �1) and 100%(�̂IV
1 /�̂LIV

1 �1), respectively. As we

gather from Table 1, the OLS estimate indicates a slight upwards bias of 7.25%, 7.5%, and

6.25% relative to the LIV estimate for NLSY, Brabant, and PSID, whereas the IV estimate

indicates an enormous or substantial bias of 92.75%, 40%, and �23.96% relative to the LIV

estimate when there also is no consensus about the direction among the three situations.

Testing for Endogeneity. We recollect from (4.11) that the Hausman-LIV and Haus-

man test statistics rely on the di↵erence between the estimators �̂OLS
1 and �̂LIV

1 and between

the estimators �̂OLS
1 and �̂IV

1 , respectively. Judging from the Hausman-LIV test, endogene-

ity is clearly expressed for the NLSY and PSID data with test statistic values of 7.18 and
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4.20, but to a lesser extent for the Brabant data with a test statistic value of 2.63. In

contrast, if the IV estimate is adopted, the Hausman test is misleading and erroneously

strongly indicates endogeneity only for the Brabant data with a test statistic value of 4.35,

but to a smaller degree for the NLSY and PSID data with test statistic values of 1.31 and

0.95. However, it should be the other way around by virtue of the endogeneity test via LIV

estimates.

4.4 Residuals, outliers, and influential observations in LIV models

Outliers and influential observations can reveal deviations from model assumptions and im-

pact estimates, even though the ML estimation remains approximately valid except for small

samples. Inspecting residuals helps to detect potential departures from model assumptions

such as non-normality, marked asymmetry, bimodality, heavy tails, and heteroscedasticity.

Since residuals are estimates of the model error term, they are expected to mimic the fea-

tures of the disturbance term under a particular assumed distribution. If we compute the

a posteriori category membership by means of the LIV method, we obtain estimated latent

instruments without using instrumental variables. These LIVs can be incorporated in the

regression equation of the endogenous variables in order to compute the R2 statistics (see

[5]) that serves as diagnostics in the IV estimation to identify weak instruments that may be

omitted due to lack of relevance. In most empirical work it is sensible to assume bivariate

normal residuals. Yet if the data were generated from a sharply di↵erent distribution, the

MLE should take this into account.

Defining LIV residuals requires caution. We restrict the discussion to conditional residu-

als. Another option that Ebbes [9] mentions consists in IV-type residuals. Since the explana-

tory variables X are random, it is sensible to condition on X, when viewing residuals. Recall

that we assumed that the complete LIV model is a bivariate mixture model. We recollect

the LIV model equations Y
i

= �0+�1Xi

+"
i

and X
i

= ⇡0Z
i

+⌫
i

for i = 1, . . . , n. Conditional

on X
i

= x
i

and the j-th class Z
i

= j, the distribution of Y
i

is N(µ
Yi|Xi=xi,Zi=j

,�2
Y |X, j

) for

each 1  i  n, where

µ
Yi|Xi=xi,Zi=j

= E(Y
i

|X
i

= x
i

, Z
i

= j) = (�0 �
�
"⌫

�2
⌫

⇡
j

) + (�1 +
�
"⌫

�2
⌫

)x
i

= �0 + �1xi +
�
"⌫

�2
⌫

v
i

(4.13)

with v
i

= x
i

� ⇡
j

and Var(Y
i

|X
i

, Z
i

= j) = �2
Y |X, j

= �2
"

� �2
"⌫

/�2
⌫

. Here �
"⌫

denotes the

covariance between " and ⌫ and captures the linear association between " and X, which
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is non-zero unless X is exogenous. The conditional mean µ
Yi|Xi=xi,Zi=j

is estimated by

µ̂
Yi|Xi=xi,Zi=j

= �̂0 + �̂1x̂i + (x̂
i

� ⇡̂
j

) �̂
"⌫

/�̂2
⌫

, where the unknown model parameters and

latent variable are replaced by the LIV estimates. Since the instrumental variable category

is unknown a priori, we estimate it by
P

m

j=1 p̃ij ⇡̂j for the ith observation, where p̃
ij

denotes

the posterior probability of the ith observation to belong to group j. Consequently, the

prediction of Y
i

, conditional on X
i

= x
i

, is given by

Ŷ
i

|{X = x
i

} =
mX

j=1

p̃
ij

µ̂
Yi|Xi=xi,Zi=j

= �̂0 + �̂1x̂i + (x̂
i

�
mX

j=1

p̃
ij

⇡̂
j

) �̂
"⌫

/�̂2
⌫

.

