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1 Introduction

Muth (1961, pp. 315-316) advanced the pathbreaking hypothesis that an economist can
specify market participants’ expectations of future outcomes as “essentially the same
as the predictions of the relevant economic theory.” According to Muth, a “relevant”
model would enable “sensible predictions about the way expectations would change
when either the amount of information or the structure of the [economic] system is
changed” (pp. 315-316).
The rational expectations hypothesis (REH) implements Muth’s hypothesis by sup-

posing that the “relevant economic theory” of aggregate outcomes, such as inflation
and unemployment, is a time-invariant macroeconomic model. Such a model charac-
terizes how outcomes unfold over infinite past and indefinite future with an unchanging
stochastic process.1 REH represents participants’ expectations of future outcomes with
the conditional expectation implied by that process. Although behavioral models as-
sume that participants’ expectations deviate from REH, they also rest on the premise
that aggregate outcomes can be characterized with a time-invariant model.
This paper proposes a novel approach to representing participants’ expectations

in macroeconomic models. We refer to our approach as the Knight-Muth hypothe-
sis (KMH). Like REH, KMH maintains Muth’s hypothesis. However, moving beyond
REH, we implement Muth’s hypothesis in a macroeconomic model that is open to un-
foreseeable change in the economy’s structure. The defining feature of this change is
that it is nonrecurring: the model’s structure characterizing future outcomes di§ers in
unforeseeable ways from that characterizing past outcomes. This implies that the tim-
ing and magnitude of future change cannot be known in advance even in probabilstic
terms, which gives rise to Knightian uncertainty about future outcomes.
KMH builds on and provides empirical support for Knight’s and Muth’s profound

insights. Knight (1921) argued that to understand profit-seeking activity in real-world
markets, economists must recognize that they as well as market participants face un-
foreseeable change in the process driving outcomes. As he put it: “if all changes were
to take place in accordance with invariable and universally known laws, [so that] they
could be foreseen for an indefinite period in advance of their occurence (...) profit or
loss would not arise” (Knight, 1921, p. 198). Such change, Knight argued, gives rise
to “true uncertainty” (typically referred to today as Knightian uncertainty), which, in
contrast to probabilistic risk, cannot be characterized ex ante in probabilistic terms.
Muth’s (1961, pp. 315-316) idea was that his hypothesis would enable “sensible”

predictions about how participants would revise their expectations if the structure of
the economic system changes. KMH formalizes this idea when the process driving

1The structure of most time-invariant models — the set of explanatory variables, their parameters,
and the probability distribution of the error term — is constrained to remain unchanging over time.
Some models have allowed the structure to change over time by characterizing the parameters with
a stationary Markov chain. However, these models are also time-invariant, in the sense that their
structure is constrained to switch between the same recurring regimes according to a probabilistic
rule, which enables them to represent participants’ expectations with REH.
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outcomes undergoes unforeseeable change.
To motivate our formalization of unforeseeable change, we show empirically that

a first-order autoregressive process for U.S. inflation undergoes multiple nonrecurring
structural shifts in the parameters characterizing the persistence and level of inflation.2

We do so using quarterly inflation in the GDP deflator for the United States covering the
sample period from 1969:Q1 to 2022:Q1. We find that the most and largest structural
shifts occurred during the transitional period with high inflation in the 1970s and early
1980s. After the Volcker disinflation period, the parameters stabilize during the Great
Moderation, with inflation fluctuating around a level of 2.5 percent until 2007 and 1.7
percent after 2007. At the end of the sample, we find evidence of structural shifts as
inflation rises rapidly from 2020:Q3.
These empirical findings suggest that the “relevant economic model” to underpin

Muth’s hypothesis should allow for unforeseeable change in its parameters. Conse-
quently, we present KMH in a baseline New Keynesian Phillips curve (NKPC). We
open the model to unforeseeable change by allowing the parameters formalizing the
level of inflation and the persistence of an output gap to undergo nonrecurring shifts.
Importantly, because the timing and magnitude of these structural shifts cannot be
known in advance, KMH implies that, viewed from any point in time, the conditional
distribution that characterizes future inflation is unknown.
However, by constraining the model’s unknown future parameters to lie within an

interval at all times, we show that Muth’s hypothesis represents the model’s predictions
of future inflation with a set of conditional distributions. Each of these distributions
is indexed by a unique sequence of the unknown future parameters within the model’s
interval. At each point in time, KMH represents participants’ expectation of future
inflation with one of the conditional distributions in this set.
KMH acknowledges that participants revise their expectations in anticipation of

and response to nonrecurring structural shifts in the inflation process. To formalize
this, we allow di§erent conditional distributions within the set constituting the model’s
predictions to represent participants’ inflation expectation during di§erent subperiods
of time. In contrast, REH represents participants’ inflation expectation at all times with
the same conditional distribution, which is a time-invariant model’s only prediction of
future outcomes.
We derive the NKPC model’s reduced form for inflation and show that it implies

that both inflation and inflation expectations can be characterized with a first-order
autoregressive process whose parameters undergo structural shifts. The former impli-
cation regarding inflation is consistent with the empirical results summarized above.
Using survey data on inflation forecasts we present empirical evidence for the pre-

diction for inflation expectations: we find multiple structural shifts in a first-order au-

2Several studies testing theoretical representations of participants’ inflation expectations using sur-
vey forecast data have used a first-order autoregressive process to characterize how inflation unfolds
over time. These include the noisy-information representations in Coibion and Gorodnichenko (2015)
and Angeletos, Huo, and Sastry (2021), and the behavioral representation based on Diagnostic Expec-
tations in Bordalo et al. (2020).
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toregressive process for the survey forecasts. To do so, we use the one-quarter-ahead
forecast of GDP deflator inflation from the Survey of Professional Forecasters. As with
the inflation data, we find that the most and largest structural shifts occured during
the transitional period of high inflation in the 1970s, and specifically during the Vol-
cker disinflation period of the early 1980s. After that, the parameters stabilize and the
survey inflation forecasts fluctuate around a level of 2.1 during the Great Moderation.
This level is slightly lower than the estimated level of inflation until 2007 and slightly
higher than that level after 2007.
These empirical results provide support for a KMH’s key prediction: the parame-

ter estimates and the structural shifts in the autoregressive processes for inflation and
inflation survey forecasts should broadly match, albeit imprecisely. We find that para-
meter estimates co-move over time. In particular, the estimated levels of inflation and
inflation survey forecasts co-move over the sample period and were almost identical
during the Great Moderation, when inflation expectations were well anchored suggest-
ing KMH’s potential usefulness in policy analysis. We also find that the frequent and
large shifts in the autoregressive process for inflation during the 1970s and early 1980s
are broadly matched by frequent and large shifts in the autoregressive process for the
inflation survey forecasts.
In an important paper, Coibion and Gorodnichenko (2015) showed that full-information

rational expectations (FIRE) are inconsistent with the survey data on inflation fore-
casts. Coibion, Gorodnichenko, and Kamdar (2018, pp. 1451-52) survey the “vast
literature that tests the null hypothesis of FIRE” in the context of inflation forecasts
and conclude that this literature “consistently finds that survey-based expectations
deviate from FIRE.”
KMH and our empirical results provide a novel explanation of these empirical dif-

ficulties: a “relevant economic theory” underpinning Muth’s representation of expec-
tations should allow for unforeseeable change in the process driving aggregate out-
comes, such as inflation. Indeed, if the process driving inflation undergoes unforesee-
able change, one would expect profit-seeking, forward-looking market participants’ to
recognize that they face such change, thereby forming expectations that deviate from
FIRE.
Behavioral models imply that the influence of psychological factors lead market

participants to commit predictable forecast errors. Gennaioli and Shleifer (2018) and
Bordalo et al.’s (2020) formalization of diagnostic expectations provide a recent example
of such a prediction, which they called “overreaction” in macroeconomic expectations.
To be sure, the evidence that psychological factors, such as market sentiment, in-

fluence participants’ expectations is compelling. However, behavioral models assume
that aggregate outcomes and participants’ expectations can be characterized with time-
invariant stochastic processes. Because REH rules out the influence of psychological fac-
tors by design, formalizing the influence of such factors has required behavioral models
to represent participants’ expectations as deviations from REH. In contrast, acknowl-
edging that economists and market participants face Knightian uncertainty arising from
unforeseeable change enables KMH to reconcile participants’ reliance on psychological
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factors with Muth’s hypothesis.
In REH models, participants’ expectations of future outcomes are fully determined

by the model’s specification of these outcomes. Therefore, participants’ expectations do
not play an autonomous role in driving aggregate outcomes. In contrast, KMH implies
such an autonomous role: although the model’s specification of outcomes determines
the set of model-consistent expectations of these outcomes, it does not determine which
of the conditional expectations in this set represents participants’ expectations.
In his landmark microfoundations volume, Phelps (1970, p. 22) conjectured that

allowing participants’ expectations to play an autonomous role in an economist’s model
would be crucial for understanding how profit-seeking, forward-looking market partic-
ipants form expectations of inflation and how inflation unfolds over time. However,
because the models presented in the Phelps volume were time-invariant, they had to
rely on model-inconsistent specifications, such as adaptive expectations, to recognize
an autonomous role for participants’ expectations in driving inflation.3 KMH provides
a formalization of Phelps’ conjecture that maintains Muth’s hypothesis.
Our empirical findings suggest that acknowledging unforeseeable change and Knight-

ian uncertainty that such change engenders in an otherwise standard macroeconomic
model appears to be key to understanding how inflation and participants expectations
of inflation evolve over time.
The plan of the paper is as follows. Section 2 presents evidence of structural shifts

in an autoregressive process for inflation. Section 3 opens a baseline NKPC model to
nonrecurring shifts in its parameters and develops KMH’s representation of participants’
expectation of inflation undergoing such shifts. Section 4 tests KMH’s main prediction
with survey data on participants’ inflation forecasts. Section 5 concludes the paper
with remarks on how KMH relates to, and moves beyond, the literature recognizing
that market participants face ambiguity about the process driving outcomes.

