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1 Introduction

Coibion and Gorodnichenko (CG, 2015) proposed regressing market partici-

pants’ forecast errors on their forecast revisions, as measured by survey data,

to test predictions of alternative theoretical specifications implied by the ratio-

nal expectations hypothesis (REH). CG’s (pp. 2651, 2653) ingenious idea was

that predictions of full- and limited-information rational expectations models

“map” onto the constant term and the slope of their proposed regression.1

This mapping is direct, based on the assumption that participants’ forecasting

strategies — how they form forecasts on the basis of available information —

remain unchanging over time.

Estimating the slope as being positive, CG concluded that theoretical spec-

ifications implied by the limited-information REH models are consistent with

survey data aggregated over participants’ forecasts of a number of variables. In

contrast, behavioral economists have amassed compelling empirical evidence

that participants’ forecasts of outcomes are inconsistent with REH.2

Here, we present the estimates of the coe¢cients of the CG regression that

support the behavioral economists’ conclusion that participants’ forecasts of

inflation, as measured by survey data, are inconsistent with REH, regardless

of whether participants have access to full or limited information. However,

we also find that the predictions of a number of specifications that have been

proposed by behavioral economists to formalize participants’ departure from

REH are also inconsistent with survey data.

Our examination of whether behavioral specifications of participants’ fore-

casts are consistent with the survey data focuses on the so-called diagnostic

expectations (DE) approach that Gennaioli and Shleifer (GS) proposed in

their influential 2018 book and several co-authored articles. (We sketch the

DE approach in Section 4). DE is a particularly well-suited vehicle for this

1CG considered two departures from full-information rational expectations: the noisy
information models, originated by Lucas (1973) (see Woodford (2003) for a review of the
subsequent development of these models), and the sticky-information model proposed by
Mankiw and Reis (2002).

2For extensive review of this evidence, see Barberis, et al. (1998, pp. 310-317) and
Shleifer (2000).
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examination.

GS proposed DE as a formalization of Kahneman and Tversky’s finding

that, in a variety of settings, a psychological mechanism, which they called

the representativeness heuristic, drives subjects’ assessment of uncertainty.

Importantly, GS’s specification of DE implies that participants overreact to

“news” — new information about payo§-relevant outcomes — relative to the

REH-implied forecasts.

This supposed regularity of overreaction led GS to o§er DE as a general ap-

proach to specifying participants’ forecasts in behavioral macroeconomic and

finance models. GS’s specification of DE aims to implement Thaler’s idea that

relying on the representativeness heuristic would turn the hodgepodge of early

behavioral models into “something resembling [a] science... [of] predictable er-

rors” in how individuals make assessments under uncertainty (Thaler, 2017,

pp. 489-490, emphasis in the original).3

GS (p. 9) have suggested that DE could replace REH in specifying partic-

ipants’ forecasts in macroeconomic and finance models and in policy analysis.

Indeed, GS’s specification of DE assumes that participants’ forecast errors

move in a quantitatively predictable way with REH-implied forecasts. Having

assumed such “predictability,” GS argue that macroeconomic policy analysis

based on DE models is not subject to Lucas’s critique, because DE would

capture how changes in macroeconomic policy would lead participants to re-

vise how they forecast market outcomes. This would enable policymakers to

analyze the e§ects of policy changes on the process driving these outcomes.

However, as we show here, the overreaction supposedly implied by DE is

not a regularity. Rather, it is an artifact of GS’s particular specification of

DE, which rests on their assumption that how the representativeness heuristic

impels participants to deviate from REH can be formalized with the REH-

implied forecast revisions.4

3GS (pp. 137-142) provide an overview of “context-specific” specifications of participants’
forecasts in early behavioral models. They argue that DE would not only remedy the short-
comings of these models, but could provide a general approach to specifying participants’
predictable errors that could be used in a variety of contexts.

4GS base the so-called reference probability distribution, according to which participants
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GS’s assumption — that participants overreact in the same direction and

in the proportionately (predictable) magnitude as the REH forecast revision

— is at odds with the empirical evidence, including Kahneman and Tversky’s

regarding the influence of the representativeness heuristic. In a widely cited

early behavioral paper, Barberis, et al. (1998, p. 318) have asserted, “If

our model is to generate the [pattern] of returns documented in the empirical

studies, the investor must be using the wrong model to form expectations” (p.

318). Based on extensive psychological and econometric evidence, they for-

mulate such a “wrong” model by assuming that, while an economist’s model

specifies earnings to evolve according to a random walk, the investor “thinks

that the world moves between two ‘states’ or ‘regimes’ and that there is a dif-

ferent model governing earnings in each regime.” As is typical in the literature,

Barberis, et al. formalize this assumption with the two-state Markov chain.5

Our alternative specification of DE builds on this model.

Once we acknowledge the relevance of behavioral economists’ findings, DE

no longer implies the regularity of overreaction. Depending on the values of

the model parameters and the realizations of payo§-relevant variables, DE

overreacts in some periods and underreacts in others periods, relative to the

REH-implied forecast.

GS (2018, p. 155) obtain the regularity of overreaction under the assump-

tion that the probability density function (pdf) of outcomes underpinning DE’s

specification of participants’ forecasts is normal. Our alternative specification

of DE includes the Markov chain component, which allows for change in how

participants forecast outcomes. We show that this extension results in the pdf

of outcomes being a mixture of normal pdfs, thereby rendering it compatible

with GS’s (p. 155, Theorem 5.1) formulation of the DE approach. This novel

characterization of participants’ forecasting strategies underpins our theoreti-

assess an outcome’s representativeness, on an “objective” process driving outcomes. Because
this process, according to Muth’s hypothesis, underpins REH, DE’s overreaction follows
immediately from GS’s assumption that, like REH, participants’ deviation from REH can
be formalized as being based on an economist’s model. For a formal demonstration, see
Section 6.2.

5Hamilton (1988) originated modeling of change in REH models with Markov chains.
See Hamilton (2008) for an extensive review of subsequent developments.
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cal formulations of both behavioral and REH specifications of these strategies,

as well the derivation of their predictions for the coe¢cients of the CG regres-

sion.

CG (2015) and Bordalo, et al. (2020) confronted the predictions of time-

invariant REH and DE specifications, respectively, with survey data. While

these predictions “map” directly onto the coe¢cients of the CG regression, we

show these predictions are not generally valid when we recognize that either

the process driving outcomes or participants’ forecasting strategies allow for a

Markov components.

Macroeconomic and finance models typically constrain the parameters of

a Markov chain to remain unchanging over an infinite past and indefinite fu-

ture. Thus, in the context of these models, the unconditional distribution of

a model’s parameters governed by a Markov chain eventually converges to a

steady-state (stationary) probability distribution (Lawler, 2006, p. 15). As-

suming stationarity, our mixture characterization enables us to derive predic-

tions of the REH and behavioral specifications, including DE, of participants’

forecasts for the coe¢cients of the CG regression.

Our analysis yields a number of novel implications and testable predictions.

On theoretical grounds, GS’s specification of DE does imply the regularity of

overreaction, regardless of whether DE is constrained as being time-invariant

or to have a Markov component. However, on empirical grounds, the Markov

specification of DE predicts that the parameters of the CG regression are

compatible with either the regularity of overreaction or underreaction.

We also show that representing participants’ forecasts with full-information

rational expectations (FIRE) in a model that specifies change with a Markov

chain predicts the negative slope coe¢cients when the sum of the o§-diagonal

transition probabilities exceeds unity. This is the same prediction as that of

GS’s time-invariant specification of DE, which aims to formalize departures

from FIRE.

Our approach also provides an alternative interpretation of the predictions

of the limited-information REH specifications considered by CG (2015). As

they point out, constraining the process driving outcomes to be time-invariant
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predicts that the constant term and the slope of the CG regression are, re-

spectively, zero and positive, if information rigidities are present.

CG (p. 2651) interpreted this prediction as indicating that participants’

forecasts, though consistent with REH, deviate from FIRE, owing to noisy

information about the state of the economy. However, we show that repre-

senting participants’ forecasts with FIRE in a model that allows for a Markov

component exhibiting even moderate regime persistence, in the sense that the

sum of the o§-diagonal transition probabilities is less than unity, also predicts

the positive slope of the CG regression.

We formulate two alternative specifications of DE: the time-invariant ver-

sion proposed by GS and its counterpart involving a Markov chain. We also

consider the latter specification under the assumption that the Markov chain

persists in one state for a prolonged period of time. Furthermore, we derive

predictions of a version of Barberis, et al.’s (1998) pre-DE behavioral model,

as well as of our alternative specification of DE based on that model. Thus,

we e§ectively test the predictions of five alternative behavioral specifications

of participants’ forecasts.

We also test the predictions of two FIRE specifications: a time-invariant

and a Markov specification. Because the predictions of the latter are tanta-

mount to testing predictions of the noisy information REH specification, our

estimation e§ectively confronts three REH-implied specifications of forecasting

strategies with survey data.

Our dataset consists of time-series of inflation forecasts from 1969 to 2014

by 24 individuals included in the US Survey of Professional Forecasters (SPF),

with over 50 observations by each individual for the three-quarter ahead fore-

cast revision. We estimate a CG regression for each of the forecasters.

Our analysis yields two main findings. First, each of the five behavioral

specifications that we consider appear to be inconsistent with survey data for

each of the forecasters. Our estimates of the 24 individual CG regressions also

appear to be inconsistent with the widely used time-invariant FIRE and noisy

information REH specifications, as well as those allowing the process driving

outcomes to have a Markov chain component.
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Our analysis points to a primary explanation of our findings. Despite

their apparent di§erences, REH and behavioral specifications of participants’

forecasting strategies typically rest on a shared premise: these strategies can

be represented with a stationary stochastic process over an infinite past and

indefinite future.

One of the central implications of our theoretical framework is that, once

we represent change in the process driving outcomes and in how participants

forecast them with a stationary Markov chain, the predicted constant and slope

coe¢cients in the CG regression do not change over time. Thus, subjecting

the coe¢cients of the CG regression to tests of structural change provides a

hitherto unexplored way to test alternative models of expectations, including

diagnostic expectations. We find that these coe¢cients undergo structural

breaks, thereby revealing the inconsistency of the premise of stationarity with

survey data on participants’ forecasts.

Our findings should be interpreted neither as a rejection of the relevance of

Muth’s (1961) hypothesis in specifying participants’ forecasts nor as a rejection

of the behavioral findings that REH models are inconsistent with empirical

evidence on how participants actually forecast outcomes. To build models that

rest onMuth’s hypothesis and yet recognize the relevance of behavioral findings

requires acknowledging that the process driving market outcomes undergoes

change that cannot be represented with a stationary stochastic process, such

as a Markov chain. Our findings suggest that, as Knight (1921) emphasized,

market participants recognize the uncertainty that such unforeseeable change

engenders and revise their forecasting strategies accordingly.

The plan of the paper is as follows. Sections 2 and 3 provide a formal

overview of the DE approach in the context of the Linda experiment and

highlight the key steps in applying the approach in macroeconomic and finance

models. Building on GS’s formulation, Section 4 presents a general definition

of overreaction in terms of the means of the “objective” and reference pdfs,

which underpin an economist’s specification of DE.

Using this definition, Sections 5 and 6 show that the regularity of overreac-

tion is an artifact of GS’s specification of the reference pdf as being based on the
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“objective” process formalized by an economists’ model. Section 7 formulates

a Markov counterpart of GS’s time-invariant specification of DE and character-

izes the “objective” and reference distributions with mixtures of normal pdfs.

This characterization implies that, as with GS’s time-invariant specification,

overreaction is assumed to be of the same sign and a fixed proportion of the

REH-implied forecast revision. Section 8 formulates the specification of DE

based on the behavioral economists’ empirical findings and shows that DE no

longer implies the regularity of overreaction.

Relying on the characterization of the REH, reference, and DE specifi-

cations with mixtures of normal pdfs established in the foregoing sections,

Sections 9, 10, 11 derive predictions of the theoretical formulations of partici-

pants’ forecasts for the coe¢cients of the CG regression. Section 12 presents

the summary of these predictions, and Section 13 presents our findings that

the predictions of all of the behavioral and REH specifications considered in

the paper appear inconsistent with the survey data on forecasts of inflation by

each of the 24 forecasters. Section 14 addresses the implications of our findings

for building macroeconomic and finance models. The proofs are presented in

Online Appendix A. The sketch of the econometric methodology and detailed

estimates of the CG regression for each of the 24 forecasters are in Online

Appendix B.