Hence, the ith conditional LIV residual, given X
i

= x
i

, is

e
i

|{X
i

= x
i

} = (Y
i

� Ŷ
i

)|{X
i

= x
i

} = �0 � �̂0 + (�1 � �̂1)x̂i � (x̂
i

�
mX

j=1

p̃
ij

⇡̂
j

) �̂
"⌫

/�̂2
⌫

.

Curiously, if we treat X with mean µ
X

and variance �2
X

as given in Y = �0 + �1X + " with

�
X"

6= 0, then the probability limit of the OLS estimator for �0 equals �0 � µ
X

· �
X"

/�2
X

and for �1 equals �1 + �
X"

/�2
X

, which are both inconsistent estimates unless �
X"

= 0.

The conditional LIV residuals are helpful to detect heteroscedasticity via scatterplots

of the residuals versus the explanatory variables and the predicted values. While het-

eroscedasticity does not a↵ect the consistency of the estimated regression parameters, it

entails a loss in e�ciency. Ebbes [9] remarks that the IV-type residuals can be employed

to compute kurtosis and skewness and detect departure from normality for the error distri-

bution. Importantly, in MC simulations of samples of size n = 1000 carried out in [9] with

a misspecified error distribution being either the �2
1 distribution or t3 distribution, the LIV

method was found to be fairly robust against misspecification, unlike the OLS estimator

when substantial endogeneity exists. It is noted, though, that the maximum likelihood LIV

estimator may not be fully e�cient anymore and more e�cient estimators may exist. For

such misspecified error distributions, the LIV approach can face a dilemma if the numerical

optimization algorithm mistakenly mixes on a skewed error distribution instead of that of

the latent variable.

We conclude this section by noting that similar tools are available as in OLS regression

to identify outliers and influential observations (the reader is referred to [9]).

5 Bayesian LIV Approach

Interesting extensions of the standard LIV model are investigated in [9] from a Bayesian

point of view. The multinomial distribution with a fixed number of categories, which had
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to be estimated for the latent instrument, is relaxed to a general distribution G, and endo-

geneity is examined in two commonly used multilevel models that possibly carry more than

one endogenous variable. In the nonparametric Bayes LIV approach, the ‘best’ distribution

of the latent instrument is completely determined and estimated from the data. In the

presence of endogeneity, evidently multi-level models become more complex and traditional

methods such as fixed-e↵ects estimation and random-e↵ects estimation were shown to be

limited in multiple ways [10].

We add a few comments on the properties of Bayesian estimators pertaining to features

that are preferable in the repeated sampling or frequentist approach. Bayesian estimates are

reasonable if they are unbiased in the limit for large samples but otherwise this concept is

and cannot be a criterion in the Bayesian estimation (see [18], Chapter 8, for further details).

In this case, the estimate is asymptotically unbiased. Yet a Bayesian estimate generated

by an algorithm that converges to the true value of the unknown estimate with increasing

sample size, and thus is consistent, is appealing. This happens, for example, under common

regularity conditions of the maximum likelihood function when the posterior distribution

tends to be concentrated around the mode with increasing sample size and the posterior

mode is consistent for a parameter that is estimated. Gelman et al. [18] point out that

the posterior mode, median, and mean are consistent and asymptotically unbiased when

the true distribution is included in the family of models relied on for the model fit and

under mild regularity conditions. In addition, under mild regularity conditions, the center

of the posterior distribution in terms of the mode, median, or mean (as appropriate) is

asymptotically e�cient, that is, there is no other estimator that estimates the unknown

parameter with a lower mean squared error.