2 Evidence of Structural Shifts in an Autoregres-
sive Process for Inflation

Several studies testing theoretical representations of inflation expectations with survey
data illustrate their approach in the context of a simple, typically first-order, autore-
gressive specification with constant parameters. This specification abstracts from the
endogeneity of inflation and its dependence on participants’ expectations of future infla-
tion, as typically formalized in standard New Keynesian Phillips curve (NKPC) models.
However, as we illustrate in the next Section, the characterization of inflation with the
first-order autoregressive process can be derived from an NKPCmodels with parameters
constrained to be constant over time.

3Frydman and Phelps (2013, p. 7) discuss this point in the context of macroeconomic models of the
1960s. For a penetrating critique of these models, and more broadly, intertemporal macroeconomic
models relying on model-inconsistent specifications of participants’ expectations, see Lucas (1995, p.
254 and 2005, p. 283).
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Characterizing inflation with a simple autoregressive process has facilitated the
derivation of alternative representations of participants’ expectations of inflation and
testing their implications against survey data. For example, Coibion and Gorodnichenko
(2015) showed that professional forecasters’ aggregate ex post inflation forecast errors,
measured using survey data of inflation forecasts from the Survey of Professional Fore-
casters, are correlated with ex ante forecast revisions. This empirical finding, replicated
by many other studies, rejects full-information rational expectations’ (FIRE) implica-
tion that forecast errors should not be predictable.
However, using an autoregressive process to characterize how inflation unfolds over

time, Coibion and Gorodnichenko illustrate that predictable forecast errors can oc-
cur if participants face noisy information and their expectations are represented with
limited information rational expectations (LIRE). Angeletos, Huo, and Sastry (2021)
extend Coibion and Gorodnichenko’s noisy-information representation of expectations
by adding misspecified beliefs, while Bordalo et al. (2020) develop a behavioral repre-
sentation of participants’ expectations based on diagnostic expectations.
Although these representations of participants’ expectations di§er in important as-

pects, they share the premise that inflation can be characterized with a time-invariant
autoregressive process. Here, we examine empirically whether the parameters of such
a process have undergone structural shifts or remained constant over time.
To do so, we consider a first-order autoregressive process with structural shifts at

times {Tj}
K
j=1, which we specify as follows,

πt = ρ
jπt−1 + µ

j + "t, (1)

for t = Tj−1, Tj−1 + 1, . . . , Tj − 1 and j = 1, 2, . . . , K, where T0 = 1, TK = T + 1, either
ρj 6= ρj−1 or µj 6= µj−1 (such that at least one of the two parameters changes from
subperiod j − 1 to j) and 0 ≤ ρj < 1 for all j, "t ∼ iidN (0,σ2), and the initial value
π0 is given. During subperiod j, the model’s parameters are (ρj, µj) with the inflation
persistence determined by ρj and inflation fluctuating around a level of µj/ (1− ρj).
We use an e§ective estimation sample with 213 quarterly observations of U.S. infla-

tion from 1969:Q1 to 2021:Q4. Following the practice in the literature, we use quarterly
observations of the annualized change in the price level of the gross domestic product
(PGDP). This matches the measure of inflation and the sample period for which the
survey of inflation forecasts is available. A full description of the data is given in Online
Appendix B.1.
We estimate the autoregressive process in (1) both without structural shifts, i.e.

with ρj = ρ and µj = µ for all t = 1, 2, . . . , T , and with structural shifts in (ρj, µj).
To identify the timing of shifts {Tj}

K
j=1 and estimate the parameters {ρ

j, µj}Kj=1 from
the time-series data, we use the Autometrics tree-search algorithm with step-indicator
and multiple step-indicator saturation, as sketched in Online Appendix B.2.4 This
procedure has two important advantages: it allows for shifts in ρj and µj to occur at

4For a presentation of Autometrics and an analysis of its properties, see Doornik (2009), Castle et
al. (2012), and Castle et al. (2015).
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Table 1: Estimates of the Autoregressive Process for Inflation with Constant Parameters
and with Structural Shifts in the Parameters

Model with constant parameters Model with structural shifts

Parameter Estimate Std. error Parameter, period Estimate Std. error

ρ 0.895 0.032 ρj 69:1-72:2 -0.033 0.118

72:3-74:2 0.755 0.079

74:3-74:3 1.150 0.098

74:4-74:4 0.803 0.069

75:1-20:1 0.525 0.047

20:2-20:3 -1.649 0.363

20:4-20:4 0.393 0.222

21:1-22:1 1.034 0.070

µ 0.380 0.136 µj 69:1-72:1 5.262 0.635

72:2-76:3 2.329 0.410

76:4-79:4 3.628 0.409

80:1-81:1 5.138 0.568

81:2-82:4 2.440 0.456

83:1-06:4 1.190 0.146

07:1-07:1 3.262 0.801

07:2-22:1 0.786 0.132

σ 1.158 0.798

R2 0.79 0.91

Observations 213 213

Misspecification tests [p-value] [p-value]

No autocorr., order 1-2 [0.001] [0.159]

No ARCH, order 1-4 [0.002] [0.655]

No heteroskedasticity [0.000] [0.331]

Normality [0.000] [0.372]

Notes: The table shows estimates of the autoregressive process for inflation in (1) with con-
stant parameters and with structural shifts in the parameters. The e§ective estimation sample
is quarterly observations from 1969:Q1 to 2022Q:1.
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any time during the sample period, and it allows the two parameters to shift at di§erent
times.
The empirical estimates of the autoregressive process in (1) with constant parame-

ters are shown in the left columns of Table 1. Figure 1 shows the actual inflation data
and the constant-parameter process’s fitted inflation πt− "̂t in panel (a), the standard-
ized estimated residuals in panel (b), and 10-year rolling window estimates of ρ and µ,
respecitively, in panels (c) and (d).
Constraining parameters to be constant over time, we find that the estimated per-

sistence of inflation is high at 0.895 (std. error of 0.032), and, with the estimate of
µ equal to 0.380 (std. error of 0.136), inflation fluctuates around a long-run level of
3.6 percent. However, the misspecification tests strongly reject the null hypotheses of
no autocorrelation, no ARCH, no heteroskedasticity, and normality of the residuals.
Thus, the autoregressive process in (1) with constant parameters is not an adequate
representation of the inflation data.
Although this misspecification can be caused by many factors, the rolling window

estimates in panels (c) and (d) of Figure 1 provide one potential reason: the estimated
parameters do not appear constant over the sample period. Indeed, considering a variety
of inflation data and measurements of persistence, Fuhrer’s (2010, p. 449) survey of
inflation persistence concludes that “[w]eighing all of the evidence, it seems reasonable
to conclude that the persistence of inflation has decreased somewhat in recent years.”
The right columns of Table 1 show the estimates of the autoregressive process in

(1) with structural shifts in the parameters (ρj, µj). Figure 2 shows the actual inflation
data and the fitted inflation πt − "̂t from this process in panel (a), the standardized
estimated residuals in panel (b), and the estimates of ρj and µj over time, respectively,
in panels (c) and (d).
We find evidence of multiple shifts in both parameters. All shifts are statistically

significant and, importantly, they appear to be nonrecurring rather than shifting be-
tween a fixed set of, say two, possible values. As all misspecification tests do not reject
the null hypotheses with p-values well above 5 percent, we conclude that allowing for
shifts in the parameters renders the autoregressive process an adequate representation
of the time-series data on inflation.
Although the shifts in ρj and µj occur at di§erent points in time, we find that the

most and largest shifts occurred during the transitional period of high inflation in the
1970s and rapid disinflation in the early 1980s. As Figure 3 illustrates, these changes
lead to frequent and large shifts in the level, µj/ (1− ρj), that inflation fluctuates
around during the 1970s.5

Allowing for structural shifts yields estimates that are very di§erent from the constant-
parameter estimates. In particular, when the structural shifts are accounted for, the
estimated inflation persistence drops from 0.895 in the time-invariant model to lower
values throughout the majority of the sample period.

5In Appendix A.1, we show that we still find structural shifts in
(
ρj , µj

)
when the autoregressive

process with structural shifts in (1) includes four lags of inflation.
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Figure 1: The plot illustrates the estimated autoregressive process for inflation πt in (1).
Panel (a) shows the actual inflation πt (red line) and the model’s predicted inflation
π̂t = πt − "̂t (blue line). Panel (b) shows the standardized estimated residuals. Panels
(c) and (d) show the rolling window estimates of the parameters ρ and µ (red lines)
and their 95 percent confidence intervals (dotted red lines) based on a 10-year rolling
window sample that ends at the point in time illustrated by the red lines.