2 Diagnostic Expectations in the Linda Experiment

Here, we follow Gennaioli and Shleifer (2018) and provide an overview of the

main concepts underpinning their DE approach in the context of the Linda ex-

periment. The simplicity of the experiment enables us to highlight a di¢culty

overlooked by GS, but which is inherent in any application of the represen-

tativeness heuristic in economic models: events that in some contexts appear

representative of other events may, in other contexts, appear unrepresentative

of those events. As Kahneman and Tversky (1972, p. 431) acknowledged,

“Representativeness, like perceptual similarity, is easier to assess than to char-

acterize. In both cases, no general definition is available.”
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2.1 An Overview of the Linda Experiment

The Linda experiment features a fictitious 31-year-old woman who currently

works as a bank teller. As a college student, Linda engaged in “progressive”

activities, including opposing discrimination, advocating for social justice, and

participating in anti-nuclear demonstrations. We treat the set of 31-year-old

women who graduated from college as a population, which we denote withW .

We denote the subset of those who engaged in progressive activities while in

college with Hp ⊂ W .
Tversky and Kahneman (TK, 1983 p. 297) presented the following state-

ments to their experiment’s subjects:

• Linda is a bank teller, places her among individuals in the set T ⊂ W .

• Linda is a bank teller who is also active in the feminist movement (the set
F ), which places her among the individuals comprising the intersection

T \ F ⊂ W .

Kahneman and Tversky asked the subjects whether it was more or less

probable that Linda is among the bank tellers who are also active in the

feminist movement (in T \ F ) than that she is among generic bank tellers (in
T ). An overwhelming majority of subjects responded that it is more probable

that Linda is in T \ F than that she is in T . This finding was then replicated
in many Linda-like experiments in a variety of contexts.

2.2 Representativeness in an Experimental Setting

TK (pp. 296-297, 299) hypothesized that their findings could be explained

by subjects’ reliance on a psychological mechanism, which they called the

representativeness heuristic and operationalized in terms of the ratio of the

relevant frequencies.6

Definition 1 “An attribute is representative of a class if it is very diagnostic,
that is, if the relative frequency of this attribute is much higher in that class

than in a relevant reference class”
6All citations only to page numbers refer to TK (1983).
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For example, in the context of the Linda experiment, TK consider the

event T \ F as an “attribute,” Hp as a “class,” and individuals who do not

have a history of progressive activities, Hnp, as a “reference class.” The idea

underpinning TK’s operationalization of Definition 1 was that one would ex-

pect feminist bank tellers to be more prevalent among the individuals who,

like Linda, have a progressive history, f(T \ F |Hp), than among the individ-

uals who do not have that history, f(T \ F |Hnp).7 It is this apparently much

greater prevalence that TK referred to in describing T \ F as being “very

diagnostic” of Hp, which they formalized with f(T\F |Hp)
f(T\F |Hnp)

>> 1

We assume that the uncertainty about the events in the Linda experiment

can be represented with a probability measure on the space Ω = Hp [ Hnp.

Thus, we operationalize Definition 1 in terms of the ratio of the conditional

probabilities:

R(A|C,Cref ) =
P (A|C)
P (A|Cref )

, (1)

where, in the context of our foregoing example, A = T \ F ⊂ Ω, C = Hp,

and Cref = Hnp. According to Definition 1, A “is representative” of C if it is

“very diagnostic,” that is, if

R(A|C,Cref ) > d >> 1, (2)

where d is some threshold value “much higher” than unity.

2.3 Diagnostic Probabilities

GS (pp. 144-152) introduce DE in the context of the Linda experiment. They

represent subjects’ assessment of uncertainty with a so-called distorted prob-

ability measure and specify how representativeness distorts subjective proba-

bilities (p. 148) as follows:

P
DE

(A|C) = P (A|C)
!
R(A|C,Cref ))

"θ
Z, (3)

7f(T \F |Hp) = n(T\F\Hp)
n(Hp) , f(T \F |Hnp) = n(T\F\Hnp)

n(Hnp) , and n(·) stands for a number
of individuals in a respective set.
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where P
DE
(·|·) specifies a distorted (subjective) probability on the space Ω,

which we refer to as a diagnostic probability, P (·|·) is the “objective” probabil-
ity, and θ > 0 formalizes the degree of distortion. Z ensures that (3) specifies

a well-defined probability.

3 From the Laboratory to Real-World Markets

To operationalize how the representativeness heuristic “distorts” market par-

ticipants’ assessment of uncertainty, an economist would specify the probabil-

ity distribution of outcomes (an analog of the attribute T \F ) that he aims to
explain in terms of a set of causal variables (an analog of the class HP ), usu-

ally called information available to participants. Because any formal economic

model rests on the premise that it specifies the “objective” process driving out-

comes, an economist, relying on Muth’s (1961) hypothesis, can then represent

a participant’s “rational” assessment of uncertainty, and her REH forecasts,

with the “objective” distribution, as specified by the economist’s model.

However, there does not appear to be a theoretical argument that would

enable an investigator — an experimental psychologist or an economist — to

specify the reference class. By providing information to the subjects that

Linda has a progressive history, HP , TK (p. 300) aimed to influence them to

compare her to those who do not have that history, thereby considering HP

as the relevant reference class.

In real-world market settings, by contrast, an economist has no way to

influence participants’ interpretation of the context within which they assess

representativeness of uncertain events. However, empirical evidence on how

market participants actually assess uncertainty provides a basis for specifying

the reference class that participants might have considered relevant. Behav-

ioral economists have provided compelling evidence that participants’ forecasts

do not conform to REH, and formalizing this evidence could provide the basis

for specifying the reference class.

GS proposed DE to provide a unified approach to explain such behavioral

findings. However, GS chose to formalize their argument — that the represen-

tativeness heuristic impels participants to overreact to information, relative to
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the REH forecasts — with a specification of the reference class of outcomes that

is based on the “objective” probability distribution, which underpins REH.

However, as we show in Section 8, once we specify the probability distribution

of the reference class of outcomes on the basis of behavioral economists’ find-

ings, the supposedly “distorting” influence of the representativeness heuristic,

as formalized with the analog of (3), does not result in the regularity of over-

reaction. DE overreacts to information in some periods and underreacts in

others.

4 Representativeness in Macroeconomics and Finance

Models

In contrast to the Linda experiment, the concept of representativeness in

macroeconomic and finance models involves continuous random variables. To

fix ideas, we consider a payo§-relevant variable xt+1 = ln ext+1, and formal-
ize an “attribute” (an analog of A = T \ F in (1)) with the measurable

event, xt+1 2 A ⊂ R+, and a “class” (an analog of C = Hp) with an event

xt 2 C ⊂ R+. We also operationalize the “reference class” (an analog of
Cref = Hnp) with an event xreft 2 Cref ⊂ R+.
GS (p. 154) define xt+1 2 A’s representativeness of xt, relative to xreft ,

in terms of the ratio of conditional probability density functions (pdfs), as

follows:

Rgs(xt+1|xt, xreft ) =
f(xt+1|xt)

f ref (xt+1|xreft )
> 1, xt+1 2 A, xt 2 C, xreft 2 Cref (4)

where f(xt+1|xt) is the “objective” (conditional) pdf of xt+1, as hypothesized
by an economist’s model.8 We refer to f ref (xt+1|xreft ) as a (conditional) refer-

ence pdf, which is assumed by an economist to characterize the reference class

that participants consider relevant. We note that GS’s (p. 154) specification

8In addition to xt, an economist’s model typically specifies the conditioning set to include
other relevant information (such as realizations of the model’s variables) up to time t.
Allowing for such a larger information set would not alter any of our conclusions here.

11



of the reference class of outcomes specifies xreft = xt−1.

However, TK define representativeness in terms of probabilities (or, equiv-

alently frequencies of discrete events), which for continuous variables can be

written as

R(xt+1|xt, xreft ) =

R
A
f(xt+1|xt)dxt+1R

A
f ref (xt+1|xreft )dxt+1

> 1, xt 2 A, xreft 2 Cref . (5)

As we state in the following proposition, there is the event xt+1 2 A for which,
conditional on the realizations of xt and x

ref
t , GS’s definition, in (4) implies

that xt+1 2 A is representative according to TK’s definition, in (5).

Proposition 2 If the ratio of “objective” and reference pdfs satisfies (4), there
exists an event xt+1 2 A, which is representative of xt, relative to xreft , in the

sense that (5) holds.

Remark 3 According to TK’s experimentally-based Definition 1, formalized
in (1) and (2), an event A is representative of C, relative to Cref , if R(xt+1|xt, xreft ) >

δ >> 1. However, Rgs(xt+1|xt, xreft ) > 1, in (4), for xt 2 C, xreft 2 Cref does
not, in general, imply that R(xt+1|xt, xreft ) > δ >> 1. Because this discrep-

ancy between GS’s and TK’s definitions of representativeness does not play a

role in our argument here, we rely on GS’s definition in (4).

4.1 Tractable Specification

To render the operationalization in (4) tractable in specifying market partici-

pants’ forecasts and in deriving the testable predictions of macroeconomic and

finance models, GS (p. 155) characterize how xt+1 actually unfolds over time

with a conditional normal pdf. Consequently, they specify the “objective” pdf

of xt+1, conditional on xt, as

f(xt+1|xt) =
1

σt+1|t
p
2π
exp

"
−
(xt+1 −mt+1|t)

2

2
&
σt+1|t

'2

#
, xt+1 2 A, xt 2 C, (6)
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where mt+1|t and
&
σt+1|t

'2
denote the conditional mean and the variance. GS

(p. 155) also assume that the reference class that underpins participants’

assessment of xt+1’s representativeness can be characterized with the normal

pdf:

f ref (xt+1|xreft ) =
1

σreft+1|t
p
2π
exp

2

64−
(xt+1 −mref

t+1|t)
2

2
,
σreft+1|t

-2

3

75 , xt+1 2 A, xreft 2 Cref ,

(7)

where mref
t+1|t and

,
σreft+1|t

-2
denote the conditional mean and variance.

4.2 Diagnostic Expectations

Using (4), GS (p. 154) specify the “distorted” pdf of xt+1 in the class xt:

fde(xt+1|xt) = f(xt+1|xt)
h
Rgs(xt+1|xt, xreft )

iθ
Z(θ, xt, xt−1), (8)

where, we refer to fde(xt+1|xt) as the diagnostic pdf, θ > 0, and Z(θ, xt, xt−1)
is specified to ensure that fde(xt+1|xt) integrates to 1. We denote the condi-
tional mean of a diagnostic density with mde

t+1|t. GS call m
de
t+1|t a diagnostic

expectation (DE) of xt+1, conditional on xt.

GS’s Proposition 5.1. (p. 155), which we restate here, provides the basis for

their argument that DE implies the regularity of overreaction.

Proposition 4 Suppose that, as specified in (6) and (7 ), the “objective,” and
reference (conditional) pdfs underpinning representativeness, in (4), are nor-

mal. Then, provided that (1 + θ)
,
σreft+1|t

-2
> θ

&
σt+1|t

'2
, there exists Z(θ, xt, xt−1)

that renders the diagnostic pdf, fde(xt+1|xt) in (8), a well-defined normal pdf
with the following conditional mean and variance,

mde
t+1|t=mt+1|t + γ

,
mt+1|t −m

ref
t+1|t

-
, (9)

&
σdet+1|t

'2
=
γ
,
σreft+1|t

-2

θ
, (10)
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where

γ = θ

&
σt+1|t

'2
,
σreft+1|t

-2
+ θ

3,
σreft+1|t

-2
−
&
σt+1|t

'2
)

4 > 0. (11)

Proof: GS (pp. 217-19).

4.2.1 REH-Implied Specification of Participants’ Forecasts

The core premise of an economic model is that it formalizes an economist’s

reasonable (theoretically and empirically-based) understanding of the actual

(“objective”) uncertainty about payo§-relevant outcomes. Building on this

premise, Muth (1961, p. 316) advanced the pathbreaking hypothesis that

an economist could formally relate a participant’s forecasts to “the way the

economy works” by specifying them as being consistent with an economic

model’s specification of the process driving outcomes. Muth implemented his

hypothesis in a model that assumed that how outcomes have unfolded over an

infinite past and will unfold over an indefinite future can be represented with

a stationary stochastic process. It was this implementation that came to be

known as the rational expectations hypothesis (REH).