5.1 A simple multilevel model with LIVs

It is noted [9] that, when additional explanatory variables and random terms are added

to a simple multilevel model, the Dirichlet process for the latent variable and the MCMC

estimation are not a↵ected, as the MCMC estimation is performed conditional on all other

parameters and observations. A simple multi-level model with allowed possible endogeneity

is given by

Y
ij

= �0 + �1Xij

+ "
ij

(5.14)

X
ij

= ✓
ij

+ ⌫
ij
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for i = 1, . . . , n, j = 1, . . .m
i

, and the total number of observations N =
P

n

i=1mi

, where

X
ij

is a covariate for the ith individual at level j, and ✓
ij

is an unobserved instrument.

Assume that the error terms "
ij

have zero mean and variance �2
"

and are independently and

identically distributed across and within individuals. The variable X
ij

is endogenous, when

the correlation ⇢(X
ij

, "
ij

) 6= 0, equivalently, the covariance E(X
ij

"
ij

) 6= 0. In the latter

case, the endogenous explanatory variable X
ij

is decomposed into an exogenous part ✓
ij

and an endogenous part ⌫
ij

so that ⌫
ij

and "
ij

have non-zero correlation. Moreover, it is

assumed that "
ij

and ⌫
ij

have zero mean and variance-covariance matrix

⌃ =

2

4 �2
"

�
"⌫

�
"⌫

�2
v

3

5 . (5.15)

Unlike in the LIV regression model in (4.4), where the latent instrument is assumed to be a

discrete variable with m possible categories, a Dirichlet process is assumed for the distribu-

tion of ✓
ij

(Ferguson [16], Antoniak [4], Escobar [14], Escobar and West [15]). Specifically,

the ✓
ij

are i.i.d. according to G, where G is not in parametric form but rather has a Dirichlet

process prior DP(↵, G0) with precision or dispersion parameter ↵ and initial prior distribu-

tion G0 for the location parameter of DP. The Dirichlet prior puts a probability measure

(or distribution) on the space of all possible probability distributions for G. While for large

values of ↵, G tends to be concentrated close to G0, for small values of ↵, the probability

mass of G has a high probability to be concentrated on a few distinct atoms. The support

of the Dirichlet process is the class of all distribution functions. This nonparametric model

o↵ers the advantage to fit a distribution G to the data that can take on a multitude of

di↵erent shapes, including distributions that are skewed, heavy-tailed, or multimodal or

that have shoulders, regardless of the shape of G0. For G0, we may pick the normal distri-

bution with mean µ
g

and variance �2
g

. Moreover, for ↵ we may pick a gamma distribution,

for � = (�0,�1) a normal distribution, and for ⌃ an inverted two-dimensional Wishart

distribution as respective prior distribution. In addition, the error terms are assumed to

be i.i.d. and normally distributed. MCMC results can be employed to approximate the

nonparametric Bayes LIV model (for more details, see [9]).

5.2 Endogenous subject-level covariates and random coe�cients

In random coe�cients models with endogenous subject-level covariates, standard estimation

techniques such as hierarchical Bayes can lead to severely biased estimates, as we will see

below. Endogeneity may be injected when relevant covariates that are correlated with
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included covariates are omitted, or when some of the covariates are measured with error.

We assume that a set of individual level covariates are available to explain part of the

variance of the random coe�cients. We study the following standard linear two-level model

[9] with random coe�cients

Y
ij

= �0 +X 0
ij

�
i

+ "
ij

(5.16)

�
i

= �0 + � Z
i

+ ⌫
i

Z1i = ✓
i

+ ↵Z2i + ⇠
i

for i = 1, . . . , n, j = 1, . . . ,m
i

, whereX
ij

is a vector of explanatory variables, �
i

is a k-vector,

Z
i

= (Z 0
1i, Z

0
2i)

0 are covariates for the i-th individual, with Z1i being possibly endogenous

and correlated with ⌫
i

(but uncorrelated with "
ij

) and Z2i being exogenous, ✓
i

is a vector

of unobserved instruments, and ⇠
i

an error term vector with zero mean. The variable Z1i

is endogenous, when the correlation ⇢(Z1i, ⌫i) 6= 0. For the latent instrument ✓
i

, a Dirichlet

process is assumed with prior distribution G0.