In the first years of the sample, we find that the estimated persistence ρj is insignifi-
cantly di§erent from zero. But it increases to 0.755 (std. error of 0.079) in 1972:Q3 and
momentarilty increases further to 1.150 (std. error of 0.098) in 1974:Q3. Estimated
persistence drops to 0.803 (std. error of 0.069) in 1974:Q4 and to 0.525 (std. error
of 0.047) in 1975:Q1. It remains at that level until 2020. As inflation rises rapidly in
2020:Q2, the estimated persistence increases to 1.034 (std. error of 0.070), such that the
inflation process essentially becomes a random walk with a drift or even momentarily
an explosive process in violation of the assumption of (1) that ρj < 1.
The decline in inflation persistence over the sample period is consistent with the

empirical results in the literature, as surveyed by Fuhrer (2010). For example, Pivetta
and Reis (2007) estimate the first-order autocorrelation of U.S. inflation using rolling
window samples (Fuhrer, 2010, extends their sample period until 2010) and find it to
be 0.8 from the 1970s until the mid-1990s, when it drops to a range of 0.5 − 0.6 and
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Figure 2: The plot illustrates the estimated autoregressive process with structural
breaks for inflation πt in (1). Panel (a) shows the actual inflation πt (red line) and
the model’s predicted inflation π̂t = πt − "̂t (blue line). Panel (b) shows the stan-
dardized estimated residuals. Panels (c) and (d) show the estimates of ρj and µj with
structural breaks (red lines) and their 95 percent confidence intervals (dotted red lines).

then to a range of 0.0 − 0.4 in the mid-2000s.6 These ranges broadly correspond to
our estimates of ρj. However, our findings suggest that once the substantial structural
shifts in the parameter µj are taken into account, the estimated inflation persistence
drops to around 0.5 already in the mid-1970s and remains at this level until the rapid
rise in inflation in 2020.
During the initial years of the sample before 1972:Q1, the estimate of µj is high at

5.262 (std. error of 0.635). As the persistence was insignificantly di§erent from zero,
this implies that inflation fluctuates around this level during this period, as illustrated
in Figure 3. The high estimated persistence from 1972 is matched by a decrease in
the estimate of µj to 2.329 (std. error of 0.410) in 1972:Q2, such that the large and

6Fuhrer (2010) also estimates a univariate autoregressive process for detrended inflation with struc-
tural shifts identified by the tests for unknown breakpoints by Andrews (1993) and Bai and Perron
(1998). He considers di§erent inflation measures, detrended by a Hodrick-Prescott filter to remove a
time-varying mean, and finds a significant structural break in inflation persistence occuring in 1980:Q2
for core CPI inflation, another in 1976:Q2 for core PCE inflation, and one in 1999:Q1 for CPI and
PCE inflation.
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Figure 3: The figure shows the actual inflation πt (black line) and the estimated level of
inflation µj/ (1− ρj) from (1) (red line). Because the interpretation of µj/ (1− ρj) as
the level for inflation requires that |ρj| < 1 , the red line excludes the eight observations
where the estimates of ρj are either smaller than -1 or larger than 1.

frequent shifts in the level of inflation from 1972 to 1974 are caused by shifts in ρj. As
the estimated persistence stabilizes from 1975, the increasing inflation in the last part
of the 1970s and the rapid decrease in inflation during the Volcker disinflation period of
the early 1980s are captured by an increase followed by a decrease in the estimates of
µj. With the stabilization of inflation from 1983 and during the Great Moderation, the
estimate of µj stays at 1.190 (std. error of 0.146) from 1983:Q1 until 2006:Q4, when
µj temporarily increases and then settles at 0.786 (std. error of 0.132) in 2007:Q2 until
the end of the sample.
Our empirical findings show that the parameters of a first-order autoregressive

process undergo nonrecurring structural shifts in its parameters and that it provides an
adequate characterization of the inflation data once these shifts are accounted for. This
suggests that the “relevant economic model” to underpin Muth’s hypothesis should al-
low for such nonrecurring structural shifts in its parameters. Given these findings, the
rest of the paper develops the Knight-Muth hypothesis in a baseline New Keynesian
Phillips curve model. We show that this implies that inflation can be characterized
by a first-order autoregressive process with nonrecurring structural shifts in its para-
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meters, in line with our empirical results, and we explore the possibility that KMH’s
implementation of Muth’s hypothesis under Knightian uncertainty could account for
market participants’ inflation expectations, as measured by the survey data.

3 The Knight-Muth Hypothesis in a Baseline New
Keynesian Phillips Curve Model

Our implementation of the Knight-Muth hypothesis in a baseline NewKeynesian Phillips
curve (NKPC) model of inflation involves two steps.7 First, we open the model to un-
foreseeable change and Knightian uncertainty on the part of the economist and market
participants by allowing some of its parameters to undergo nonrecurring structural
shifts. Second, we show that under Knightian uncertainty, Muth’s hypothesis implies
that a set of conditional expectations constitutes the model’s prediction of future infla-
tion. We implement Muth’s hypothesis by representing participants’ inflation expecta-
tion with one of the conditional expectations in this set.
KMH thus moves beyond REH by implementing Muth’s hypothesis in a macroeco-

nomic model open to unforeseeable change and Knightian uncertainty, though it nests
REH as a special case. We illustrate this by showing how KMH reduces to REH when
the parameters of the NKPC model are constrained to remain constant over time. This
enables a direct comparison of the di§erent implications of KMH and REH for under-
standing how market participants’ expectations evolve over time and what role these
expectations play in driving aggregate outcomes resulting from participants’ decisions.

3.1 Opening theModel to Knightian Uncertainty Arising from
Unforeseeable Change

We consider a baseline NKPC model of inflation πt specified as:

πt = !̄t + β (Ft (πt+1)− !̄t) + κyt, (2)

for t = 1, 2, . . . and where !̄t is a parameter at time t, which denotes a non-zero level
of inflation; (β,κ) are parameters that are constant over time; Ft (πt+1) denotes market
participants’ expectation at time t of the next period’s inflation; and yt represents an
output gap, as measured by the deviation of the economy’s real output, unemployment,
or firms’ marginal cost from their respective trend levels.
We specify the output gap to evolve according to the first-order autoregressive

process:
yt = φ̄tyt−1 + ηt, (3)

7Coibion, Gorodnichenko, and Kamdar (2018) provide an overview and historical account of the
role of expectations and their di§erent theoretical representations in the context of New Keynesian
Phillips curve models.
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for t = 1, 2, . . . and where ηt ∼ iidN
(
0,σ2η

)
, φ̄t is an autoregressive parameter at time

t that satisfies 0 ≤ φ̄t < 1 for all t, and the initial value y0 is given.
The simple structure of this model corresponds to the “baseline case” of an NKPC

model in Fuhrer (2010), but with a non-zero level of inflation.8

The premise of our approach is that some parameters of the NKPC model in (2)-(3)
undergo unforeseeable change. Here, we focus on the shifts in the level of inflation, !̄t,
and the autoregressive parameter, φ̄t, for the output gap.
Let θ̄t =

(
!̄t, φ̄t

)0
denote the two-dimensional vector of parameters at time t in (2)-

(3). We refer to the particular deterministic sequence
{
θ̄t
}1
t=1
as the objective Knightian

uncertainty (KU) parameters.
We formalize unforeseeable change in the model by allowing the objective KU pa-

rameters to undergo nonrecurring shifts over time. However, we assume that there are
subperiods during which θ̄t can be represented as constant, which we specify with

θ̄t =
(
!̄t, φ̄t

)0
= θ̄

j
=
(
!̄j, φ̄

j
)0
, (4)

for t = τ̄ j−1, τ̄ j−1+1, . . . , τ̄ j−1 and where j = 1, 2, . . . denotes the di§erent subperiods
with τ̄ j > τ̄ j−1 and τ̄ 0 = 1. We assume that either !̄j 6= !̄j−1, φ̄

j 6= φ̄j−1, or both, such
that at least one of the two objective KU parameters changes from one subperiod to
the next. This formalization allows the objective KU parameters to change only inter-
mittently: they are constant at all times during subperiod j, where θ̄t = θ̄

j, but they
undergo nonrecurring structural shifts at times {τ̄ 1, τ̄ 2, . . .}. Importantly, we assume
that the timing and magnitude of future shifts are inherently unknown ex ante: at any
time t, the future objective KU parameters θ̄t+i, i > 0, cannot be assessed on the basis
of historical data (even an infinite sample), let alone characterized with a probabilistic
rule, such as a Markov chain.9

For the model to yield predictions about future inflation and the output gap, we
restrict the objective KU parameters to lie within an interval at all times. Assuming
that this interval is constant over time, we formalize this restriction on θ̄t as

θ̄
j 2 Iθ = I! × Iφ, for all j = 1, 2, . . . , (5)

where the intervals I! and Iφ are given by

I! = [!L,!U ] , 0 < !L < !U , Iφ = [φL,φU ] , 0 ≤ φL < φU < 1. (6)

Because θ̄t 2 Iθ for all t, this restriction limits the extent of change that can occur in
the model’s objective KU parameters. However, it still leaves the model open to unfore-
seeable change and Knightian uncertainty, in the sense that, as viewed from time t, the

8Kozicki and Tingsley (2002), Cogley and Sbordone (2008), and subsequent papers also allow for a
non-zero steady-state level of inflation.

9The structural shifts that have occured in the past, their timings, and the parameter values can
be estimated on the basis of a sample of time-series data.
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objective future KU parameters can take any value within the interval. Specifically, let
Θ̄t =

{
θ̄t+1, θ̄t+2, . . .

}
denote the particular sequence of objective KU parameters that

characterizes future inflation and the output gap, {πt+i, yt+i}
1
i=1, according to (2)-(3).

Viewed from time t, Θ̄t can take any value within the interval Iθ × Iθ × . . . .

3.2 Implementing Muth’s Hypothesis Under Knightian Un-
certainty

Lucas (1995, p. 254-255) pointed out that intertemporal macroeconomic models that
do not represent participants’ expectations as conforming to Muth’s hypothesis su§er
from a “glaring (...) modeling inconsistency” (emphasis added). Such models’ charac-
terization of the “actual equilibrium prices (...) bore no relation to, and [are] in general
grossly inconsistent with, the price expectation that the theory imputed to individual
agents.”10

By implementing Muth’s hypothesis, REH rids macroeconomic theory of this mod-
eling inconsistency. Muth’s (1961, pp. 315-316) pathbreaking idea was to determine si-
multaneously the objective stochastic process which, according to an economist’s model,
characterizes time-series inflation data and the inflation expectations driving partici-
pants’ decisions that result in that time series. As Lucas emphasized in the panel
discussion in Hoover and Young (2013, p. 1172), “It’s that simultaneity that neither
the statistician nor the economist of the day had (...) and Jack [Muth] had it.” This
simultaneity renders REH’s representation of participants’ subjective expectation con-
sistent with the model’s objective prediction of future inflation, in the sense that the
conditional expectation that represents participants’ subjective expectation of inflation
is identical to the model’s objective conditional expectation of inflation.
Similarly, KMH ensures such modeling consistency by relying on Muth’s hypoth-

esis to specify simulataneously the model-implied inflation process and participants’
subjective expectation of inflation. However, implementing Muth’s hypothesis under
Knightian uncertainty substantially alters what constitutes the model’s objective pre-
diction of inflation and, thus, how KMH represents participants’ subjective expectation
of inflation as being consistent with that prediction.