Adopting Muth’s hypothesis, (9) the conditional mean and variance of

the pdf characterizing the REH forecast are the same as their “objective”

counterparts, that is, mreh
t+1|t = mt+1|t and σreht+1|t = σt+1|t. This enables us to

represent mde
t+1|t in (9) as

mde
t+1|t = m

reh
t+1|t + γ

,
mreh
t+1|t −m

ref
t+1|t

-
, (12)

where γ in (11) is defined accordingly. GS (p.155) refer to mde
t+1|t > mreh

t+1|t

(mde
t+1|t < mreh

t+1|t) as the “overreaction” (“underreaction”) of DE, relative to

the REH forecast. Proposition 4 shows that if f(xt+1|xt) and f ref (xt+1|xt) are
normal, then DE overreacts if and only if mreh

t+1|t > m
ref
t+1|t.
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5 Representing Deviations from REH as Driven by Re-

vision of the REH Forecast

GS proposed DE as a new approach to specifying forecasts in behavioral-

finance models that aimed to explain empirical findings that participants’

forecasts do not conform to REH. However, their specification of the refer-

ence pdf shares a key feature with its REH counterpart: both are based on the

“objective” process driving outcomes, as formalized by an economist’s model.

However, in contrast to the REH forecast, which is conditional on xt, GS (p.

154) specified the mean of the reference pdf, mref
t+1|t as conditional on xt−1. We

refer to this specification as REH-like and denote it with mreh
t+1|t−1. We state

this key assumption of GS’s specification of DE as follows:

Assumption 5 The “distorting” influence of the representativeness heuristic
on participants’ forecasts, mreh

t+1|t−m
ref
t+1|t, is driven solely by the revision of its

REH counterpart, which we formally state as follows

mde
t+1|t −m

reh
t+1|t = γ

,
mreh
t+1|t −m

ref
t+1|t

-
= γ

&
mreh
t+1|t −m

reh
t+1|t−1

'
. (13)

This assumption implies that the supposed regularity of overreaction is in fact

generated by a well-known property of REH forecasts: by design, the revision

of such a forecast is driven solely by the time-t realization of news about xt.

6 Overreaction as an Artifact of the REH-like Specifi-

cation of the Reference PDF

GS (p.174) illustrate their argument that DE implies an overreaction in the

context of the following standard AR(1) model,

xt+1 = ρxt + µ+ "t+1, (14)

where 0 < ρ < 1 and µ are constants, and "t ∼ iidN(0,σ2). In the context

of this section, this model specifies the “objective” process driving a payo§-

15



relevant variable xt. Thus, according to Muth’s hypothesis,

m
reh(gs)
t+1|t =E(xt+1|xt) = ρxt + µ (15)

= ρ2xt−1 + (1 + ρ)µ+ ρet, (16)
,
σ
reh(gs)
t+1|t

-2
=E [xt+1 − E(xt+1|xt)]

2 = σ2, (17)

where et, in (16), denotes the realization of "t.

Furthermore, according to Assumption 5, the mean and the variance of the

reference pdf, in (7), are given by

m
ref(gs)
t+1|t =E(xt+1|xt−1) =

= ρ2xt−1 + (ρ+ 1)µ, (18)
,
σ
ref(gs)
t+1|t

-2
=(1 + ρ2)σ2. (19)

Because the “objective” and reference pdfs are normal and
,
σ
ref(gs)
t+1|t

-2
>

,
σ
reh(gs)
t+1|t

-2
, Proposition 4 holds, which together with Assumption 5, implies

that

m
de(gs)
t+1|t −m

reh(gs)
t+1|t = γ(gs)

&
mreh
t+1|t −m

reh
t+1|t−1

'
=
&
mreh
t+1|t −m

reh
t+1|t−1

'
= γ(gs)ρet,

(20)

where γ(gs) = θ
(1+ρ2)(1+θ)

, and et is the realization of "t.

6.1 News

The di§erence between the payo§-relevant variable, such as xt, and its REH

forecast,

ηt = Xt − E(Xt|xt−1), (21)

is usually referred to as news about xt, where E(Xt|xt−1) is a conditional
expectation of the “objective” process driving xt. For the process in (14), and

16



using (16), the realization of news, in (21), is given by

n
(gs)
t = et. (22)

6.2 Representing Overreaction with the REH Forecast

Revision

GS (p. 155) refer to et > 0 (et < 0) as good (bad) news about the payo§-

relevant outcome xt. Expressions (20) and (22) show that the supposed reg-

ularity of overreaction, relative to REH, implied by this news, is an artifact

of GS’s Assumption 5: good (bad) news leads participants to overreact in the

same direction and in the proportionately (predictable) magnitude as the REH

forecast revision.

7 Allowing for Change in the REH-like Specification of

Reference PDF

The AR(1) process, in (14), exemplifies the typical structure of macroeco-

nomic and finance models, an overwhelming majority of which assume away

altogether change in the process driving outcomes. Macroeconomic and finance

models that recognize that this process undergoes change typically represent

it with a Markov chain. Constraining change with such probabilistic rules

implies that the news, as defined in (21), comprises the realizations of "t as

well as the realized state of the Markov chain at t. As we show here, DE

involving a Markov component implies the regularity of overreaction to news.

As with the time-invariant specification, this regularity is an artifact of GS’s

Assumption 5 that the “distorting” influence of the representativeness heuris-

tic on participants’ forecasts can be represented with the revision of the REH

forecast.

17



7.1 AMarkov Specification of the Change in the Process

Driving An Outcome

We follow the prevailing practice in a particularly simple way by allowing the

mean of the process, in (14), to change over time, which we formally state as

follows:

xt+1 = ρxt + µt+1 + "t+1, (23)

where µt evolves according to a Markov chain, which switches between two

states, µ(1) and µ(2) with the transition probabilities p12 and p21 . Here 0 <

ρ < 1 is a constant, and "t ∼ iidN(0,σ2). It follows from (23) that, while xt
and µt−i for i = 0, 1... are dependent, xt and µt+i for i = 1, 2....are independent.

Macroeconomic and finance models typically constrain the parameters of

a Markov chain, such as (µ(1), µ(2), p12 , p21 ), to remain unchanging over an

infinite past and indefinite future. Thus, in the context of these models, the

unconditional distribution of µt eventually converges to a steady-state (sta-

tionary) probability distribution (Lawler, 2006, p. 15). In accordance with

the usual practice, we make the following assumption:

Assumption 6 The distribution of the Markov process µt is stationary: P (µt =
µ(1)) = π, P (µt = µ

(2)) = (1− π), for all t.

This assumption implies that for all t

E (µt)= πµ
(1) + (1− π)µ(2), (24)

V (µt)= π(1− π)
&
µ(1) − µ(2)

'2
, (25)

where the expression for V (µt) is derived in the proof of Lemma 8 in Online

Appendix.

7.2 “Objective” PDF as a Mixture of Normal PDFs

Allowing µt to evolve according to a Markov chain implies that the conditional

“objective” and reference pdfs are no longer simply normal. However, the

following lemma shows that the “objective” pdf implied by (23) is a mixture

18



of the two normal pdfs with the following means and variances:

m
(mk,i)
t+1|t =E(xt+1|xt, µt+1 = µ

(i)) = ρxt + µ
(i), (26)

&
σ(mk,i)

'2
= σ2 + E(µt − µ

(i))2, (27)

where “mk” in the superscript “(mk, i)” denotes that the process driving xt+1
has a Markov component, and “i ” denotes whether µt+1 = µ

(1) or µt+1 = µ
(2).

Lemma 7 Suppose that (23) characterizes the process driving xt+1. Then,
conditional on xt, the “objective” pdf of xt+1, denoted with greh(mk)(xt+1|xt), is
the following mixture of the two conditional normal pdfs with the means and

variances in (26) and (27):

greh(mk)(xt+1|xt) = πf (mk,1)(xt+1|xt, µt+1 = µ
(1))+(1−π)f (mk,2)(xt+1|xt, µt+1 = µ

(2)),

(28)

Proof in Online Appendix A.

This lemma implies that the “objective” pdf is normal. Furthermore,

from (28), (26), (27), (24), and (25), the (conditional) mean and variance

of greh(mk)(xt+1|xt) are given by

m
reh(mk)
t+1|t = ρxt + µ

(2) + π
&
µ(1) − µ(2)

'
= ρxt + E(µt), (29)

.
,
σ
reh(mk)
t+1|t

-2
= σ2 + V (µt) (30)

Using (23), mreh(mk)
t+1|t , expressed in terms of xt−1, the realized state of µt, µ

(j)

j = 1, 2, and et, can take one of the two values:

m
reh(mk,j)
t+1|t = ρ2xt−1 + ρµ

(j) + ρet + E(µt), j = 1, 2. (31)
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7.2.1 News When the Process Evolves According to a Markov
Chain

Allowing for the Markov component in the process driving outcomes, in (23),

implies that the news variable, in (21), is given by:

η
(mk)
t = Xt − E(Xt|xt−1) = µt − E(µt) + "t. (32)

This shows that the news comprises both the realization of "t (et) and the value

that µt takes, relative to its expectation, E(µt).Depending on the realized state

at t, the realization of η(mk)t can take one of the two values:

n(mk,j)=µ(j) − E(µt) + et,

=
&
µ(j) − µ(2)

'
− π(µ(1) − µ(2)) + et j = 1, 2. (33)

When et > 0, which GS’s time-invariant specification would characterize

as “good news,” the news could be either good or bad, in the sense that

n
(mk,j)
t > 0 or n(mk,j)t < 0, respectively, depending on the values of µ(1) and

µ(2), the realized state at t, and the realization of "t. For example, suppose

that µ(1) > µ(2), µ(j) = µ(1), and et > 0, then, from (33), n(mk,1) > 0. However,

n(mk,2) < 0, when µ(j) = µ(2) and the magnitude of et < π(µ(1) − µ(2)).

7.3 A Mixture Specification of the Reference PDF

GS assumed that, like REH, the reference pdf is based on the “objective“

process, in (23). However, they specified the reference class of outcomes as

xt−1. Using the same approach as in Section 7.2, the following lemma shows

that allowing for the Markov component in the “objective” process implies

that the reference pdf is a mixture of the four normal pdfs with the following
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means:9

m
(mk,i,j)
t+1|t = E(xt+1|xt−1, µt+1 = µ

(i), µt = µ
(j)) = ρ2xt−1 + ρµ

(j) + µ(i), (34)

Lemma 8 Suppose that (23) characterizes the process driving xt+1. Then,
conditional on xt−1, the REH-like reference pdf of xt+1, denoted with gref(mk)(xt+1|xt−1),
is the following mixture of the four normal pdfs specified in (34),

gref(mk)(xt+1|xt−1) =
2X

i,j=1

pjiπjf
(mk,i,j)(xt+1|xt−1, µt+1 = µ

(i), µt = µ
(j)), (35)

where pji, j, i = 1, 2 are transition probabilities and πj = P (µt+1 = µ(j)) for

all t. Furthermore, the mean and variance of gref(mk)(xt+1|xt−1) are given by

m
ref(mk)
t+1|t = ρ2xt−1 + (1 + ρ)E (µt) , (36)

,
σ
ref(mk)
t+1|t

-2
=(1 + ρ2)

!
σ2 + V (µt)

"
(37)

+2ρ
6
E
&
µt+1µt

'
− [E (µt)]

27 .

Moreover,

(1 + θ)
,
σreft+1|t

-2
> θ

&
σreht+1|t

'2
(38)

holds, for any values of the model parameters
&
θ, ρ, µ(1), µ(2), p12,p21

'

Proof in Online Appendix A.