5.3 Simulation study for nonparametric Bayesian LIV approach

Ebbes [9] compares the performance of the nonparametric Bayesian LIV estimation al-

gorithm of these two models to the standard LIV regression and the OLS method in a

simulation study for three di↵erent choices of the distribution of the latent instrument: a

discrete distribution with two categories, a gamma distribution, and a t6 distribution with

6 degrees of freedom. In the latter case, which is a heavy-tailed distribution, the LIV model

is weakly identified, since it is not identified for an exact normal distribution. In each of

the three cases, it is assumed that the latent variables have mean zero and equal variance

1.5. The sample size is chosen as n = 1000 for the bimodal and gamma distributions and

as n = 10, 000 for the t6 distribution. Additionally, �0 = 1, �1 = 2, �2
"

= �2
⌫

= 1, and

�
"⌫

= 0, 0.36, and= 0.79, respectively, for no, moderate, and severe endogeneity. For the

nonparametric Bayes model, the posterior means were computed for �1, �2
"

, �
"⌫

, and k,which

represents the number of clusters or di↵erent values of the latent variable. Then the means

and standard deviations over 2000 saved MCMC iterations were obtained for these variables

and tabulated in Tables 7.1 through 7.5, [9].

Let us begin by considering the simple multi-level model. Unless the model is exoge-

nous, when the OLS approach is best, the OLS results are biased and misleading in the

same sense we observed earlier. For the bimodal distribution and gamma distribution with
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scale parameter 0.5 and shape 0.58, the simple nonparametric Bayes model furnishes ap-

proximately unbiased results in all cases. In the presence of endogeneity, the results are

similar for the Bayesian and classical LIV methods in the bimodal case when the classical

LIV model is correctly specified with two clusters. Yet for the gamma case, when �
"⌫

> 0,

the results of the Bayesian LIV estimation are superior to those of the classical LIV estima-

tion, which is best for k = 3. It thus is apparent that the nonparametric Bayes model can

adapt more easily to a situation where the true distribution of the instrument is continuous,

and thus, is more flexible. It is noteworthy that k is overestimated for the bimodal case,

but gets closer to the true cluster size of 2 as �
"⌫

increases. As for the classical LIV model,

in the nonparametric Bayesian model, endogeneity can be tested for by testing whether

�
"⌫

6= 0, based on the fraction of MCMC samples with �
"⌫

> 0 versus those with �
"⌫

< 0

and posterior p-values can be relied on. For the t6 distribution, Ebbes [9] reports that a

sample size of 1000 was insu�cient to estimate the model because the MCMC chain did

not converge. To get around this nonidentifiability situation and underidentified model, a

total sample size of 10, 000 was utilized in the simulations, which is rather enormous. It

turns out that the standard LIV model remained unidentified and hence behaved quite sen-

sitively to a distribution of the instrument that is somewhat close to normal. However, the

nonparametric Bayes LIV model yields approximate unbiased results with relatively large

standard deviations. These indicate that the model is weakly identified.

Additionally for the random coe�cients model, similar findings suggest that the non-

parametric Bayesian LIV approach can be successfully employed to estimate the model

parameters in the presence of endogenous covariates. In contrast, the estimates obtained

from the standard hierarchical Bayes model are highly biased. The standard hierarchical

Bayes model also substantially underestimates the degree of heterogeneity in the regression

coe�cients.

6 Campaign Money’s Return in Congressional Elections via

LIV Regression

6.1 Election data and Bayesian spatial LIV model

Ferguson, Jorgensen and Chen [17] examined the e↵ect of total campaign expenditures on

the proportions of the Democratic and Republican votes in US House and Senate Elections

between 1980 and 2014. They pooled all spending by and on behalf of candidates and
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considered relative di↵erences in total campaign outlays and proportional vote di↵erentials.

The focus was on investigating conventional claims that political money is of limited impor-

tance in predicting Congressional voting outcomes. To the contrary, their findings vividly

demonstrated that ‘... in three widely spaced years – 1980, when Congress functioned very

di↵erently than it does today, 1996, and 2012 – the relation between major party candidates’

shares of the two party vote and their proportionate share of total campaign expenditures

were strongly linear – more or less straight lines, in fact. The relationship was strong for

the Senate and almost absurdly tight for the House.’ They went on to show that these

findings of a strong linear relationship and the observation that the relative total campaign

expenditures by major political parties e↵ectively predict the proportion of votes they win

are valid across all election years that the data analyses comprise, namely, between 1980

and 2012 for the House and between 1980 and 2014 for the Senate.