3.2.1 The Model’s Prediction of Future Inflation Under Knightian Uncer-
tainty

Because the KMH model is open to unforeseeable change, neither an economist nor
market participants can know ex ante which particular sequence of objective KU para-
meters within the model’s interval will characterize how inflation and the output gap
unfold in the future. However, an extension of the standard REH solution method
enables us to use Muth’s hypothesis to derive an expectation of πt+1, conditional on

10Lucas (1995, p. 254) criticized the models of the 1960s that typically represented participants’
expectations with adaptive expectations and other fixed error-correcting rules. However, his argument
also applies to behavioral macroeconomic models.
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the information set at time t, that is consistent with any sequence of future parameters
within the model’s interval.
To this end, we denote an arbitrary sequence of the model’s future parameters with

Θt = {θt,t+1, θt,t+2, . . .} , where θt,t+i =
(
!t,t+i,φt,t+i

)0 2 Iθ for all i > 0.

We refer to Θt as a scenario, as viewed from a fixed time t.
Given a particular scenario, Muth’s hypothesis determines the process for future

inflation and the output gap simultaneously with participants’ inflation expectation.
Future inflation and the output gap will evolve according to the process in (2)-(3), but
with the unknown future objective KU parameters, Θ̄t, replaced by to the scenario’s
parameters, Θt. We denote this process by {πt+i (Θt) , yt+i (Θt)}

1
i=1. Muth’s hypothesis

also implies that the representation of participants’ inflation expectation that is consis-
tent with this scenario is given by Ft+i (πt+i+1 (Θt)) = Et+i (πt+i+1 (Θt)) for all i > 0.
Here, Et (πt+i+1 (Θt)) denotes the conditional expectation implied by the scenario’s
process {πt+i (Θt) , yt+i (Θt)}

1
i=1, given by:

πt+i (Θt) = !t,t+i + β (Et+i (πt+i+1 (Θt))− !t,t+i) + κyt+i (Θt) , (7)

yt+i (Θt) = φt,t+iyt+i−1 (Θt) + ηt+i, (8)

for i = 1, 2, . . .. We refer to this expectation and process as scenario-consistent.
Any scenario-consistent representation of participants’ forecast of next-period in-

flation in the NKPC model in (2) is given by Ft (πt+1 (Θt)) = Et (πt+1 (Θt)). An ex-
pression for this expectation involving Et (πt+n+1 (Θt)) can be derived by iterating it
forward with respect to the process for {πt+i (Θt) , yt+i (Θt)}

1
i=1 in (7)-(8) and using

the law of iterated expectations. The following Proposition shows that Et (πt+n+1 (Θt))
converges as n!1 and derives an explicit solution for the scenario-consistent expecta-
tion Et (πt+1 (Θt)) for n!1, assuming that a standard transversality condition holds.
This results from the scenario’s parameters being bounded by the model’s interval Iθ.

Proposition 1 Let Θt = {θt,t+1, θt,t+2, . . .} with θt,t+i =
(
!t,t+i,φt,t+i

)0 2 Iθ denote a
scenario for the future parameters within the model’s interval Iθ, as viewed from time t,
which implies that 0 < !L ≤ !t,t+i ≤ !U and 0 ≤ φL ≤ φt,t+i ≤ φU < 1 for all i > 0, see
(6). Moreover, given the scenario Θt, let Et (πt+1 (Θt)) denote the scenario-consistent
expectation of πt+1 (Θt), conditional on the information set at time t, with future in-
flation and the output gap evolving according to the process {πt+i (Θt) , yt+i (Θt)}

1
i=1 in

(7)-(8).
By forward iteration, the scenario-consistent expectation Et (πt+1 (Θt)) can be ex-
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pressed as:

Et (πt+1 (Θt)) = (1− β)
nX

i=1

βi−1!t,t+i + β
nEt (πt+n+1 (Θt)) + κ

nX

i=1

βi−1Et (yt+i (Θt))

= (1− β)
nX

i=1

βi−1!t,t+i + β
nEt (πt+n+1 (Θt)) + κ

nX

i=1

βi−1

 
iY

j=1

φt,t+j

!

yt,

(9)

where limn!1 β
nEt (πt+n+1 (Θt)) exists.

If, moreover, this limit satisfies the transversality condition

lim
n!1

βnEt (πt+n+1 (Θt)) = 0, (10)

then the scenario-consistent expectation Et (πt+1 (Θt)) in (9) has the unique solution for
n!1 given by:

Et (πt+1 (Θt)) = (1− β)
1X

i=1

βi−1!t,t+i + κ
1X

i=1

βi−1Et (yt+i (Θt))

= (1− β)
1X

i=1

βi−1!t,t+i + κ
1X

i=1

βi−1

 
iY

j=1

φt,t+j

!

yt. (11)

The proof of the proposition is in Appendix A.2.
Viewed from any time t, any scenario Θt within the model’s interval Iθ × Iθ × . . .

might characterize how inflation and the output gap evolve in the future. Therefore,
Muth’s hypothesis under Knightian uncertainty implies that a set of conditional distri-
butions constitutes the model’s objective prediction of next-period inflation, as viewed
from time t. The following Corollary formalizes this set and shows that it corresponds
to an interval with endpoints that depend on the endpoints of the interval Iθ.

Corollary 1 Let Et (πt+1 (Θt)) denote the scenario-consistent expectation given the
scenario Θt, as given by (11), and let Et

(
πt+1; I

θ
)
denote the model-implied set of

scenario-consistent expectations, conditional on the information set at time t. This set
is given by

Et
(
πt+1; I

θ
)
=
{
Et (πt+1 (Θt)) | Θt 2 Iθ × Iθ × . . .

}

=

[
!L +

κφL
1− βφL

yt,!U +
κφU

1− βφU
yt

]
. (12)

The proof of the corollary is in Appendix A.2.
The Corollary highlights the di§erence between the model’s prediction of next-

period inflation under KMH and REH. By opening the NKPC model to unforeseeable
change and restricting the objective KU parameters to lie within an interval at all times,
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KMH’s implementation of Muth’s hypothesis implies that the set of scenario-consistent
expectations in (12) constitutes the model’s objective prediction of πt+1, as viewed from
time t.
If the unforeseeable change is replaced by the assumption that the model’s objective

parameters are constant, θ̄t = θ̄ =
(
!̄, φ̄

)0
for all t and Iθ =

[
θ̄, θ̄
]
= θ̄, the NKPC model

in (2)-(3) becomes time-invariant. Because future outcomes are an exact probabilistic
replica of the past, there is no uncertainty about the objective parameters in the future.
They are identical to those characterizing the process for inflation in the past, Θ̄t =
Θ̄ =

{
θ̄, θ̄, . . .

}
for all t. Consequently, KMH becomes identical with REH as the set in

(12) collapses to the single conditional expectation, Et
(
πt+1; θ̄

)
= Et

(
πt+1

(
Θ̄
))
= !̄ +(

κφ̄/
(
1− βφ̄

))
yt. This expectation depends only on the constant objective parameters,

θ̄, and it constitutes an REH model’s only objective prediction of πt+1. By representing
participants’ expectation of inflation with this conditional expectation, REH renders
expectations consistent with the model’s objective prediction.
Corollary 1 also highlights how opening the NKPC model to unforeseeable change

implies Knightian uncertainty about future inflation and the output gap: the uncer-
tainty about these outcomes cannot ex ante be “reduced to an objectively, quantita-
tively determinate probability” (Knight, 1921, pp. 231-232) by any method. Because
the future objective KU parameters are inherently unknown at time t, it cannot be
known ex ante which of the scenario-consistent expectations in the set Et

(
πt+1; I

θ
)
will

actually characterize future inflation. In addition to Knightian uncertainty, the random
shocks ηt formalize standard probabilistic risk. In REH models, the uncertainty about
future outcomes is formalized only as probabilistic risk.11

3.2.2 Model-Consistent Representation of Participants’ Subjective Infla-
tion Expectation

By opening the model to unforeseeable change, an economist acknowledges that there
are myriad scenarios for the future objective KU parameters and, importantly, that
it is inherently unknown ex ante when and how these parameters will shift in the
future. However, because KMH constrains the parameters to lie within the interval Iθ,
the model-implied set of scenario-consistent expectations in the NKPC model in (2) is
given by Et

(
πt+1; I

θ
)
in (12).

To implement Muth’s hypothesis under Knightian uncertainty, we represent partici-
pants’ expectation of inflation, Ft (πt+1) in (2), with the scenario-consistent expectation
corresponding to a particular scenario, which we refer to as participants’ subjective sce-
nario. Using a general notation, we define this scenario as

Θ̃t =
n
θ̃t,t+1, θ̃t,t+2, . . .

o
, where θ̃t,t+i =

(
!̃t,t+i, φ̃t,t+i

)0
2 Iθ for all i > 0. (13)

11Corollary 1 illustrates how KMH formalizes Knightian uncertainty as ambiguity about the process
and distribution characterizing future inflation and the output gap. In the Concluding Remarks, we
discuss how KMH relates to the literature on model-ambiguity and how KMH can be combined with
the multiple priors utility approach to decision-making under ambiguity.
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The subjective scenario represents participants’ subjective assessment of the unknown
future objective KU parameters, as viewed from time t. Thus, in the NKPC model in
(2), we represent