7.4 Overreaction

The normality of the “objective” and reference mixtures of pdfs and (38)

ensures that Proposition 4 holds for the mixture specification of DE. Moreover,

analogously to GS’s time-invariant specification, DE’s REH-like specification

of the reference pdf that includes a mMarkov component is tantamount to

9Because the explicit expression for
&
σ(mk,i,j)

'2
plays no role in our argument, we omit it

to save space. The derivation of this expression is analogous to that for
,
σ
ref(mk)
t+1|t

-2
in (37)

below.
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assuming that the participants’ overreaction, relative to the REH forecast, can

be represented with the revision of the REH forecast. We state this conclusion

and that of the previous section with a proposition:

Proposition 9 Suppose that an economist assumes that while the reference
pdf is based on the “objective” normal pdf, which underpins REH, in assessing

an event’s xt+1 2 A’s representativeness, participants consider xt−1 the refer-
ence class of outcomes. Then, DE overreacts to good (bad) news, in the sense

that when nt > 0 (nt < 0), mde
t+1|t −m

reh
t+1|t > 0 (m

de
t+1|t −m

reh
t+1|t < 0), where nt

and the conditional means are specified for either the time-invariant pdfs im-

plied by GS’s specification or the mixtures implied by the Markov specification.

Proof in Online Appendix A.

8 The Irregularity of DE’s Overreaction in Pre-DE Be-

havioral Models

GS (pp. 137-152) argue that their specification of the reference pdf, and

thus of DE, formalizes Kahneman and Tversky’s findings in the Linda-like

experiments in a variety of contexts. However, as we discussed in Section 3,

Kahneman and Tversky (1972, p. 431) emphasized that there appears to be

no theoretical basis for specifying the reference class that participants might

consider relevant in assessing the representativeness of uncertain events.

Moreover, GS’s specification of the reference pdf, and thus of DE, as being

based on the “objective” pdf underpinning REH appears to be at odds with be-

havioral economists’ compelling empirical findings that participants’ forecasts

deviate from the predictions of the “objective” process driving outcomes. As

Barberis, et al. (1998, p. 318) have asserted, “If our model is to generate the

[pattern] of returns documented in the empirical studies, the investor must be

using the wrong model to form expectations” (p.318, emphasis added). We

show here that once we acknowledge the relevance of these findings, DE no

longer implies the regularity of overreaction. Depending on the values of the

parameters of both the REH and empirically-based reference pdfs, as well as
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the realizations of xt, DE overreacts in some periods and underreacts in other

periods.

8.1 Empirically-Based Specification of the Reference PDF

One of the main psychological mechanisms underpinning Barberis, et al.’s

(1998) specification of participants’ forecasts is the representativeness heuris-

tic. They argue (p. 317) that Kahneman and Tversky’s empirical findings and

others do not provide a basis for specifying how the news drives the overreac-

tion or underreaction of participants’ forecasts. This assessment of empirical

evidence stands in contrast to GS’s Assumption 5 that owing to the “distort-

ing” influence of the representativeness heuristic, the direction and magnitude

of the error market participants commit are solely and precisely related to the

news implied by the REH forecast.

Appealing to an extensive review of empirical evidence, Barberis, et al.

(p. 318) argue that the “distortion” of participants’ forecasts of stock returns

arises primarily from participants’ not basing their forecasts on the “objective”

process driving earnings, as specified by an economist’s model. While an

economist’s model assumes that earnings evolve according to a random walk,

the investor “thinks that the world moves between two ‘states’ or ‘regimes’ and

that there is a di§erent model governing earnings in each regime.” Barberis,

et al. formalize this assumption with the two-state stationary Markov chain.

8.2 A Behavioral Markov (BM) Specification of DE

To facilitate comparison with GS’s REH-like specification of the reference pdf,

we use an AR(1) process, in (14), to characterize the ‘objective” process driving

xt, which we restate here for convenience,

xt+1 = ρxt + µ+ "t+1, (39)

However, we adapt Barberis et al.’s assumption that participants “think that

the world moves between two ‘states’” to our context by specifying their fore-

casts as being based on the following “wrong” version of the “objective” process
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in (39):

xt+1 = ρ
(b)
t xt + µ

(b)
t+1 + "t+1, (40)

where “b” in the superscript denotes that ρ(b)t and µ(b)t specify the BM model.

Each of them evolves according to a Markov chain, which switches between

two states, ρ(b,i), and µ(b,i) i = 1, 2 with the transition probabilities, p12, and

q12, respectively and "t ∼ iidN(0,σ2). To simplify the presentation, we assume
that ρ(b)t and µ(b)t are independent. It follows from (40) that, while xt and µt−i
for i = 0, 1... are dependent, xt and µt+i for i = 1, 2....are independent. We also

assume that, while xt and (µ
(b)
t−i, ρ

(b)
t−1−i) for i = 0, 1... are dependent, xt and

(µ(b)t+i, ρ
(b)
t+1−i) for i = 1, 2...are independent. Analogously to the specification

in (23), we also assume that ρ(b)t and µ(b)t are stationary Markov chains.

8.2.1 A Markov Specification of the Behavioral Reference PDF

We assume that the forecasting model, in (40), characterizes the reference

process that participants consider relevant in assessing xt+1 2 A’s representa-
tiveness of xt. A proof analogous to that of Lemma 8 shows that the reference

pdf is is a mixture of the four normal pdfs:

gref(b)(xt+1|xt) =
2X

i,j=1

π(j)ρ π
(i)
µ f

(b,i,j)(xt+1|xt, ρ
(b)
t = ρ(b,j), µ

(b)
t+1 = µ

(b,i)), (41)

where π(j)ρ and π(i)µ , j, i = 1, 2, are components of the respective stationary dis-

tributions. Furthermore, the conditional mean and variance of gref(b)(xt+1|xt)
are given by

m
ref(b)
t+1|t =E(ρ

(b)
t )xt + E(µ

(b)
t ) (42)

=E(ρ
(b)
t )ρxt−1 + ρµ+ E(µ

(b)
t ) + ρet, (43)

,
σ
ref(b)
t+1|t

-2
= σ2 + V (ρ

(b)
t )E(x

2
t ) + V (µt) (44)

where E(ρ(b)t ), E(µ
(b)
t ), V (ρ

(b)
t ), and V (µ

(b)
t ) are the means and variances, which

are specified analogously to (24) and (25).
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8.2.2 A Behavioral Markov DE May Overreact or Underreact

Because the mixture in (41) is a normal pdf, and the expressions (17) and (44),

show that
,
σ
ref(b)
t+1|t

-2
>
,
σ
reh(gs)
t+1|t

-2
, Proposition 4 holds. Thus, the diagnostic

expectation implied by GS’s specification of the time-invariant REH pdf, and

the BM specification of the reference pdf is given by

m
de(b)
t+1|t=m

reh(gs)
t+1|t + γ(b)

,
m
reh(gs)
t+1|t −mref(b)

t+1|t

-
(45)

=m
reh(gs)
t+1|t + γ(b)

nh
ρ− E(ρ(b)t )

i
xt + µ− E(µ

(b)
t )
o

(46)

where, from (11), (17) and (44), γ(b) = θ σ2

σ2+(1+θ)
h
V (ρ

(b)
t )E(xt)2+V (µt)

i .

The expression in (46) shows that, according to the BM specification, whether

DE overreacts, relative to its REH counterpart, depends on whether
h
ρ− E(ρ(b)t )

i
xt+

µ− E(µ(b)t ) > 0. The following lemma states this point explicitly:

Lemma 10 Suppose that the specification of DE based on (39) and (40) char-
acterizes how the representativeness heuristic leads participants away from

forecasting according to REH. Letting

ρ− E(ρ(b)t ) > 0

implies that if and only if

xt >
E(µ

(b)
t )− µ

ρ− E(ρ(b)t )
.

holds, DE overreacts, that is, mreh(gs)
t+1|t > m

ref(b)
t+1|t holds. Conversely, letting

ρ− E(ρ(b)t ) < 0

implies that if and only if

xt <
E(µ

(b)
t )− µ

ρ− E(ρ(b)t )
.
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holds, DE underreacts, that is, mreh(gs)
t+1|t < m

ref(b)
t+1|t holds.

To be sure, the BM representation of participants’ understanding of change

is quite restrictive. However, relaxing GS’s REH-like specification of the refer-

ence pdf illustrates a more general point. Once we acknowledge the relevance

of behavioral economists’ findings that participants’ forecasts deviate from

the predictions of an economist’s model, DE no longer implies the regularity

of overreaction. Depending on the values of the model parameters of both

the REH and reference pdfs,
,
ρ, µ,σ2, ρ(b,i), µ(b,i), π

(i)
ρ , π

(i)
µ

-
, i = 1, 2, and the

realizations of xt, DE overreacts in some periods and underreacts in others

periods.

9 Coibion and Gorodnichenko’s Econometric Framework

Coibion and Gorodnichenko (CG, 2015) proposed a new regression-based frame-

work for testing the predictions of sticky and noisy REH models based on sur-

vey data on participants’ forecasts of macroeconomic variables. CG (pp. 2651,

2653) point out that the theoretical structure of these REH specifications of

forecasts “map” directly onto the following regression relationship between ex

post forecast errors and forecast revisions:

xt+h − Ft(xt+h) = α + β [Ft(xt+h)− Ft−1(xt+h)] + υt+1, (47)

where Ft(xt+h) denotes participants’ time-t forecast of a variable xt at time

t+h, and υt+1 is the error term implied by a theoretical specification of partic-

ipants’ forecasts. To simplify the presentation (without a loss of generality),

here we set h = 1.

The CG regression is ideally suited not only for examining whether par-

ticipants’ forecasts, as measured by the survey data, are inconsistent with

so-called full information rational expectations (FIRE), but also for determin-

ing which departures from FIRE appear to be consistent with that data. As

CG emphasize:

[Our] approach possesses multiple advantages over traditional tests

of ...FIRE. First, we rely on the predictions of theoretical models of

26



information rigidities to guide our choice of the relevant regressors.

Second, models of information rigidities make specific predictions

about the sign of the coe¢cient on forecast revisions, so that our

specification provides guidance not only about the null of FIRE

but also about alternative models (p. 2645).

Here, we rely on the CG regression, in (47), to test departures from FIRE

implied by the REH-like Markov and Behavioral Markov specifications of DE,

which we formulated in Sections 7.1 and 8.2. We also derive predictions of the

early behavioral-finance specifications, such as that proposed by Barberis, et al.

(1998), as well as of FIRE implied by a Markov specification of the “objective”

process, in (23). Because the theoretical structure of these specifications does

not directly match the relationship between participants’ forecast error and

forecast revision, in (47), we derive their predictions for α and β by relying on

GS’s assumption that forecasts can be represented as normally distributed.

10 Predictions of DE’s Specifications for the CG Re-

gression

Hypothesizing that the mean of the diagnostic pdf, mde
t+1|t in (8), represents

participants’ time-t forecasts of xt+1, CG’s regression, in (47), can be written

as the relationship between DE’s forecast error, xt+1−mde
t+1|t, and the revision

of diagnostic expectations between t− 1 and t:

xt+1 −mde
t+1|t = α + β(m

de
t+1|t −m

de
t+1|t−1) + υt+1. (48)

On the other hand, provided that the REH and reference pdfs are normal,

the theoretical specification implied by (12) relates DE’s forecast error, xt+1−
mde
t+1|t, to m

reh
t+1|t −m

ref
t+1|t as well as the REH forecast error, fϵ

reh
t+1|t = xt+1 −

mreh
t+1|t:

xt+1 −mde
t+1|t = −γ

,
mreh
t+1|t −m

ref
t+1|t

-
+ fϵreht+1|t, (49)

In order to derive the predictions of any specification of DE for α, β, in
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(48), we note that (12) implies that

mde
t+1|t −m

de
t+1|t−1 = (1 + γ)

&
mreh
t+1|t −m

reh
t+1|t−1

'
− γ

,
mref
t+1|t −m

ref
t+1|t−1

-
(50)

We also note that the outcome xt+1, as well as the conditional means mde
t+1|t,

mreh
t+1|t, and m

ref
t+1|t in (48) and (50) are the time-t realizations of random vari-

ables, which we denote with Xt+1,M
de
t+1|t, M

reh
t+1|t, and M

ref
t+1|t, respectively.