Ferguson et al. [17] were cognizant of the apparent problem of omitted relevant variables

such as popularity of candidates, and thus, endogeneity in estimating the relative e↵ects

of campaign money and spending in elections and politics. But they also recognized the

troubling pitfalls that surround instrumental variables in regression analyses, as we discussed

earlier, and that useful IVs are elusive in such politics and money questions. Thus, instead

of adopting IVs and IV regression for the analyses of campaign money’s return, which would

require lean heavily on thin reeds, they employed the LIV regression approach where no

IVs are required. Moran’s test identified the presence of spatial autocorrelation in the data of

the majority of the Senate elections and virtually all House contests. For that reason, they

took care to achieve higher accuracy in the LIV estimates and deployed a nonparametric

Bayesian spatial LIV regression model. The spatial dependence is incorporated in a random

intercept term of the primary regression equation, and thus has the e↵ect of a shift in the

response variable, which here is the percentage of the votes of the Democratic candidates’

share. The random intercept variables are chosen independently from the two error terms in

the LIV regression and their distribution is conditional on the values of the neighbors.

Figure 3 in [17] presents graphs of LIV regression analysis results for the Senate elections

in every election between 1980 and 2014 together with estimated explained variation and

goodness-of-fit. The analyses confirm the strong linear relationship between total campaign

expenditures by major political parties and the proportion of votes they win in the Senate

in each election year. Importantly, relative total campaign expenditures by major political

parties e↵ectively predict the proportion of votes they win.

The e↵ect of relative total campaign expenditures on the major party candidates’ shares
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of the two party vote was estimated in [17] using the Bayesian spatial LIV estimate (=me-

dian of posterior distribution) �̂BSLIV
1 together with 95% credible intervals for every election

year for the House and Senate.

Figures 1-2 in [17] display the LIV regression results, together with the estimated model

fit in terms of variability explained, for the House elections in 2012 and every other election

year between 1980 and 2012, respectively. At the bottom left, when Democrats spend no

money, they essentially get no percentage of the votes; at the top right, when all the money

spent is allocated to the Democrats, they garner all the ballots, calculated as proportions

of totals for the major parties. The results, which are visualized in these graphs, establish a

strong linear relationship between Democratic candidates’ shares of total two party spending

in House elections and the percentage of major party votes they won in each election year.

Figure 1: The estimated coe�cients for the return of the ‘relative di↵erence of the total campaign

money’ in terms of the ‘di↵erence of the major party candidates’ proportional shares of the two

party vote’ is plotted over the 18 election years from 1980 to 2014 (from left to right) for the House

(purple solid line) and Senate (black broken line).

Figure 2: The estimated bias of the spatial regression estimate relative to the Bayesian spatial LIV

estimate for the House elections between 1980 and 2012 (purple solid line) and the Senate elections

between 1980 and 2014 (black broken line).
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Figure 1 above visualizes an analogue, which is inflated by a certain factor that depends

on the year, of the ‘one dollar one vote’ phenomenon and displays the estimated coe�cients

for the return of the ‘relative di↵erence of the total campaign money’ in terms of the

‘di↵erence of the major party candidates’ proportional shares of the two party vote’ over

the 18 election years from 1980 to 2014 (from left to right) for the House and Senate.

For example, if the Democrats gathered 64% of the votes, the value used for the response

variable in the LIV regression was 0.28. More abstractly, if v is the share of the Democrats’

votes, the response variable in the LIV regression is 2v � 1.