Ft (πt+1) = Et

(
πt+1

(
Θ̃t

))
, (14)

at each time t, where Θ̃t 2 Iθ × Iθ × . . . implies that Et
(
πt+1

(
Θ̃t

))
2 Et

(
πt+1; I

θ
)
, as

defined in (12).
KMH acknowledges that, over time, participants revise their subjective scenario, and

thus their expectation of inflation, in unforeseeable ways, in response to and anticipation
of the nonrecurring shifts in the model’s objective KU parameters. It is possible that
there are subperiods during which the parameters of the subjective scenario can be
constrained by some rule or procedure. However, the premise of KMH is that any such
rule or procedure must be left open to unforeseeable change.
Because the subjective scenario represents a subjective assessment of the unknown

future objective KU parameters, the scenario can be decomposed into an assessment
of the parameters’ current values and future change.12 The assessment of the current
values might be formalized with some procedure that depends on the past time-series
data for inflation and the output gap implied by the model. That would formalize how
participants revise their subjective scenario in response to past shifts in the objective
KU parameters.
However, even with a perfect assessment of the past and current objective KU pa-

rameters, such that
{
θ̄i
}t
i=1

would be known at time t, forward-looking participants
understand that the subjective scenario also requires an assessment of the timing and
magnitude of change in the future. No time-invariant rule or procedure can charac-
terize exactly how participants make and revise this assessment at all times. Indeed,
because participants facing Knightian uncertainty rely on a variety of factors, including
psychological and other factors outside the model’s specification in (2), they might, at
least intermittently, revise their assessment of the timing and magnitude of future shifts
in ways that cannot be known in advance, let alone characterized with a probabilistic
rule.13 Participants may revise their subjective scenario in unforeseeable ways, purely
in anticipation of future change in the objective KU parameters.
Here, we impose simple constraints on Θ̃t that mimic our formalization of nonre-

curring shifts in the objective KU parameters. To do so, we assume that the subjective

12The subjective scenario enters Et
(
πt+1

(
Θ̃t

))
through the iteration of expectations. Thus, the

scenario’s parameters θ̃t,t+2 represent a subjective assessment, at time t, of participants’ subjective
assessment at time t + 1 of the objective KU parameters at time t + 2. However, if participants
anticipate, at time t, that they will revise their assessment of θ̄t+2 at time t + 1, they will revise
their time-t assessment of θ̄t+2 to reflect that anticipated future revision. Thus, the parameters of the
subjective scenario can be interpreted as a subjective assessment of the future objective KU parameters.
13This opens the possibility of formalizing the influence of psychological factors, such as market

sentiment, on participants’ subjective scenario and thus their expectation of inflation. For example,
one could assume that optimistic market sentiment would lead participants to shift the parameters of
the subjective scenario upward.
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parameters also undergo nonrecurring structural shifts, but that there are subperiods
during which they remain constant. Moreover, we make the simplifying assumption
that, during each subperiod, the subjective parameters are constant over the forecast

horizon, θ̃t,t+i = θ̃t =
(
!̃t, φ̃t

)0
for all i > 0.14 We formalize this by specifying the

subjective scenario as

Θ̃t =
n
θ̃t,t+1, θ̃t,t+2, . . .

o
= Θ̃k =

n
θ̃
k
, θ̃
k
, . . .

o
, θ̃

k
=
(
!̃k, φ̃

k
)0
2 Iθ, (15)

for t = τ̃ k−1, τ̃ k−1+1, . . . , τ̃ k−1 and where k = 1, 2, . . . denotes the di§erent subperiods
with τ̃ k > τ̃ k−1 and τ̃ 0 = 1. We assume that either !̃k 6= !̃k−1, φ̃

k
6= φ̃

k
, or both,

such that at least one of the two subjective parameters changes from one subperiod
to the next. This formalization represents the subjective parameters as being constant
at all times during subperiod k, where Θ̃t = Θ̃k, and across all forecast horizons i >
0, but undergoing nonrecurring structural shifts at times {τ̃ 1, τ̃ 2, . . .}. As with the
objective KU parameters, the timing and magnitude of future shifts in these subjective
parameters are unforeseeable ex ante.
Because market participants understand that the inflation process undergoes un-

foreseeable change only intermittently, we would expect their subjective assessment of
the unknown future objective KU parameters to be related to the current values of these
objective parameters. However, we would expect this relationship to be imprecise: the
subjective parameters might shift in anticipation of future shifts in the objective pa-
rameters prior to these shifts, or after shifts in the objective parameters in response
to these shifts. Moreover, the magnitudes of the shifts in the subjective and objective
parameters need not fully match.
We formalize these ideas with an anchoring constraint: we assume that the ab-

solute di§erence between the subjective parameters, θ̃t, and the current objective KU
parameters, θ̄t, is small relative to the model’s interval for these parameters, Iθ, which
represents their largest possible di§erence. We formalize this by assuming that there
exists a 0 < δ < 1, such that, at each time t,

|!̃t − !̄t| ≤ δ (!U − !L) ,
∣∣∣φ̃t − φ̄t

∣∣∣ ≤ δ (φU − φL) . (16)

The di§erence !̃t − !̄t can be interpreted as participants’ subjective assessment of
the future change in the objective KU parameters. Thus, the anchoring constraint
formalizes the bounds on participants’ subjective assessment of future changes in the
objective KU parameters.
With this specification of participants’ subjective scenario, Θ̃t, and the unique so-

lution for the scenario-consistent expectation in (11) in Proposition 1, participants’

14This assumption is needed neither to represent participants’ expectations, as illustrated by Propo-
sition 1, nor to derive the reduced-form expression for inflation. However, it simplifies these expres-
sions, thereby allowing a direct comparison between KMH’s and REH’s representations of the inflation
process.
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inflation forecast in (2) can be expressed, during subperiod k, as

Ft (πt+1) = Et

(
πt+1

(
Θ̃k
))
= !̃k +

κφ̃
k

1− βφ̃
k
yt, (17)

for t = τ̃ k−1, τ̃ k−1 + 1, . . . , τ̃ k − 1 and k = 1, 2, . . .. This represents participants’ expec-
tation of inflation as being consistent with the model’s objective prediction of πt+1, in
the sense that it is the scenario-consistent expectation that corresponds to participants’
subjective scenario.
Like REH, KMH’s implementation of Muth’s hypothesis represents participants’

inflation expectation in terms of the relevant information set, according to the model.
For the baseline NKPC model, this relevant information at time t consists only of
the output gap, yt. Thus, KMH maintains Muth’s two core assertions: information is
not wasted and “the way expectations are formed depends specifically on the relevant
system describing the economy” (Muth, 1961, p. 316).
However, by allowing for unforeseeable change, KMH, unlike REH, acknowledges

that participants revise, at least intermittently, their forecasting strategy — how they
map current information about the output gap, yt, onto their expectation of future
inflation, as determined by their subjective scenario’s scenario — in anticipation of and
response to change in the objective KU parameters. This implies that, beyond being
driven by random shocks to the output gap, participants’ inflation expectations are also
driven over time by nonrecurring shifts in the objective parameter φ̄t and the subjective
parameters θ̃t on which the output gap and participants’ expectations, respectively,
depend. As the change in these parameters is unforeseeable, how participants’ will
revise their inflation expectations in the future is inherently unknown ex ante.
In contrast, because the constant-parameter REH model assumes θ̄t = θ̄ for all

t, such that Iθ =
[
θ̄, θ̄
]
= θ̄ and Θ̃t = Θ̄ =

{
θ̄, θ̄, . . .

}
, it represents participants’

expectation of inflation with the conditional expectation that constitutes the time-
invariant model’s only prediction of future inflation. As this is given by Et

(
πt+1

(
Θ̄
))
=

!̄ +
(
κφ̄/

(
1− βφ̄

))
yt, it represents participants’ expectations in terms of the constant

objective parameters, θ̄, which implies that their expectations are time-invariant and
driven solely by the random shocks to the output gap.

3.3 The Reduced-Form Expression for Inflation

Muth’s hypothesis simultaneously determines the NKPC model’s objective process for
inflation and its representation of participants’ expectation of inflation. First, the struc-
ture of the NKPC model’s specification of inflation in (2)-(3) and the constraints on
its objective KU parameters determine the structure and constraints on the model-
consistent representation of participants’ inflation expectation in (17). In turn, insert-
ing the representation of participants’ expectation of inflation into the specification of
inflation in (2)-(3) enables deriving the model’s objective process for inflation, as given
by the model’s reduced-form expression for inflation.
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At a point in time t when the objective and subjective parameters for some j and
k are given by θ̄t = θ̄

j and θ̃t = θ̃
k
, this reduced-form expression becomes

πt = !̄
j + β

(
Et

(
πt+1

(
Θ̃t

))
− !̄j

)
+ κyt

= !̄j + β

  

!̃k +
κφ̃

k

1− βφ̃
k
yt

!

− !̄j
!

+ κyt

= (1− β) !̄j + β!̃k +
κ

1− βφ̃
k
yt. (18)

The reduced-form expression characterizes how, directly and through participants’ ex-
pectation of inflation, the output gap drives inflation over time. Importantly, this
relation depends both on the objective parameters, θ̄j, and the subjective parameters,
θ̃
k
. As both of these parameters undergo nonrecurring shifts, the relationship between

inflation and the output gap changes in nonrecurring ways at times {τ̄ j}
1
j=1 [ {τ̃ k}

1
k=1.

3.3.1 An Autonomous Role for Participants’ Inflation Expectations

The reduced-form expression for inflation in (18) illustrates a crucial implication of
KMH: participants’ expectation of inflation plays an autonomous role in driving in-
flation over time. Although the baseline NKPC specification of inflation in (2)-(3)
determines the set of scenario-consistent expectations of future inflation, it does not
determine which of the conditional expectations in this set represents participants’
expectations. This is because KMH constrains the subjective parameters only to lie
within the model’s interval for the objective KU parameters. Importantly, it does not
specify precisely the relationship between the subjective parameters and the objective
KU parameters. Consequently, KMH implies that participants’ inflation expectations
play an autonomous role in driving inflation over time: participants decide when and
how they revise their subjective assessments of the future objective KU parameters, and
thus their subjective expectation of inflation, autonomously of the model’s specification
of the objective KU parameters.
In constrast, REH’s implementation of Muth’s hypothesis in a time-invariant model

does not accord participants’ expectations an autonomous role in driving aggregate
outcomes. Constraining the NKPC model’s objective parameters to remain constant
over time, θ̄t = θ̄ for all t, implies that participants’ subjective parameters are com-
pletely determined by these constant parameters, Θ̃t = Θ̄ =

{
θ̄, θ̄, . . .