To simplify the notation, we define the variables in (49) and (50) as follows:

Yt+1=Xt+1 −Mde
t+1|t, Z1,t =M

de
t+1|t −M

de
t+1|t−1, (51)

Z2,t=M
reh
t+1|t −M

ref
t+1|t, FE

reh
t+1|t = Xt+1 −M reh

t+1|t. (52)

According to the time-invariant AR(1) model, in (14), assuming that "t ∼
iidN(0,σ2) immediately implies that all of the variables in (51) and (52) are

normally distributed. However, when µt evolves according to a Markov chain,

each of the variables in (51) is a mixture of normal pdfs. For example, an

analogous argument to that in the proof of Lemma 7 shows that the pdf

of Z2,t = M reh
t+1|t − M

ref
t+1|t = M reh

t+1|t − M
reh
t+1|t−1is a mixture with two normal

components, and thus it is normally distributed. We state this with a lemma.

Lemma 11 Suppose that the REH-like Markov specification of DE, in Section
7.1, represents participants’ forecasts. Then, the pdf of Z2,t, denoted with

greht(mk)(z2,t), is the mixture of the two conditional normal pdfs:

greh(mk)(z2,t) = πf
(mk,1)(z2,t|µt = µ

(1)) + (1− π)f (mk,2)(z2,t|µt = µ
(2)), (53)

Proof in Online Appendix A.

The normality and stationarity of Yt+1, Z1,t, Z2,t, and Z3,t+1 provide a

straightforward way to express the predictions of the REH-like and behavioral

specifications of DE, in Sections 5, 7.1 and 8.2 for the coe¢cients of the CG

regression, in (48). The standard expression for the conditional mean of jointly

normal variables expresses these predictions in terms of the moments of the

variables in (51):
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E(Yt+1|Z1,t)=−γE(Z2,t|Z1,t) + E(FEreht+1|t|Z1,t)

=−γ
:
E(Z2,t) +

Cov(Z1,t, Z2,t)

V (Z1,t)
[Z1,t − E(Z1,t)]

;
(54)

+E(FEreht+1|t|Z1,t)

where 0 < γ < 1 and Cov(·, ·) is the covariance.
While E(FEreht+1|t|Z1,t) = 0 for the time-invariant REH-like specification of DE,
allowing for change with a Markov chain renders E(FEreht+1|t|Z1,t) 6= 0. Thus,
the predictions of the Markov REH-like and behavioral specifications of DE

for the coe¢cients in the CG regression in (48) must also take into account

that

E(FEreht+1|t|Z1,t) = E(FE
reh
t+1|t) +

Cov(Z1t, FE
reh
t+1|t)

V (Z1,t)
[Z1t − E(Z1t)] . (55)

Denoting with the superscript “de” that the expressions for the coe¢cients

are implied by a specification of DE, we summarize the argument in this section

with a proposition:

Proposition 12 Suppose that the REH and reference pdfs can be represented
with the mixtures of normal pdfs, which arise from stationary Markov chains,

and DE represents participants” forecasts. The following expressions charac-

terize the predations of any such DE specification for the coe¢cients in the

CG regression (48):

αde=E(FEreht+1|t) (56)

−γE(Z2t) +
Cov(Z1t, FE

reh
t+1|t)− γCov(Z1t, Z2t)
V (Z1,t)

E(Z1t)

βde=
Cov(Z1t, FE

reh
t+1|t)− γCov(Z1t, Z2t)
V (Z1,t)

. (57)

In the remainder of this Section, we apply this proposition to derive the predic-

tions of the REH-like and behavioral Markov specifications of DE, formulated
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in Sections 5, 7, and 8.2.

10.1 Predictions of the REH-like Specifications of DE

The REH-like time-invariant and Markov specifications of the DE assume that

mref
t+1|t = m

reh
t+1|t−1. Thus, according to Proposition 12, their predictions for α

and β in (48) involve the moments of

Z2,t=M
reh
t+1|t −M

reh
t+1|t−1, (58)

Z1,t=M
de
t+1|t −M

de
t+1|t−1

=(1 + γ(mk))
&
M reh
t+1|t −M

reh
t+1|t−1

'
− γ(mk)(M reh

t+1|t−1 −M
reh
t+1|t−2),

FEreht+1|t=Xt=1 − E
&
FEreht+1|t|Z1,t.

'
.

The following corollary to Proposition 12 derives the relevant moments of

these variables and the predictions of the REH-like Markov specification of

the reference pdf, and thus of DE, denoted with the superscript “de(mk).”

Corollary 13 Suppose that DE’s REH-like Markov specification, in Section
7.1, characterizes participants’ forecasts. Then,

1. αde(mk) = 0 at all t.

2. βde(mk) < 0 if 1 < p12 + p21 < ( 1
γ(mk)ρ

− 1)
!
(1 + γ(mk)(1− ρ)

"
.

(a) If this condition is not satisfied, there are values of the model para-

meters, (µ(1), µ(2), p12, p21, ρ,σ2) for which β
de(mk) > 0

3. However, the sign and the magnitude of βde(mk) are unchanging over

time.

Proof in Online Appendix A.

According to Proposition 9, the REH-like Markov specification implies

overreaction, that is, mde
t+1|t > mreh

t+1|t. However, Corollary 13 reveals that,

because Cov(Z1,t, FEreht+1|t) 6= 0, the slope coe¢cient in the CG regression im-
plied by that theoretical specification may be either positive or negative. Nev-

ertheless, the REH-like Markov specification implies an unambiguous testable
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prediction: the constant equal to zero and the sign and magnitude that the

slope takes remain unchanging over time, thereby suggesting either the regu-

larity of overreaction or underreaction.

10.1.1 Predictions of GS’s Time-Invariant Specification

The proof of Corollary 13 shows that constraining µt = µ, for all t implies that

E(FEreht+1|t|Z1,t) = 0 (Cov(Z1,t, FE
reh
t+1|t = 0), which renders the predicted sign

of the slope negative. We state this with a corollary.

Corollary 14 GS’s REH-like time-invariant specification of DE, in Section
5, implies the following predictions for the coe¢cients of the CG regression,

in (48):

1. αde(gs) = 0 at all t.

2. βde(gs) < 0 and its magnitude is unchanging over time.

Bordalo et al. (2020) assume that the time-invariant REH-like specification

of DE can explain survey data, which implies that βde(gs) < 0. However,

Corollary 13 shows that allowing for the Markov component in the process

driving xt may substantially alter this prediction: while there are values of the

model parameters for which the slope of the CG regression is negative, there

are also values of those parameters for which it is positive.

10.1.2 Predictions When the Markov Chain Persists in a Regime

According to Corollary 14, although the Markov specification of DE allows

for change in how participants forecast outcomes, it nonetheless predicts that

the constant term in the CG regression is unchanging over time. However,

the persistence of a Markov chain in one state for a prolonged period of time

might cause structural break(s) in α. For example, Engel and Hamilton (1990)

formalized such persistence with a two-state Markov chain in which they con-

strained the probabilities of switching, p12 and p21, to be small, implying that

the process would be expected to stay in one state for a long time. During each

of such subperiods, typically referred to as regimes, α would remain unchanged,
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but it would take a di§erent sign and (generally) a di§erent magnitude in one

regime as compared with the other.

The following corollary states predictions of assuming regime persistence

for the coe¢cients of the CG regression, denoted with αde(mp) and βde(mp);

Corollary 15 Suppose that the transition probabilities p12 and p21 are suf-
ficiently small, so that the process driving µt, in (23), may stay in one of

the regimes for a long period of time of time, and yet undergo intermittent

structural breaks that can be detected by an econometric procedure. Then,

the REH-like Markov specification of DE in Section 7.1 implies the following

testable predictions for the coe¢cients of the CG regression, in (48), denoted

with αde(mp) and βde(mp):

1. αde(mp) switches the sign (from positive to negative or vice versa) when

the transition from µt = µ
(i) to µt = µ

(j) occurs, i, j = 1, 2, i 6= j.

(a) However, the sign and magnitude of αde(mp) are the same whenever

µt returns to and persists within one of the regimes:

2. βde(mp) < 0 and its magnitude is unchanging over time, regardless of

whether µt persists in one of the regimes.

Proof in Online Appendix.

This corollary shows that while the regime persistence may cause the con-

stant term αde(mp) to undergo intermittent structural breaks, this change is

constrained in a way that can easily be tested. Although αde(mp) di§ers across

the two regimes, its positive (or negative) sign as well as its magnitude are

the same within each regime. For example, as we show in the proof of this

corollary, whenever a Markov chain is in regime in which
!
µ(i) − E (µt)

"
> 0 ,

(
!
µ(i) − E (µt)

"
< 0), αde(mp) > 0 (αde(mp) < 0).

10.2 Predictions of the Behavioral Markov Specifica-

tion of DE

The BM specification of DE, in Section 8.2, defines the variables in (51) and

(52). The following corollary derives the moments of these variables and uses
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Proposition 12 to derive predictions for the coe¢cients of (48), denoted with

αde(b) and βde(b):

Corollary 16 DE’s Behavioral Markov specification, in Section 8.2, implies
the following predictions for the coe¢cients of the CG regression, in (48):

1. Either βde(b) < 0 if ρ > γ(b)E(ρ
(b)
t

1+γ(b)
, or βde(b) > 0, if ρ < γ(b)E(ρ

(b)
t

1+γ(b)
.

2. Either αde(b) > 0 if
n

µρ
1−ρ

h
ρ− E(ρ(b)t )

i
+
h
µ− E(µ(b)t )

io

×
h
ρ
&
1 + γ(b)

'
− γ(b)E(ρ(b)t )

i
< 0,

or αde(b) < 0, if
n

µρ
1−ρ

h
ρ− E(ρ(b)t )

i
+
h
µ− E(µ(b)t )

io

×
h
ρ
&
1 + γ(b)

'
− γ(b)E(ρ(b)t )

i
> 0

3. However, the signs and magnitudes of αde(b) and βde(b) are unchanging
over time.

11 Predictions of the Pre-DE Behavioral and REH Spec-

ifications of Participants’ Forecasts

Here, we adopt the approach of the preceding section to derive predictions of

the pre-DE behavioral specifications of participants’ forecasts, such as Barberis

et al.’s, as well as predictions of the REH-implied specifications. To this end,

we note that any specification of forecasts, denoted with mfor
t+1|t , satisfies the

following relationship:

xt+1 −mfor
t+1|t =

,
mreh
t+1|t −m

for
t+1|t

-
+ fϵreht+1|t, (59)

Comparing this with (49) shows that by setting mref
t+1|t = m

for
t+1|t and γ =

−1, Proposition 12 can be formally recast as the statement of predictions of any
specification of participants forecasts for the coe¢cients of the CG regression,

(47). To this end, we redefine the variables in (51) and (52) as

Yt+1 = Xt+1 −M for
t+1|t, Z1,t =M

for
t+1|t −M

for
t+1|t−1, Z2,t =M

reh
t+1|t −M

for
t+1|t (60)

Noting that FEreht+1|t = Xt+1 −M reh
t+1|t and setting γ = −1 in Proposition 12,

the following proposition states predictions of any specification of participants’
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forecasts, denoted with αfor and βfor, in terms of the moments of these vari-

ables.

Proposition 17 Suppose that the process driving outcomes and participants’
forecasts can be represented with mixtures of normal pdfs arising from station-

ary Markov chains. The following expressions characterize the predictions of

any such specification for the coe¢cients in the CG regression (47):

αfor =E(FEreht+1|t) + E(Z2t) (61)

+
Cov(Z1t, FE

reh
t+1|t) + Cov(Z1t, Z2t)

V (Z1,t)
E(Z1t)

βfor =
Cov(Z1t, FE

reh
t+1|t) + Cov(Z1t, Z2t)

V (Z1,t)
. (62)

11.1 Predictions of Barberis et al.’s (1998) pre-DE Spec-

ification

The proof of Corollary 16 derives the moments underlying predictions in (61)

and (62), denoted with α(beh) and β(beh), which we state with the corollary to

Proposition 17:

Corollary 18 Suppose that, while the “objective” process driving outcomes is
time-invariant, in (39), participants’s forecasts are based on process, in (40),

the mean of which evolves according to a two-state Markov chain. Such non-

REH specification of forecasts implies the following predictions for the coe¢-

cients of the CG regression, in (47):

1. Either β(beh) < 0 if ρ < γ(b)E(ρ
(b)
t

1+γ(b)
, or β(beh) > 0, if ρ > γ(b)E(ρ

(b)
t

1+γ(b)
.