While no exogeneity test in terms of the deviance of the Bayesian spatial LIV estimator

and the spatial regression estimator is available that could have been used to a priori test for

endogeneity when possible spatial autocorrelation accompanies possible endogeneity, Fer-

guson et al. [17] provide both estimates, the Bayesian spatial LIV estimate �̂BSLIV
1 and the

spatial regression (SR) estimate �̂SR
1 together with the standard error (SE) for each election

year for comparative purposes. This allows us to estimate the bias of the spatial regression

estimate �̂SR
1 relative to the LIV estimate �̂BSLIV

1 . Similarly as for the estimated return to

schooling in the income example, we inspect the relative error or bias of the SR estimate

compared to the BSLIV estimate, derived as 100%(�̂SR
1 /�̂BSLIV

1 � 1), for the estimated re-

turn of campaign money in the vote di↵erential in the House and Senate elections in every

year. We note that in the nonparametric Bayesian model, endogeneity can be tested for by

testing whether �
"⌫

6= 0, by estimating posterior p-values from the proportion of MCMC

samples with �
"⌫

> 0 versus those with �
"⌫

< 0, as explained in Section 5.

For the House elections the sample sizes were between 424 and 435, which is close in

order of magnitude to the sample size of 1000 used for the MCMC simulations highlighted in

Section 5. For the House, we gather from Figure 1 that the values of �̂BSLIV
1 range from 0.80

(in 2012) to 1.44 (in 1988) with all values being > 1 before 2006 except for 1992 and being

< 1 since 2006. Note that the return to campaign expenditure is the highest, when the value

of �̂BSLIV
1 is the largest. In various elections, the bias of �̂SR

1 appears to be unsubstantial.

Furthermore, the spatial regression over-estimates the return to campaign money in some

elections, whereas it underestimates the return in other elections. The relative bias of the

spatial regression estimate as compared to the spatial LIV estimate, displayed in Figure 2,

ranges between �17% in 2004 to 18% in 2012 and is below 10% in absolute value in all

but four instances (in 1990, 2002, 2004, and 2012). We suspect moderate to substantial

endogeneity is present in those instances when the spatial regression estimate markedly

di↵ers from the spatial LIV estimate, since the the regression estimates were found to be
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biased under endogenous conditions in [9], as detailed above in subsection 4.3.

For the Senate elections, the sample sizes were between 32 and 36. Without doubt,

these sample sizes are overwhelmingly di↵erent and smaller than the sample size of 1000

adopted for the simulations summarized in Section 5. The convergence properties of the

MCMC runs applied to the elections data sets are not discussed in [17]. For the Senate

elections, we notice from Figure 1 that the values of �̂BSLIV
1 range from 0.35 (in 2012) to

1.28 (in 2002) and only three values are > 1, namely, in 1984, 1990, and 2002 when the

return to campaign expenditure was the greatest. Similarly as seen for the House elections,

the direction of the bias is not consistent across elections. A number of biases of �̂SR
1 appear

to be minor. The relative bias of the spatial regression estimate as compared to the spatial

LIV estimate, depicted in Figure 2, ranges between �25% in 2006 to 7% in 2012 and is

below 5% in absolute value in all but four instances (in 2004, 2006, 2010, and 2012).

6.2 Estimation of posterior distribution of latent variable

Before we conclude, in the hope that we may shed light on the role and functioning of the

latent variable in the LIV regression, we present estimates of the latent variable in the elec-

tions example. The latent instrumental variable can represent a ‘candidate’s popularity.’

In the Bayesian LIV approach assumed, the parameters of the posterior distribution of the

latent variable are estimated from data (subsection 7.1, Ebbes [9]). As prior distribution of

the latent variable, Ferguson et al. [17] assumed a mixture of normal distributions, where

the number of mixing components was to be determined post hoc. A mixture of normal

distributions is estimated as the posterior distribution of the latent variable by using the

WinBugs software. Let us look at the 1980, 1986, and 2012 House election data in [17].

The fitted models are normal mixtures
P4

i=1 p
i

N(µ
i

,�
i

) with 4 normal component distribu-

tions in each year and associated class weights (p1, p2, p3, p4) with
P4

i=1 pi = 1. Generated

simulations in R from the estimated posterior distribution of the instrumental variable are

depicted in the form of a histogram as estimated distribution by year in an appendix, ‘Ap-

pendix I: A Note on Methods,’ that appears in a forthcoming revision of [17]. The estimated

distributions are shown for the election years 1980, 1986, and 2012 with the same sample

sizes of 382, 361, and 384 as for the House data. The respective estimated normal mixture

in each year is given by

0.01 ·N(0.13, 0.03) + 0.03 ·N(0.26, 0.03) + 0.08 ·N(0.38, 0.03) + 0.88 ·N(0.49, .02),

0.02 ·N(0.14, 0.03) + 0.03 ·N(0.27, 0.03) + 0.07 ·N(0.39, 0.03) + 0.88 ·N(0.51, 0.02),
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0.01 ·N(0.13, 0.03) + 0.02 ·N(0.25, 0.04) + 0.16 ·N(0.36, 0.04) + 0.81 ·N(0.43, 0.02).