}
for all t.

Thus, participants’ expectation of inflation is fully determined by the model’s spec-
ification of inflation, and the reduced-form expression for inflation in (18) becomes
πt = !̄ +

(
κ/
(
1− βφ̄

))
yt. Because this depends only on the constant objective para-

meters, θ̄, participants’ expectation of inflation does not play an autonomous role in
driving inflation over time.
An important implication of participants’ inflation expectations playing an au-

tonomous role in the KMH model is that participants’ forecast errors are correlated
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with the current output gap, yt. This is because participants’ inflation expectation at
time t is based on the subjective scenario, which, in general, di§ers from the future
objective KU parameters and participants’ subjective scenario in the future.
To demonstrate this point, consider the case where Θ̃t = Θ̃t+1 = Θ̃k and θ̄t = θ̄t+1 =

θ̄
j. This implies that the ex post forecast error at time t+ 1 becomes:

πt+1 − Et
(
πt+1

(
Θ̃k
))

= (1− β)
(
!̄j − !̃k

)
+
(
φ̄
j − φ̃

k
) κ

1− βφ̃
k

!

yt

+
κφ̄

j

1− βφ̃
k
ηt+1. (19)

This ex post forecast error is correlated with the current output gap, yt, and has a non-
zero level determined by

(
!̄j − !̃k

)
. The only exception is where !̄j = !̃k and φ̄j = φ̃

k
,

in which case participants’ inflation expectation at time t is ex ante optimal as it is based
exactly on the subjective and objective KU parameters that characterize inflation at
time t+1. However, because the forecast errors arise from unforeseeable change in both
the objective KU parameters and the parameters of participants’ subjective scenario,
they are unknown ex ante. In contrast to time-invariant models, this implies that
the information embedded in ex post forecast errors cannot be used to form inflation
expectations that are ex ante optimal.

3.4 An Autoregressive Process for Inflation and Inflation Ex-
pectations

The reduced-form expression for inflation in (18) implies that inflation can be charac-
terized with an autoregressive process with structural shifts in its parameters, as given
by

πt = α
j,k + ρjπt−1 + "t, (20)

where
αj,k =

(
1− ρj

) (
(1− β) !̄j + β!̃k

)
, ρj = φ̄

j
,

and "t = φ
jηt. This corresponds to the autoregressive process for inflation with struc-

tural shifts in (1). In Section 2, we presented empirical findings that the parameters of
such a process do indeed undergo nonrecurring structural shifts, and that once these
shifts are accounted for, the process is an adequate representation of the inflation time-
series data.
Equivalently, KMH also implies that the representation of participants’ expectation

of inflation in (17) can be characterized with an autoregressive process with structural
shifts in its parameters, as given by

Ft (πt+1) = Et

(
πt+1

(
Θ̃k
))
= α̃k + ρjEt−1

(
πt; Θ̃

k
)
+ "̃t, (21)
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where
α̃k =

(
1− ρj

)
!̃k, ρj = φ̄

j
,

and "̃t =
κφ̃

k

1−βφ̃
k ηt.

The model implies that the persistence parameters in the autoregressive models
for inflation and participants’ expectation of inflation in (20) and (21) are identical
and determined by the persistence of the output gap, φ̄j. Moreover, the anchoring
constraint in (16) restricts the di§erence between the levels that inflation and inflation
expectations fluctuate around:

∣∣∣∣
α̃j

1− ρj
−

αj,k

1− ρj

∣∣∣∣ = (1− β)
∣∣!̃k − !̄j

∣∣ ≤ δ (!U − !L) .

In the next Section, we estimate a first-order autoregressive process for survey data 
on participants’ inflation expectations, and we assess KMH’s prediction that the para-
meters of this process undergo nonrecurring structural shifts.

4 Evidence of Structural Shifts in an Autoregres-
sive Specification for Survey Forecasts of Inflation

A novel  implication  of  imposing  KMH  in  our  baseline  specification  of  the 
NKPC  model  is that both inflation and inflation expectations can be characterized by a 
first-order autoregressive process whose parameters undergo shifts. We presented our 
findings of such structural shifts in the first-order autoregressive process for inflation in 
Section 2. Moreover, once the structural shifts were accounted for, the estimated model was 
found to be an adequate representation of the inflation time-series data.
Here, we use survey forecasts of inflation from the Survey of Professional Forecasters 

to test empirically whether the parameters of a first-autoregressive process for the 
survey forecasts undergo structural shifts and whether such a process is an adequate 
representation of the data. To this end, we consider the quarterly data on the one-
quarter-ahead PCE inflation, which we denote by Fts (πt+1), covering the sample period  
of quarterly observations from 1968:Q4 to 2022:Q1. Figure 4 shows the actual inflation 
data and the one-quarter-ahead survey inflation forecasts. A full description of the data 
is given in Online Appendix B.1. The two series follow each other fairly closely over the 
sample period, but with subperiods during which next quarter’s inflation is forecasted 
to lie above or below its current level.
We estimate the model given by

F st (πt+1) = ρ̃
jF st−1 (πt) + µ̃

j + "̃t, (22)

for t = T̃j−1, T̃j−1 + 1, . . . , T̃j − 1 and j = 1, 2, . . . , K̃, where T̃0 = 1, T̃K̃ = T + 1,
either ρ̃j 6= ρ̃j−1, µ̃j 6= µ̃j−1, or both, 0 ≤ ρ̃j < 1 for all j, "̃t ∼ iidN

(
0, σ̃2

)
, and the
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Figure 4: The figure shows the actual inflation πt (red line) and the one-quarter ahead
survey inflation forecast F st (πt+1) (blue line).

initial value F S0 (π1) is given. We use an e§ective estimation sample of 213 observations
covering the period from 1969:Q1 to 2022:Q1. We estimate the process both with
constant parameters,

(
ρ̃l, µ̃l

)
= (ρ̃, µ̃) for all t = 1, 2, . . . , T , and with structural shifts

in the parameters
(
ρ̃l, µ̃l

)
. As in Section 2, we use the Autometrics algorithm with

step-indicator and multiple step-indicator saturation to identify the structural shifts,
as outlined in Online Appendix B.2.15

The empirical estimates for the autoregressive process in (21) with constant para-
meters are shown in the left columns of Table 2 and the fit of the model, including
rolling window estimates of the parameters, is illustrated in Figure 5. With constant
parameters, the estimated persistence is 0.968 (std. error of 0.017) which means that
the inflation forecast is essentially a random walk with a drift. However, the rolling
window estimates of the parameters, shown in panels (c) and (d) in Figure 5, suggest
that (ρ̃, µ̃) are not constant over time. For example, the rolling window estimates of
ρ̃ fluctuate a lot in the beginning of the sample, though they seem more stable during
the latter part of the sample period.
The estimates with structural shifts in the parameters

(
ρ̃j, µ̃j

)
are shown in the right

15For a presentation of Autometrics and an analysis of its properties, see Doornik (2009), Castle et
al. (2012), and Castle et al. (2015).
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Table 2: Estimates of the Autoregressive Process for Inflation Forecasts with Constant
Parameters and with Structural Shifts in the Parameters

Model with constant parameters Model with structural shifts

Parameter Estimate Std. error Parameter, period Estimate Std. error

ρ̃ 0.968 0.017 ρ̃ 69:1-73:1 0.256 0.097

73:2-79:3 0.478 0.072

79:4-80:3 0.321 0.072

80:4-80:4 0.448 0.083

81:1-81:4 1.372 0.083

82:1-82:3 1.093 0.070

82:4-86:3 0.769 0.045

86:4-87:3 0.966 0.074

87:4-87:4 0.509 0.074

88:1-22:1 0.833 0.043

µ̃ 0.110 0.068 µ̃ 69:1-73:3 2.667 0.340

73:4-75:1 4.158 0.511

75:2-78:2 3.116 0.454

78:3-78:3 5.411 0.566

78:4-78:4 3.265 0.689

79:1-79:4 4.730 0.590

80:1-80:4 6.084 0.642

81:1-81:3 -4.260 0.796

81:4-82:2 -2.275 0.552

82:3-90:4 0.767 0.184

91:1-22:1 0.346 0.095

σ 0.506 0.316

R2 0.94 0.98

Observations 213 213

Misspecification tests [p-value] [p-value]

No autocorr., order 1-2 [0.405] [0.784]

No ARCH, order 1-4 [0.000] [0.558]

No heteroskedasticity [0.000] [0.905]

Normality [0.000] [0.000[

Notes: The table shows estimates of the autoregressive process for the survey inflation fore-
casts in (22) with constant parameters and with structural shifts in the parameters. The
e§ective estimation sample is quarterly observations from 1969:Q1 to 2022Q:1.
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Figure 5: The plot illustrates the estimated autoregressive process for the survey infla-
tion forecasts F st (πt+1) in (22) with constant parameters. Panel (a) shows the actual
inflation forecast F st (πt+1) (red line) and the model’s predicted inflation forecasts (blue
line). Panel (b) shows the standardized estimated residuals. Panels (c) and (d) show
the rolling window estimates of the parameters ρ̃ and µ̃ (solid red lines) and their 95
percent confidence intervals (dotted red lines) based on a 10-year rolling window sample
that ends at the point in time illustrated by the red lines.

columns of Table 2 and the fit of the model, including illustrations of the estimates of(
ρ̃j, µ̃j

)
over time, is illustrated in Figure 6. We find evidence of structural shifts in

both parameters. The majority of these happened in the 1970s and the early 1980s
before the Great Moderation, after which the parameters remain stable. In the 1970s
and until 1981, we the estimated persistence ρ̃j ranges from 0.256 (std. error of 0.097)
to 0.448 (std. error of 0.083). This low persistence is combined with high estimates of
µ̃j ranging from 2.667 (std. error of 0.340) to 5.411 (std. error of 0.566), which implies
that the inflation forecasts fluctuate around a level µ̃j