2. Either α(beh) > 0 if
n

µρ
1−ρ

h
ρ− E(ρ(b)t )

i
+
h
µ− E(µ(b)t )

io

×
h
ρ
&
1 + γ(b)

'
− γ(b)E(ρ(b)t )

i
> 0,

or α(beh) < 0, if
n

µρ
1−ρ

h
ρ− E(ρ(b)t )

i
+
h
µ− E(µ(b)t )

io

×
h
ρ
&
1 + γ(b)

'
− γ(b)E(ρ(b)t )

i
< 0

3. However, the signs and magnitudes of α(beh) and β(beh) are unchanging
over time.
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11.2 Predictions of FIRE for the CG Regression

The time-invariant aggregate REH specifications tested by CG (2015) predict

that α = 0 and β > 0, if information rigidities are present. CG (p. 2651)

interpreted this prediction as indicating that participants’ forecasts, though

consistent with REH, deviate from FIRE, owing to noisy information about

the state of the economy. However, such an interpretation of the coe¢cients

of the CG regression overlooks the implications for the regression’s slope of

recognizing that the process driving outcomes undergoes change.

Using Proposition 17, we show here that representing participants’ forecasts

with FIRE in a model that specifies change with a Markov chain exhibiting

even moderate regime persistence (p12 + p12 < 1) implies β > 0 .When p12 +

p12 > 1, FIRE predicts that β < 0, which is the same prediction as that

implied by GS’s time-invariant specification of DE in Corollary 14.

Hypothesizing that FIRE is based on the Markov specification, (23), defines

M for
t+1|t =M

fire
t+1|t, which, from (60), sets Z2,t = 0 for all t and implies that Yt+1|t

and Z1,t are given by

Yt+1|t=FE
fire
t+1|t = Xt+1 −M fire

t+1|t = Xt+1 − E (Xt+1|xt)

=
!
µt+1 − E (µt)

"
+ "t+1, (63)

Z1,t=M
fire
t+1|t −M

fire
t+1|t−1 = ρ [µt − E (µt)] + ρ"t (64)

According to an argument analogous to Lemma 7, the pdfs of Yt+1|t and Z1,t,

are mixtures of normal pdfs. Thus, Proposition 17 implies the following pre-

dictions for the coe¢cients of the CG regression, denoted with αfire(mk) and

βfire(mk), which we state with a corollary:

Corollary 19 Suppose that FIRE implied by the model (23) represents par-
ticipants’ forecasts. Such specification implies the following predictions for the

coe¢cients of he CG regression, (47):

1. αfire(mk) = 0 at all t.
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2. Either βfire(mk) > 0 if p12 + p21 < 1, β
fire(mk) < 0 if p12 + p21 > 1.10

(a) However, the sign and magnitude of βfire(mk) are unchanging over

time.

Proof in Online Appendix A.

12 Summary of the Predictions

Table 1 summarizes predictions for the CG regression of the five behavioral

specifications of participants’ forecasts, including four implied by the DE ap-

proach, as well as three alternative REH-implied specifications, and refers to

the respective corollaries and CG (2015) for their derivations.

Table 1: Predictions of Theoretical Specifications of Participants’ Forecasts

Model Prediction for α Prediction for β

REH-like Specifications of DE

A: GS’s Time-Invariant α = 0 β < 0

B: Involving a Markov Component α = 0 β < 0 or β > 0

C: Assuming Regime Persistence α > 0 and α < 0 β < 0

D: Behavioral Markov Specification of DE α > 0 or α < 0 β < 0 or β > 0

E: Pre-DE Behavioral Specification α > 0 or α < 0 β < 0 or β > 0

REH-implied Specifications

F: Time-Invariant FIRE α = 0 β = 0

G: FIRE Involving a Markov Component α = 0 β < 0 or β > 0

H: Noisy-Information α = 0 β > 0
Caption: A: Corollary 14, B: Corollary 13, C: Corollary 15, D: Corollary 16,

E: Corollary 18, F: CG (2015), G: Corollary 19, H: CG (2015).

A finding of β > 0 in the CG regression has traditionally been interpreted

as an “underreaction,” and β < 0 as an “overreaction.” However, once DE’s

reference pdf involves a Markov component (Model B), DE predicts CG esti-

mates consistent with either under- or overreaction. Analogously for FIRE, if

10βfire(mk) = 0 if p12 + p12 = 1. Because this case does not a§ect our conclusions in
Section 13, we omit it from the corrollary.
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the forecasted variable’s law of motion involves a Markov component (model

G), FIRE implies that either α = 0 and β < 0, or α = 0 and β > 0. There-

fore, allowing for a Markov component in the process driving outcomes may

render FIRE’s prediction the same as that of DE with a Markov component

or noisy-information REH model H.

13 Empirical Findings

Here, we test predictions in Table 1 by estimating individual CG regressions,

based on survey data of inflation forecasts by 24 professionals.

13.1 Full-Sample Estimates of the CG Regression

We begin with the full-sample estimates, which the literature typically fo-

cuses on in assessing the empirical adequacy of theoretical specifications of

expectations. Table B1 in Online Appendix B displays such estimates of the

individual CG regressions. The estimates are based on data from 24 individ-

uals in the Philadelphia Federal Reserve’s Survey of Professional Forecasters

with more than 50 observations of their three-quarter-ahead forecast revisions

of the Gross Domestic Product’s inflation.11 Table 2 presents the summary

of the tests of the coe¢cients of these individual regressions grouped across

forecasters.

Table 2: Grouping of Individuals Based on Tests of Full-Sample Regressions’

Estimates
Individuals α β Consistent with

14/24 α = 0 β = 0 Model F in Table 1

5/24 α = 0 β < 0 Models A, B and G

2/24 α = 0 β > 0 Models H, B and G

3/24 α 6= 0 β = 0 No model in Table 1

Bordalo, et al. (2020) assert that “for individual forecasters the prevalent

pattern is overreaction (p. 2779).” By contrast, we find that the estimates for

11This has been the most prominently studied variable and horizon in the literature ex-
amining aggregate-level survey data. As examples, see Coibion and Gorodnichenko (2012),
Angeletos, Huo and Sastry (2021), and Bianchi, Ludvigson, and Ma (2021).
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only five of the 24 individual regressions are consistent with α = 0 and β < 0.12

Even more surprising in Table 2 is the number of individual CG regressions

that fail to reject time-invariant FIRE (model F). For 14 of the 24 forecasters,

we cannot reject at even 10% that α = 0 and β = 0. This is incongruent

with the findings of CG (2015) and a number of other studies they cite that

FIRE is inconsistent with individuals’ forecasting. These interpretations of

the empirical findings have, however, presumed the stationarity of the process

driving outcomes and in how participants forecast them.

13.2 Time-Invariance of the Coe¢cients of the CG Re-

gression

Models in Table 1 di§er in a number of important respects. However, all

of them rest on a common premise: the process driving outcomes and par-

ticipants’ revisions of their forecasting strategies can be represented with a

stationary Markov chain. One of the central implications of our theoretical

framework is that, although such representations do allow for change in the

specification of individuals’ forecasting strategies, they predict that the con-

stant and slope coe¢cients in the CG regression do not change over time.

Predictions of Models B, D, E, G, and H in Table 1 formalize this implication.

For example, according to Corollary 13, the REH-like specification of DE

with a Markov component (Model B) predicts α = 0 for all t and β < 0 or β >

0, depending on the values of transition probabilities and other parameters.

However, under the stationarity assumption, Model B predicts that β must

remain either positive or negative in both sign or magnitude for all t. Similarly,

while the behavioral Markov specification (Model D) predicts that α > 0 or

α < 0 , and β < 0 or β > 0, it also predicts that the CG regression’s coe¢cients

are time-invariant both in sign and magnitude.

Model C is the only model among those in Table 1 predicting structural

break(s) under the stationarity Assumption 6. These breaks could arise from

intermittent switches between persistent regimes, as formalized with the low

12See Table B1 in Online Appendix B for the full-sample estimates and t-values for all 24
forecasters.
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o§ diagonal transition probabilities. However, as Corollary 15 shows, while

the regime persistence may cause the constant term α to undergo intermittent

structural breaks, this change is constrained in a way that can easily be tested.

Although α di§ers across the two regimes, its positive (or negative) sign and

its magnitude are the same within each regime.

13.3 Structural Breaks in the Individual CG Regres-

sions

According to Propositions 12 and 17, regardless of the specification of the “ob-

jective” and reference pdfs, the Assumption 6 of these processes’ stationarity

implies that the moments of the variables, in (51), (52), and (60), that under-

pin these predictions are time-invariant. Thus, subjecting the coe¢cients of

the CG regression to tests of structural change provides a hitherto unexplored

way to confront alternative models of expectations, including diagnostic expec-

tations, with survey data on participants’ forecasts. Moreover, the predictions

of any of the specifications in Table 1 for the constant and the slope in the

CG regression depend on di§erent moments of the variables, in (51), (52), and

(60). Whereas the prediction for α depends on the means and the covariances

of these variables, the prediction for β depends only on the covariances. Thus,

the tests for structural breaks require a procedure that allows the constant

and slope of the CG regression to break at di§erent times.

Consequently, we rely on the Multiplicative Indicator Saturation (MIS)

procedure, which has been designed to detect breaks in the coe¢cients of the

regression model at potentially di§erent times. MIS is an extension of the

Autometrics algorithm (Doornik, 2009) and the indicator saturation methods

of Hendry, et al. (2008) and Castle, et al. (2015), whose consistency properties

and appropriate size and power have already been demonstrated in previous

studies under a range of conditions.13 For an overview of the MIS methodology,

see Online Appendix B.

By contrast, because the Bai-Perron (1998) procedure does not allow the

constant and the slope to break at di§erent times, on theoretical grounds, it

13For recent applications of MIS and further references, see Castle, et al. (2017).
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is not suitable for testing the structural stability of predictions for α and β in

the CG regression (47). Nonetheless, given its widespread use, we also report

results of the Bai-Perron test.

Table 3: Structural Breaks in the CG Regressions Detected by MIS and

Bai-Perron Procedures
Full Sample Individuals α Break β Break α or β Bai-Perron

α = β = 0 14/24 13/14 10/1414 14/14 7/14

α = 0; β < 0 5/24 5/5 3/5 5/5 3/5

α = 0; β > 0 2/24 2/2 1/2 2/2 2/2

α 6= 0; β = 0 3/24 3/3 1/3 3/3 1/3

Columns 1 and 2 of Table 3 restate the results of the tests of the CG re-

gressions grouped by number of individuals. Row 2 shows that 14 out of 24

individual CG regressions yielded a constant and the revision (slope) coe¢-

cient, not significantly di§erent from zero, which is consistent with the time-

invariant FIRE. Columns 3, 4, and 5 report the proportion of the individual

regressions for those 14 forecasters that experience instability in the constant

α, slope β, and either α or β. As column 5 row 2 shows, all of those 14 indi-

vidual regressions experience a significant break in either the constant or the

slope. The apparent prevalence of FIRE in the full-sample CG regressions is

therefore completely overturned: the structural breaks detected by MIS in all

of the individual regressions that did not reject time-invariant FIRE in the full

sample are strongly inconsistent with that specification.

Of the 10 remaining individual regressions, all 10 experience a break in

either α or β, as shown in column 5 of rows 3-5. This rejects all of our

specifications in Table 1, with the possible exception of our persistent regime

specification of DE (Model C).

In Table 3, column 4, there are nine individual regressions with a time-

invariant β. However, as shown in Figures B1-B4, only five display a time-

invariant β < 0, but all of those have the constant experiencing breaks while
14Two individual regressions in this row and one in the next row experienced a break in β

within the first or last year of the sample, which could perhaps be viewed as outliers. All of
these individual regressions however have breaks in the constant that are inconsistent with
all theoretical specifications in Table 1
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maintaining the same sign. However, Model C predicts α unchanging in both

sign and magnitude, while a Markov chain persists in a regime and may switch

intermittently between a fixed positive and a fixed negative value at the time

the chain switches between the two regimes. Thus, the five regressions indicat-

ing a time-invariant β < 0 are inconsistent with Model C. In summary, MIS

finds that all of our models in Table 1 are rejected based on the estimates of

the 24 individual CG regressions.