It is worthwhile mentioning that the component normal distributions and the cluster weights

essentially remain the same across these years. Glancing at the posterior distribution of a

candidate’s popularity, we see a skewed distribution, where the rightmost normal component

carries most of the observations and the components to the left represent less frequent and

outlying observations.

7 Conclusions

In summary, Ebbes’ method [9] is instrument-free and uses latent instrumental vari-

ables to estimate linear regression parameters, when endogeneity is present, that is, when

explanatory variables are correlated with the random error, appears to be a powerful tool and

has great potential for applications. This approach also solves some of the circular problems

and dilemmas with endogeneity testing and other pitfalls that have often been encountered

with IV regression. The LIV approach removes expected bias that frequently is introduced in

the estimation methods of ordinary least squares and IV regression, when the random error

has nonzero correlation with some of the explanatory variables. Thus, if only such correlation

exists no other dependencies between the explanatory variables and error term, then the

LIV approach adequately performs and exhibits favorable estimator properties. We noted

that, while Ebbes’ novel method is a distinct contribution, its formulation is problematic in

certain important aspects. Specifically the various publications of Ebbes and collaborators [9,

12, 10, 11] employ three distinct and inequivalent statistical concepts exchangeably, treating

all as one and the same. These three concepts are closely interwoven with endogeneity, as we

explained. We clarified the issues that emerge and its implications. Nevertheless, in various

simulations and data examples that Ebbes [9] examined in detail, the approach performed

well and was successfully applied.

Importantly, since no observed instruments are required and ‘optimal’ instruments are

estimated from data, the Hausman-LIV test provides a simple tool to a priori test for poten-

tial endogeneity in regression analysis and indicate when LIV regression is more appropriate

and should be performed instead of OLS regression. Consequently, the LIV method fully

addresses the question of a priori testing for potential endogeneity in linear regression anal-

yses. It thus o↵ers what could be an add-on feature built into linear regression in any

software program to avoid biases in the regression estimates due to correlation that is

present between explanatory variables and the random error.
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In this paper we surveyed settings where the identifiability problem was completely set-

tled. Even though whether the LIV estimates are unbiased and consistent is not addressed

from a mathematical point of view in [9], the performed Monte Carlo simulations in various

scenarios establish that possible endogeneity issues are adequately resolved. In contrast

with OLS, the LIV estimates are approximately unbiased, the parameters of interest can be

recovered e↵ectively, and the statistical power of the Hausman-LIV test, a modified version

of the Hausman test is judged to be satisfactory. We discussed LIV estimation of returns

education in income based on data from three studies that Ebbes [9] revisited, where

‘education’ is potentially endogenous due to omitted ‘ability.’ This example supports ear-

lier well-known findings in the literature that the IV method indeed can lead to enormous

biases, while the OLS estimation only injects relatively ‘modest’ biases in comparison. In a

second example we closely looked at the results of Ferguson, Jorgensen and Chen [17] on the

estimated e↵ect of campaign expenditures on the proportions of Democratic and Republican

votes in US House and Senate elections between 1980 and 2014, where ‘campaign money’ is

potentially endogenous in view of omitted variables such as ‘a candidate’s popularity.’ The

relative bias we summarized of the spatial regression estimates as compared to the spatial

LIV estimates indicates that endogeneity is present in the data, in addition to the identified

presence of spatial autocorrelation. This provides another vigorous example where the LIV

approach was successfully and adequately applied and bears its fruits.

In conclusion, numerous questions including some mathematical and statistical ones

relating to the performance of the LIV approach remain open for future research. At the

same time, it is hoped that this approach will gain wider visibility, applicability, and

recognition for its merits and its applicability will be further tested in all fields that

routinely resort to linear regression approaches.
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