1−ρ̃j (given that 0 ≤ ρ̃
j < 1) ranging

from 3.6 at the beginning of the 1970s to higher and rapidly changing levels from 1973.
From 1982/1983, the estimated persistence increases and settles at 0.833 (std. error

of 0.043) in 1988:Q1 and remains stable for the rest of the sample period considered.
This increasing persistence is combined with a lower estimates of µ̃j that drop from
0.767 (std. error of 0.184) over the subperiod from 1982:Q3-1990:Q4 to 0.346 (std.
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Figure 6: The plot illustrates the estimated autoregressive process for the survey in-
flation forecasts F st (πt+1) in (22) with structural shifts in the parameters. Panel (a)
shows the actual inflation forecasts F st (πt+1) (red line) and the model’s predicted infla-
tion forecasts (blue line). Panel (b) shows the standardized estimated residuals. Panels
(c) and (d) show the estimates of ρ̃j and µ̃j with structural shifts (solid red lines) and
their 95 percent confidence intervals (dotted red lines).

error of 0.095) for the rest of the sample period considered. As both ρ̃j and µ̃j stabilize,
the inflation forecasts fluctuate around a constant level of 2.1 from 1991:Q1 and until
the end of the sample period.
The misspecification tests reveal that the autoregressive process becomes a better

approximation of the inflation forecast data when structural shifts are accounted for: the
tests do not reject the null of no autocorrelation, no ARCH, and no heteroskedasticity
of the residuals with high p-values. However, the null of normality of the residuals is
rejected.
The baseline NKPC model under KMH implies that the persistence parameter in

the autoregressive specifications for both inflation and inflation forecasts should be the
same during each subperiod, and that it is given by the current persistence parameter
in the autoregressive process for the output gap, φj. Thus, according to the theory,
ρj = ρ̃j = φj. Panel (a) in Figure 7 shows that the estimates of ρj and ρ̃j follow each
other over the sample period and that most of the structural breaks in both parameters
occured before the Great Moderation. However, during the Great Moderation period,
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Figure 7: The figure compares the estimates of
(
ρ̃j, µ̃j

)
from the autoregressive process

for the survey inflation forecasts in (22) and (ρj, µj) from the autoregressive process for
inflation in (1). Panel (a) shows the estimates of ρ̃j (red line) and ρj (blue line) with
their 95 percent confidence intervals (dotted red and blue lines). Similarly, panel (b)
shows the estimates of µ̃j (red line) and µj (blue lines) and their 95 percent confidence
intervals (dotted red and blue lines). Panel (c) shows the estimates µ̃j/

(
1− ρ̃j

)
and

µj/ (1− ρj), but excluding the observations where ρ̃j and ρj are either smaller than −1
or larger than 1.

the estimated ρ̃j is slightly greater than ρj, and the di§erence between the two is
statistically significantly.
The greater persistence in the inflation forecasts during the Great Moderation, how-

ever, is o§set by a lower estimate of µ̃j relative to µj during that period. As illustrated
in Panel (b) in Figure 7, during the 1970 and the early 1980s, both µ̃j and µj undergo
frequent and large structural shifts. Moreover, while the shifts in µ̃j sometimes exceed
those in µj, several times µ̃j shifts less than µj. However, as both inflation forecasts and
inflation start to stabilize from 1982, both µ̃j and µj stabilize with the former estimated
to be lower than the latter during the stable period during the Great Moderation. Be-
cause ρ̃j > ρj and µ̃j < µj during the Great Moderation, both inflation forecasts and
inflation fluctuate around levels, µ̃j/

(
1− ρ̃j

)
and µj/ (1− ρj), that are almost identical

during this period, as illustrated by Panel (c) in Figure 7.
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These empirical findings are broadly consistent with the implication of the baseline
NKPC model under KMH. We find evidence of structural breaks in an autoregressive
process for the survey inflation forecasts and the estimated model is found to be an
adequate representation of the survey data. However, the combination of slightly higher
estimated persistence of inflation forecasts and slightly lower µ̃j, relative to ρj and µj,
during the Great Moderation period might suggest that the inflation forecasts are, at
least partly, driven by some factors not captured by the simple baseline NKPC model
that we used to illustrate KMH. We leave an exploration of these findings to future
research.

5 Concluding Remarks

Recognizing ambiguity about the process driving outcomes is increasingly viewed as
crucial to remedying the shortcomings of REH models. For example, Hansen (2013) ar-
gues that REH models “miss something essential : uncertainty [arising from] ambiguity
about which is the correct model” of aggregate outcomes (p. 399, emphasis added).
This paper contributes to the rapidly growing literature recognizing uncertainty aris-

ing from model ambiguity in macroeconomics and finance theory. In an authoritative
review, Illut and Schneider (2022, p. 30) identified an important gap in this literature:

Our review. . . [indicates] that the literature has made a lot of progress
understanding how beliefs shape data. We feel that for the other direc-
tion, how data shape beliefs, existing quantitative work has only scratched
the surface, in particular with respect to learning about a world that is
constantly evolving due to structural change (emphasis added).

The Knight-Muth hypothesis makes three contributions to filling this gap. First, by
opening a macroeconomic model to nonrecurring shifts in its parameters, KMH provides
a tractable and empirically testable formalization of model ambiguity in “a world that
is constantly evolving due to structural change.” Second, KMH’s interval and anchor-
ing constraints formalize participants’ “learning” — how they revise their forecasting
strategies — when faced with nonrecurring structural shifts. Lastly, by imposing model-
consistency under Knightian uncertainty, KMH represents a two-way interdependence
between “how beliefs shape data [and] how data shape beliefs.”
Contextualizing KMH within the varied model-ambiguity literature is beyond the

scope of this paper. Here, we o§er a few remarks comparing KMH’s model-consistent
representations of model ambiguity arising from unforeseeable change with a substantial
part of the literature that formalizes ambiguity in time-invariant models.
Contemporary models that have acknowledged the relevance of model ambiguity

have typically focused on participants’ ambiguity about the process driving outcomes
and represented it with a set of time-invariant processes. For example, Hansen and
Sargent (2008) developed an influential approach to building models recognizing par-
ticipants’ ambiguity. Aiming to “preserve much of the discipline of rational expecta-
tions,” they “impose a common approximating [time-invariant] model on all decision
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makers” However, they allow [participants] to express di§erent degrees of mistrust in
that model” and assume that this mistrust engenders ambiguity about the process
driving outcomes, which they formalize with “the set of models (. . . ) surrounding the
approximating model” (pp. 7, 11).
Hansen and Sargent (p. 17) acknowledge that, as the sample of observations in-

creases, standard estimation procedures would enable participants to “learn the correct
[time-invariant] specification” with increasing accuracy, thereby reducing the extent of
their ambiguity. Indeed, in time-invariant models, participants’ ambiguity disappears
asymptotically. Thus, in Epstein and Schneider’s (2007) nomenclature, it is “resolv-
able.”
To illustrate the di§erence between resolvable and unresolvable model ambiguity,

Epstein and Schneider consider an individual with intertemporal multiple-priors utility
who initially faces both resolvable and unresolvable ambiguity.16 The resolvable ambi-
guity can be formalized, for example, as the ambiguity about an unknown parameter
in a time-invariant process for outcomes. In contrast, the unresolvable ambiguity arises
from nonrepetitive change that resembles what we call unforeseeable change. Epstein
and Schneider show that with an appropriate learning mechanism, the resolvable am-
biguity converges towards the objective process asymptotically; ultimately, only the
unresolvable ambiguity remains.
This paper contributes to the model-ambiguity literature by implementing Muth’s

hypothesis in a model that recognizes that an economist and market participants face
unresolvable ambiguity about the process driving outcomes, which arises from unfore-
seeable change in the parameters of that process. Applying KMH in a baseline New
Keynesian Phillips curve model for inflation represents the model’s prediction of future
inflation with a set of scenario-consistent expectations and processes. Importantly, be-
cause it is unknown ex ante when and how the future parameters will shift, this set
formalizes unresolvable ambiguity about the inflation process on the part of an econo-
mist and market participants. KMH can be combined with multiple-priors utility by
specifying ambiguity averse participants’ set of expectations with a subset of the model-
implied scenario-consistent expectations. However, KMH implies that the endpoints of
this subset must be open to unforeseeable change.
Our findings in this paper suggest that acknowledging that ambiguity about the

inflation process is unresolvable and implementing Muth’s hypothesis under such am-
biguity are crucial for understanding how inflation and participants’ expectation of
inflation, as measured by survey forecasts, unfold over time.

16According to the multiple-priors utility approach, an ambiguity-averse individual’s optimal deci-
sion maximizes the minimum expected utility over some set of subjective expectations. Gilboa and
Schmeidler (1989) axiomatized multiple-priors utility in a static setting and Epstein and Schneider
(2003) extended their axiomatization to an intertemporal setting.
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A Appendix

A.1 Additional Empirical Estimates for the Autoregressive
Process for Inflation

In this section, we present empirical estimates of the autoregressive process for inflation
with structural shifts in (1) extended to include four lags of inflation. Specifically, we
estimate the process given by

πt = ρ
j
1πt−1 + ρ2πt−2 + ρ3πt−3 + ρ4πt−t + µ

j + "t, (23)

for t = Tj−1, Tj−1 + 1, . . . , Tj − 1 and j = 1, 2, . . . , K, where T0 = 1, TK = T + 1,
"t ∼ iidN (0,σ2), and the initial values (π0, π−1, π−2, πt−3) are given.
The lagged inflation variables are included such that they are always retained Au-

tometrics’s selection procedure.
Table 3 presents the empirical results with and without structural breaks in the

parameters of the augmented model in (23). The parameters ρ2 and ρ4 are estimated as
insignificantly and borderline insignificantly di§erent from zero. Although augmenting
the autoregressive process with lags of inflation changes the timing and magnitude of
the shifts in the parameters

(
ρj1, µ

j
)
marginally, it does not change the conclusions of

the empirical results presented in Section 2.