The last column of Table 3 provides the summary for Bai-Perron tests

relative to the full-sample estimates in columns 1 and 2. These results, like

MIS, reveal that the full-sample estimates are misleading. Half of the cases

that cannot reject time-invariant FIRE in the full sample experience breaks,

and six of those experience a regime or regimes where either α 6= 0 and/or

β 6= 0 (see Table B2 in Online Appendix B for further details).. Similarly, three
of the five full-sample estimates apparently consistent with time-invariant DE

are no longer robust after Bai-Perron tests: they experience either sub-periods

with a statistically significant α 6= 0, or β loses significance or changes sign.
It is clear from Table 3 that the Bai-Perron procedure detected breaks in

fewer individual regressions than didMIS.What is again surprising, however, is

the significant number of regressions that still cannot reject FIRE after the Bai-

Perron tests (eight of 24).15 When contrasted with MIS, which rejects FIRE

for all 24 regressions, this indicates a problem with Bai-Perron constraining α

and β to break only simultaneously.

In particular, we find that more individual regressions experience a break

in the constant than in the slope (23 vs. 15, as shown in Table 3). Moreover,

as Figures B1-B4 show, breaks in the constant typically outnumber breaks in

the slope for most individual regressions. This is consistent with our argument

for using MIS: because the predictions for the CG constant depend, in part, on

di§erent moments of the relevant variables, the slope and constant may break

at di§erent points in time.

15Seven of these individuals experience no breaks, and one is found to have two significant
breaks according to the Bai-Perron test, but we cannot reject α = 0 and β = 0 in any of
the three regimes.
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13.4 Diversity of Forecasting Strategies

A number of papers have found significant diversity in how participants fore-

cast outcomes.16 A study that is of particular interest from the viewpoint of

this paper is von Gaudecker and Wogrolly (2021) which documents significant

diversity in households’ beliefs about the stock market. They identify five

separate groupings of forecasting strategies,17 and then estimate panels of the

CG regression for each group, based on the premise that individuals within

these groups do not revise how they forecast outcomes.

However, our results suggest that the diversity of participants’ forecasting

strategies is substantially compounded by their revision of how they forecast

outcomes at times and in ways that cannot be characterized with a stationary

process, such as a Markov chain. As can be seen in Figures B1-B4 in Online

Appendix B, the timing, direction, frequency, and magnitude of the breaks

across individual regressions di§er vastly.

14 Concluding Remarks: A Way Forward

The empirical inadequacy of all five alternative behavioral specifications of

participants’ forecasts casts doubts on the behavioral approach’s core premise

that market participants commit systematic, predictable errors, and that an

economist can specify these errors precisely with a probability measure. As

Lucas (1995, pp. 254-255) pointed out in his criticism of adaptive expec-

tations, macroeconomic and finance models that violate Muth’s (1961) hy-

pothesis, as DE and other behavioral-finance models do, su§er from “glaring”

inconsistency.18 When an economist represents an individual’s assessment of

16See Mankiw, et al. (2003), Reis (2020) and references therein.
17After determining the groupings, von Gaudecker and Wogrolly also examine di§erences

across groups in terms of demographics, investment behavior, and response to returns and
economic news.
18Lucas (1995, p. 255) recounts how the importance of ridding intertemporal models

of such inconsistency persuaded macroeconomists to abandon the micro-founded models of
the 1960s and embrace their REH counterparts. For an extensive discussion and formal
illustration of this revolutionary development in macroeconomic theory, see Frydman and
Goldberg (2007) and Frydman and Phelps (2013).
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uncertainty about payo§-relevant outcomes in a way that is inconsistent with

his own model’s representation of this uncertainty, he contradicts his model’s

hypothesis: that it represents the actual uncertainty about these outcomes.

Lucas’s argument that Muth’s hypothesis should underpin the construc-

tion of logically coherent and empirically adequate macroeconomic and finance

models appears persuasive. However, according to Muth’s hypothesis, speci-

fications of participants’ forecasts crucially depend on an economist’s model

of the process driving outcomes. REH models’ empirical di¢culties, docu-

mented by behavioral economists and corroborated by our findings that the

three REH-implied specifications based on stationary stochastic process are

inconsistent with the survey data, suggest that economists must rethink how

to represent this process.

One way to move beyond the prevailing approach to modeling is to spec-

ify how outcomes unfold over time and how participants forecast them with

non-stationary stochastic processes. Because such representations would not

imply that the coe¢cients of the CG regression are time-invariant, they might

be consistent with structural breaks in those coe¢cients. If the process driving

outcomes and individuals’ forecast revisions could be represented with a single

non-stationary process, according to Muth’s hypothesis, participants would re-

vise their forecasts at approximately the same time and in similar ways. How-

ever, as we documented in the preceding section, there is substantial diversity

in the estimates and timing of breaks across the individual CG regressions,

which suggests that individuals revise their forecasts at di§erent times and in

widely diverse ways.

It is nonetheless possible to reconcile the representation of such diversity,

as well as the influence of both fundamental and psychological factors (such as

market sentiment) in a consistent model that adheres to Muth’s hypothesis.

This, however, requires recognizing, as Knight (1921) argued, that the process

driving outcomes undergoes unforeseeable change, which by definition cannot

be represented ex ante with a single stochastic process, regardless of whether

it is stationary or non-stationary.

REH implements Muth’s hypothesis in a model that represents the un-
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certainty about payo§-relevant outcomes with a stationary stochastic process.

This rules out, by design, behavioral economists’ compelling findings that psy-

chological and other non-fundamental factors have a substantial influence on

participants’ forecasts. Analogously, representing the change in the process

driving outcomes with a non-stationary Markov chain and imposing Muth’s

hypothesis would also rule out the influence of non-fundamental factors on

participants’ forecasts.

Acknowledging that participants recognize that they face so-called Knight-

ian uncertainty as a result of unforeseeable change would enable economists

to represent the role of psychological factors, such as market sentiment, in a

model that is consistent with Muth’s hypothesis. In a novel paper, Ilut and

Schneider (2014) show that this enhances our understanding of business cycles.

They introduce Knightian uncertainty into a standard New Keynesian Model

and formalize how confidence in future total productivity drives fluctuations

in aggregate outcomes. They show that changes in confidence arising from

Knightian uncertainty are empirically significant in explaining these fluctua-

tions.

More broadly, recognizing that market participants face Knightian uncer-

tainty would allow consistent representations of the autonomous role their

forecasts play in driving outcomes, as argued by Phelps (1970) in his semi-

nal micro-foundations volume.19 Thus, recognizing that the future is open to

change that cannot be specified ex ante with probabilistic rules would enable a

synthesis of major advances in macroeconomic theory since the 1970s. Build-

ing macroeconomic and finance models in accordance with Knight’s seemingly

uncontroversial yet profound insight promises to enhance substantially our

understanding of market outcomes and the role of economic policy.
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15 Online Appendix A

Proof of Lemma 7
Using the law of total probability, we can express the pdf of xt+1, condi-

tional on xt, as follows

greh(mk)(xt+1|xt)= (65)

h(mk,1)(xt+1,µt+1=µ
(1)|xt) + h(mk,2)(xt+1,µt+1 = µ

(2)|xt),

where h(i) (·|·), i = 1, 2 denote the respective pdfs implied by (23). Further-
more, we rewrite the above as

greh(mk)(xt+1|xt)=
h(mk,1)(xt+1,µt+1 = µ

(1), xt)

g(xt)

+
h(mk,2)(xt+1,µt+1 = µ, xt)

g(xt)

=
h(mk,1)(xt+1|µt+1 = µ(1), xt)P (µt+1 = µ(1)|xt)g(xt)

g(xt)

+
h(mk,2)(xt+1|µt+1 = µ(2), xt)P (µt+1 = µ(2)|xt)g(xt)

g(xt)
,

where g(xt) is the marginal pdf of xt. Using the assumed independence of µt+1
and Xt and the stationarity of a Markov chain {µt} shows that the “objective”
pdf is the mixture of the two normal pdfs, in (??):

greh(mk)(xt+1|xt) = πf (1,1)(xt+1|xt, µt+1 = µ
(1))+(1−π)f (1,2)(xt+1|xt, µt+1 = µ

(2)).

(66)

where π = P (µt+1 = µ
(1)) for all t.

Proof of Lemma 8
Using the law of total probability, we can express the pdf of xt+1, condi-

48



tional on xt−1, as follows

gref(mk)(xt+1|xt−1) =
2X

i,j=1

h(i,j)(xt+1,µt+1 = µ
(i), µt = µ

(j)|xt−1), (67)

where h(i,i) (·|·), i, j = 1, 2 denote the respective pdfs implied by (23).
Analogously to the steps from (65) to (66) in the proof of Lemma 7, the

above can be expressed as

gref(mk)(xt+1|xt−1)

=
2X

i,j=1

f (i,j)(xt+1|µt+1 = µ
(i), µt = µ

(j), xt−1)P
&
µt+1 = µ

(i), µt = µ
(j)|xt−1

'

Using the assumption that µt+1 and µt are independent of xt−1, we rewrite the

above as

gref(mk)(xt+1|xt−1)=
2X

i,j=1

f (i,j)(xt+1|µt+1 = µ
(i), µt = µ

(j), xt−1)

×P
&
µt+1 = µ

(i)|µt = µ
(j)
'
P (µt=µ

(j)).

Noting that P
&
µt+1 = µ

(i)|µt = µ(j)
'
= pji is the transition probability, this

shows that the reference pdf is the mixture of the four pdfs, in (??):

gref(mk)(xt+1|xt−1) =
2X

i,j=1

pjiπjf
(i,j)(xt+1|xt−1, µt+1 = µ

(i), µt = µ
(j)), (68)

where πj = P (µt = µ
(j)) for all t.

The mean of gref(mk)(xt+1|xt−1) is the weighted average of the means of the
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components pdfs, m(mk,i,j)
t+1|t in (34):

m
ref(mk)
t+1|t = ρ2xt−1 +

2X

i,j=1

pjiπj
&
ρµ(j) + µ(i)

'

= ρ2xt−1 +

2X

i=1

p1iπ1
&
ρµ(1) + µ(i)

'
+

2X

i=1

p2iπ2
&
ρµ(2) + µ(i)

'
,

which, using pii = (1− pij), i, j = 1, 2, i 6= j and π2 = (1− π1), can be written
as

m
ref(mk)
t+1|t =E(Xt+1|xt−1) = ρ2xt−1 + π1(1 + ρ)µ(1) − π1p12(µ(1) − µ(2))

+π2(1 + ρ)µ
(2) + π2p21(µ

(1) − µ(2))

= ρ2xt−1 + (1 + ρ)µ
(2) + {p21 + π [1 + ρ− (p12 + p21)]} (µ(1) − µ(2)),

where π ≡ π1 = P
&
µt = µ

(1)
'
for all t. Noting that π = p21

p21+p12
, implies that

p21 − π (p12 + p21) = 0. Thus, the conditional mean of the reference pdf is

given by

m
ref(mk)
t+1|t = ρ2xt−1 + (1 + ρ)

!
µ(2) + π(µ(1) − µ(2))

"

= ρ2xt−1 + (1 + ρ)E(µt) (69)

To compute the variance of the reference pdf, in(68), we note that (23) and

(69) imply that

,
σ
ref(mk)
t+1|t

-2
=E

6
[Xt+1 − E(Xt+1|xt−1)]

2 ||xt−1
7

=E
6
ρ [µt − E (µt)]−+

!
µt+1 − E (µt)

"72

=(1 + ρ2)
!
σ2 + V (µt)

"
(70)

+2ρ
6
E
&
µt+1µt

'
− [E (µt)]

27
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Finally, Proposition 4 requires that (1 + θ)
,
σ
ref(mk)
t+1|t

-2
> θ

,
σ
reh(mk)
t+1|t

-2
,

which from (30) and (70) follows if

!
1 + ρ2(1 + θ)

"
σ2 + V (µt) + 2(1 + θ)ρE

&
µt+1µt

'
− [E (µt)]

2 > 0 (71)

We now show that

!
1 + ρ2(1 + θ)

"
V (µt) + 2(1 + θ)ρE

&
µt+1µt

'
− [E (µt)]

2 > 0 (72)

holds for any values of the model parameters
&
θ, ρ, µ(1), µ(2), p12,p21

'
. To this

end we express E
&
µt+1µt

'
− [E (µt)]