A.2 Proofs

Proof of Proposition 1. By forward-iteration with respect to the process for future
inflation and output gap {πt+i (Θt) , yt+i (Θt)}

1
i=1 in (7)-(8) and using the law of iterated

expectations, the scenario-consistent expectation Et (πt+1 (Θt)) can be expressed as:

Et (πt+1 (Θt)) = Et (!t,t+1 + β (Et+1 (πt+2 (Θt))− !t+1) + κyt+1 (Θt))
= (1− β)!t,t+1 + βEt (πt+2 (Θt)) + κEt (yt+1 (Θt))
= (1− β)!t,t+1 + βEt (!t,t+2 + β (Et+2 (πt+3 (Θt))− !t,t+2) + κyt+2 (Θt))

+κEt (yt+1 (Θt))

= (1− β)!t,t+1 + (1− β) β!t,t+2 + β2Et (πt+3 (Θt)) + κEt (yt+1 (Θt))
+κβEt (yt+2 (Θt)) .
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Table 3: Estimates of the Autoregressive Process for Inflation with Constant Parameters
and with Structural Shifts in the Parameters Augmented With Lags of Inflation

Model with constant parameters Model with structural shifts

Parameter Estimate Std. error Parameter, period Estimate Std. error

ρ1 0.656 0.069 ρj1 69:1-74:4 0.766 0.068

75:1-20:1 0.418 0.063

20:2-20:3 -1.677 0.356

20:4-22:1 0.376 0.154

ρ2 0.179 0.082 ρ2 0.082 0.062

ρ3 0.118 0.082 ρ3 0.147 0.059

ρ4 -0.023 0.070 ρ4 0.102 0.051

µ 0.259 0.138 µj 69:1-72:1 2.413 0.745

72:2-72:2 -4.023 0.893

72:3-74:2 0.514 0.478

74:3-74:3 3.319 0.997

74:4-76:2 -0.062 0.453

76:3-81:1 2.435 0.333

81:2-20:4 0.520 0.112

21:1-22:1 3.366 0.887

σ 1.125 0.780

R2 0.81 0.91

Observations 213 213

Misspecification tests [p-value] [p-value]

No autocorr., order 1-2 [0.797] [0.289]

No ARCH, order 1-4 [0.000] [0.115]

No heteroskedasticity [0.000] [0.075]

Normality [0.000] [0.832]

Notes: The table shows estimates of the autoregressive process for inflation augmented with
lags of inflation in (23). The columns to the left show the estimates of the model with
constant parameters and the columns to the right shows the estimates with structural shifts
in the parameters. The estimation sample is quarterly observations from 1969:Q1 to 2022Q:1.
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Continuing this iteration yields:

Et (πt+1 (Θt)) = (1− β)
nX

i=1

βi−1!t,t+i + β
nEt (πt+n+1 (Θt)) + κ

nX

i=1

βi−1Et (yt+i (Θt))

= (1− β)
nX

i=1

βi−1!t,t+i + β
nEt (πt+n+1 (Θt))

+κ

nX

i=1

βi−1

 
iY

j=1

φt,t+j

!

yt. (24)

We next show that the first and last terms in (24) are convergent for n ! 1, which
implies that limn!1 β

nEt (πt+n+1 (Θt)) exists.

Define Sn =
Pn−1

i=1 β
i−1
(Qi

j=1 φt,t+j

)
. Because 0 ≤ φL ≤ φt,t+i ≤ φU < 1 for all

i > 0 and 0 < β < 1, it follows that

Sn − Sn−1 = βn−2
n−1Y

j=1

φt,t+j > 0, and 0 ≤ Sn ≤
n−1X

i=1

βi−1 ≤
1

1− β
.

This shows that Sn is a bounded increasing sequence and hence is convergent for n!1.
Equivalently, define Zn =

Pn−1
i=1 β

i−1!t,t+i. Because 0 < !L ≤ !t,t+i ≤ !U for all i
and 0 < β < 1, it follows that

Zn − Zn−1 = βn−2!t,t+n−1 > 0, and 0 ≤ Zn ≤
1X

i=1

βi−1!U =
!U
1− β

.

This shows that Zn is a bounded increasing sequence and hence is convergent for n!1.
Because the first and last terms of (24) are convergent for n ! 1, the term

βnEt (πt+n+1 (Θt)) must also be convergent for n!1.
Moreover, assuming that βnEt (πt+n+1 (Θt)) = 0, as stated in (10), the scenario-

consistent expectation Et (πt+1 (Θt)) in (24) has the unique solution for n!1:

Et (πt+1 (Θt)) = (1− β)
1X

i=1

βi−1!t,t+i + κ

1X

i=1

βi−1

 
iY

j=1

φt,t+j

!

yt. (25)
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B Online Appendix

B.1 Data

We estimate the autoregressive process for inflation in Section 2 using quarterly mea-
sures of the year-to-year change in the price index of the gross domestic product (PDGP)
prepared by the Bureau of Economic Research. The data set has been downloaded from
the Federal Reserve Bank of Philadelphia’s website with data from the Survey of Pro-
fessional Forecasters. We use the inflation variable Most_Recent from the data set
p_first_second_third.xlsx, available at:
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/p.
This data set contains the initial vintage releases and the latest release of PGDP infla-
tion. We have used the latest release of the data updated on May 26, 2022. The data
are in percentage points and seasonally adjusted.
At the time we downloaded the data, the data set contained 227 quarterly obser-

vations covering the period from 1965:Q3 to 2022:Q1. However, the empirical results
presented in Section 2 are based on an e§ective estimation sample from 1969:Q1 to
2022:Q1 to match the period for which survey inflation forecasts are available.
We estimate the autoregressive process for aggregate inflation forecasts in Section 4

using quarterly measured survey forecasts of the annualized one-quarter-ahead growth
in the price level of the gross domestic product (PGDP). The data has been downloaded
from the Federal Reserve Bank of Philadelphia’s website with data from the Survey of
Professional Forecasters. We use the mean forecast of the annualized one-quarter ahead
PGDP inflation given by the variable DPGDP3 in the data set Mean_PGDP_Growth.xlsx
available at: https://www.philadelphiafed.org/surveys-and-data/pgdp.
The forecast data is available from 1968:Q4. We use an e§ective estimation sample

from 1969:Q1 to 2022:Q1.

B.2 Identifying Structural Shifts Using Autometrics with Step-
Indicator and Multiplicative Step-Indicator Saturation

This section illustrates how we use the Autometrics algorithm with step-indicator and
multiple step-indicator saturation to identify and estimate the structural shifts in the
parameters of the autoregressive processes for inflation and survey inflation forecasts in
Sections 2 and 4, respectively. We illustrate the approach for the autoregressive process
for inflation, but an identical approach is used for the survey inflation forecast data.
To identify and estimate the structural shifts in the parameters (ρj, µj) in the au-

toregressive process in (1), we augment the model with step-indicator and multiplicative
step-indicator variables (see Castle et al., 2015). This transforms the identification and
estimation of structural breaks into a model-selection problem that can be handled by
the Autometrics tree-search algorithm (Doornik, 2009) in OxMetrics.
Specifically, the Autometrics model-selection algorithm starts from the general un-

1



restricted model (GUM):

πt = ρπt−1 + µ+

TX

i=2

∆ρi1 (t ≥ i) πt−1 +
TX

i=2

∆µi1 (t ≥ i) + "t, (26)

for t = 1, 2, . . . , T and where 1 (t ≥ i) denotes an indicator variable that takes the
value 1 for all t ≥ i, and 0 otherwise; 1 (t = i) denotes dummy variables that take the
value 1 at t = i, and 0 otherwise; ρ, µ, {∆ρi,∆µi}

T
i=2, and {δi}

T
i=1 are parameters;

and the initial value π0 is given. In practice, the saturation with step-indicators and
multiple step-indicators is done by creating the saturated variables sit = 1 (t = i) and
πit = 1 (t ≥ i) πt−1 for i = 2, 3, . . . , T , such that the GUM can be identically written in
terms of observable variables as:

πt = ρπt−1 + µ+

TX

i=2

∆ρiπ
i
t−1 +

TX

i=2

∆µis
i
t + "t. (27)

The GUM in (27) cannot be directly estimated as the number of candidate variables
exceeds the number of observations. However, the Autometrics algorithm can handle
model-selection in such situations. The algorithm delivers a selected terminal model
that contains only the variables and parameters retained after model-selection. We use
the Autometrics algorithm with a target size of 0.005.
A crucial advantage of this procedure is that it allows us to identify structural

breaks in ρj and µj at any time during the sample period by including the step-
indicator variables 1 (t ≥ i) and the multiplicative step-indicator variables 1 (t ≥ i) πt−1
for i = 2, 3, . . . , T . Importantly, the number and timing of breaks in ρ and µ need not
correspond. To illustrate, if the variable π10t−1 is retained by Autometrics in the selected
terminal model, it corresponds to a structural break in the parameter ρj at time t = 10
and with magnitude given by the parameter ∆ρ10.
The selected terminal model with m structural breaks in ρj at times

{
T ρj
}m
j=1

and

n structural breaks in µj at times
{
T µj
}n
j=1

can be written as:

πt = ρπt−1 + µ+

mX

j=1

∆ρjπ
j
t−1 +

nX

j=1

∆µjs
j
t + "t. (28)

For ease of interpretation, we present the estimation results of the selected terminal
model in (28) rewritten in its equivalent representation:

πt =
m+1X

j=1

ρj1
(
T ρj−1 ≤ t < T

ρ
j

)
πt−1 +

n+1X

j=1

µj1
(
T µj−1 ≤ t < T

µ
j

)
πt−1 + "t, (29)

where T ρ0 = T
µ
0 = 1, T

ρ
m+1 = T

µ
m+1 = T , the parameters during the first subperiods are

ρ1 = ρ and µ1 = µ, and the parameters during subperiods j are ρj = ρj−1 + ∆ρj for
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j = 2, 3, . . . ,m and µj = µj−1 +∆µj for j = 2, 3, . . . , n.
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