2 in terms of V (µt) and
&
µ(1) − µ(2)

'2
:

E(µt+1µt)=E
!
µtE(µt+1|µt)

"

=µ(1)
&
µ(1)(1− p12) + µ(2)p12

'
π

+µ(2)
!
µ(2)(1− p21) + µ(1)p21

"
(1− π)

=
&
µ(1)

'2
π −

&
µ(1)

'2
p12π + µ

(1)µ(2)p12π

+
&
µ(2)

'2
(1− π)−

&
µ(2)

'2
p12π + µ

(1)µ(2)p12π

=E(µ2t )− p12π
&
µ(1) − µ(2)

'2
, (73)

where we used p21(1− π) = p12π. This shows that

E
&
µt+1µt

'
− [E (µt)]

2 = V (µt)− p12π
&
µ(1) − µ(2)

'2
(74)

Furthermore, using π = p21
p12+p21

, we express V (µt) as follows:

V (µt)=
&
µ(1)

'2
π +

&
µ(1)

'2
(1− π)−

!
µ(1)π + µ(1)(1− π)

"2

= π(1− π)
&
µ(1) − µ(2)

'2
(75)

= p12π
1

p12 + p21

&
µ(1) − µ(2)

'2
, (76)
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which implies that

E
&
µt+1µt

'
− [E (µt)]

2=V (µt)− p12π
&
µ(1) − µ(2)

'2

= p12π
1− p12 − p21
p12 + p21

&
µ(1) − µ(2)

'2
(77)

Substituting (76) into (74) enables us to rewrite the condition (72) as follows

p12π
1

p12 + p21

&
µ(1) − µ(2)

'2

×
!
1 + ρ2(1 + θ) + 2ρ(1 + θ) (1− p12 − p21)

"
> 0 (78)

Finally, we note that both roots of the quadratic equation in the square brack-

ets are negative, and thus (78) holds for any ρ > 0. Via (??), this shows that

(1 + θ)
,
σ
ref(mk)
t+1|t

-2
> θ

,
σ
reh(mk)
t+1|t

-2
holds for any values of the model parame-

ters,
&
θ, σ2ρ, µ(1), µ(2), p12,p21

'
.

Proof of Proposition 9
The argument for the time-invariant REH-like specification is presented in

Section 6.2. Here we focus on DE’s specification with a Markov component.

The expression for the news, in (33), implies that

µ(j) + et = n
(mk,j) + E(µt) j = 1, 2.

Substituting this into (31) implies that mreh(mk,j)
t+1|t , expressed in terms of xt−1,

the realized state of µt and et, can take one of two values:

m
reh(mk,j)
t+1|t = ρ2xt−1 + ρn

(mk,j) + (1 + ρ)E(µt) j = 1, 2,

which, using

m
reh(mk)
t+1|t−1 = ρ

2xt−1 + (1 + ρ)E(µt), (79)

implies that

m
reh(mk,j)
t+1|t −mref(mk)

t+1|t−1 = ρn
(mk,j), j = 1, 2.

Proof of Lemma 11
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Noting that mreh
t+1|t and m

reh
t+1|t−1, in (29) and (79), are time-t and t − 1

realizations, respectively, of M reh
t+1|t and M

reh
t+1|t−1 implies that

Z2,t =M
reh
t+1|t −M

reh
t+1|t−1 = ρ [µt − E (µt)] + ρ"t.

An argument analogous to the proof of Lemma 7 shows that the pdf of Z2,t,

denoted with greht(mk)(z2,t), is the mixture of the following two normal pdfs,

conditional on the value of µt:

greh(mk)(z2,t)

= πf (mk,1)(z2,t|µt = µ
(1)) + (1− π)f (mk,2)(z2,t|µt = µ

(2)),

where, where, the means and variances of the i’s component, i = 1, 2, are given

a(mk,i)z2,t
=E(Z2,t|µt = µ

(i)) = ρ
!
µ(i) − E(µt)

"
(80)

v(mk,i)z2,t
=V (Z2,t|µt = µ

(i)) (81)

= ρ2
h
σ2 + E(µ2t )− 2E(µt)µ

(i) +
&
µ(i)
'2i

Consequently, the mean and variance of Z2,t, for all t, are given by

E(Z2,t)= 0,

V (Z2,t)= ρ
2
!
σ2 + V (µt)

"
.

Proof of Corollary 13
We first consider Z2,t in (58). It follows from (29) and (23) that

M
reh(mk)
t+1|t =E(Xt+1|Xt) = ρXt + E (µt)

= ρ2Xt−1 + ρµt + E (µt) + ρ"t, (82)

M
reh(mk)
t+1|t−1 =E(Xt+1|Xt−1) = ρE(Xt+1|Xt) + E (µt)

= ρ2Xt−1 + (1 + ρ)E (µt) (83)

= ρ3Xt−2 + ρ
2µt−1 + (1 + ρ)E (µt) + ρ

2"t−1, (84)
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which, from (82) and (83), implies that

Z2,t =M
reh(mk)
t+1|t −M reh(mk)

t+1|t−1 = ρ [µt − E (µt)] + ρ"t (85)

We now consider Z1,t =Mde
t+1|t −M

de
t+1|t−1:

Z1,t=(1 + γ
(mk))

,
M

reh(mk)
t+1|t −M reh(mk)

t+1|t−1

-
(86)

−γ(mk)(M reh(mk)
t+1|t−1 −M

reh(mk)
t+1|t−2 ).

In order to relate M reh(mk)
t+1|t−1 −M

reh(mk)
t+1|t−2 to µt and "t, an argument analogous

to those in Sections 7.2 and 7.3 shows that greh(mk)(xt+1|xt−2) is a mixture of
eight normal pdfs with the mean

m
reh(mk)
t+1|t−2 = ρ

3xt−2 + (1 + ρ+ ρ
2)E (µt) ,

which, from (79), shows that

M
reh(mk)
t+1|t−1 −M

reh(mk)
t+1|t−2 = ρ

2
!
µt−1 − E (µt)

"
+ ρ2"t−1, (87)

Substituting (85) and (87) into (86) yields

Z1,t=(1 + γ
(mk))ρ [µt − E (µt)]− γ

(mk)ρ2
!
µt−1 − E (µt)

"
(88)

+(1 + γ(mk))ρ"t − γ(mk)ρ2"t−1.

Noting that

FE
reh(mk)
t+1|t =

!
µt+1 − E (µt)

"
+ "t+1, (89)

and V (Z1,t) > 0, the moments of Z1,t, Z2,t and FE
reh(mk)
t+1|t , which underpin the
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predictions in (56) and (57), are given by

E(Z1,t)= 0, E(Z2t) = 0, E(FE
reh(mk)
t+1|t ) = 0, (90)

Cov(Z1,t, Z2,t)= (1 + γ
(mk))ρ2σ2 + (1 + γ(mk))ρ2V (µt) (91)

−γ(mk)ρ3
6
E
&
µt−1µt

'
− [E (µt)]

27 ,

Cov(Z1,t, FE
reh(mk)
t+1|t )= (1 + γ(mk))ρ

!
E
&
µt+1µt

'
− [E (µt)]

2" (92)

−γ(mk)ρ2
6
E
&
µt+1µt−1

'
− [E (µt)]

27

where V (µt) = E(µ
2
t )− [E (µt)]

2.

According to Proposition 12,

sign(β) = sign
h
Cov(Z1,t, FE

reh(mk)
t+1|t )− γCov(Z1t, Z2t)

i
. (93)

We now show that whether sign
h
Cov(Z1,t, FE

reh(mk)
t+1|t )− γCov(Z1t, Z2t)

i
< 0

or> 0 depends on the values of the model parameters
&
µ(1), µ(2), p12, p21, ρ, γ

(mk),σ2
'
.

Substituting (74) into (91) yields

Cov(Z1,t, Z2,t)= (1 + γ
(mk))ρ2σ2 + ρ2

!
(1 + γ(mk))− γ(mk)ρ

"
V (µt)

+γ(mk)ρ3p12π
&
µ(1) − µ(2)

'2

= ρ2
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i
(94)

+ρ2(1 + γ(mk))
h
σ2 + p12π

&
µ(1) − µ(2)

'2i
(95)

In order to derive an analogous expression for Cov(Z1,t, FE
reh(mk)
t+1|t ), (92),

we consider

E
&
µt+1µt

'
− E

&
µt+1µt−1

'
=E

6
E
!
µt+1(µt − µt−1)|

&
µt, µt−1

'"7

=E
&
µt − µt−1

'
E
!
µt+1|

&
µt, µt−1

'"

=E
6&
µt − µt−1

'
E
!
µt+1|µt

"7

Because µt − µt−1 takes two non-zero values, µ(1) − µ(2) with the probability
p21(1− π) and µ(2) − µ(1) with the probability p12π
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E
6&
µt − µt−1

'
E
!
µt+1|µt

"7

=
&
µ(1) − µ(2)

'
E
!
µt+1|µt = µ

(1)
"
p21(1− π)

+
&
µ(2) − µ(1)

'
E
!
µt+1|µt = µ

(2)
"
p12π

=
&
µ(1) − µ(2)

' !
µ(2)(1− p21) + µ(1)p21

"
p12π

+
&
µ(2) − µ(1)

' !
µ(1)(1− p12) + µ(2)p12

"
p12π

= {
&
µ(1) − µ(2)

'
µ(2) −

&
µ(1) − µ(2)

'
µ(2)p21 +

&
µ(1) − µ(2)

'
µ(1)p21

+
&
µ(2) − µ(1)

'
µ(1) −

&
µ(2) − µ(1)

'
µ(1)p12 +

&
µ(2) − µ(1)

'
µ(2)p12}p12π

=
n
−
&
µ(1) − µ(2)

'2
+
&
µ(1) − µ(2)

'2
p21 +

&
µ(1) − µ(2)

'2
p12

o
p12π

=
&
µ(1) − µ(2)

'2
p12π (p12 + p21 − 1) ,

which (via (73)) shows that

E(µt+1µt−1)− [E (µt)]
2 = V (µt)− p12π (p12 + p21)

&
µ(1) − µ(2)

'2
. (96)

Substituting (73) and (96) into (92) yields

Cov(Z1,t, FE
reh(mk)
t+1|t )= (1 + γ(mk))ρ

h
V (µt)− p12π

&
µ(1) − µ(2)

'2i

−γ(mk)ρ2
h
V (µt)− p12π (p12 + p21)

&
µ(1) − µ(2)

'2i

= ρ
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i
(97)

−γ(mk)ρ2p12π (1− p12 − p21)
&
µ(1) − µ(2)

'2
(98)

We are now ready to derive

δ = Cov(Z1,t, FE
reh(mk)
t+1|t )− γCov(Z1t, Z2t) (99)

From (95) this di§erence includes one unambiguously negative term:

δ1 = −γ(mk)ρ2(1 + γ(mk))
h
σ2 + p12π

&
µ(1) − µ(2)

'2i
< 0 (100)
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Using (97) and (94) yields

ρ
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i

−γ(mk)ρ2
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i

= ρ(1− γ(mk)ρ)
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i
,

which, combined with (98), yields the second term of (99):

δ2= ρ(1− γ(mk)ρ)
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i
(101)

−γ(mk)ρ2p12π (1− p12 − p21)
&
µ(1) − µ(2)

'2

We now show that there are values of the parameters γ(mk), ρ, p12, and p21
for which δ2 < 0, thereby implying (via (100) that

δ = δ1 + δ2 = Cov(Z1,t, FE
reh(mk)
t+1|t )− γCov(Z1t, Z2t) < 0.

Substituting (76) into (101) expresses δ2 as

δ2= ρ(1− γ(mk)ρ)
!
(1 + γ(mk))− γ(mk)ρ

" h
V (µt)− p12π

&
µ(1) − µ(2)

'2i

−γ(mk)ρ2p12π (1− p12 − p21)
&
µ(1) − µ(2)

'2

= ρ(1− γ(mk)ρ)
!
(1 + γ(mk))− γ(mk)ρ

"
p12π

1− p12 − p21
p12 + p21

&
µ(1) − µ(2)

'2

−γ(mk)ρ2p12π (1− p12 − p21)
&
µ(1) − µ(2)

'2

= ρp12π
&
µ(1) − µ(2)

'2
(1− p12 − p21)

&
µ(1) − µ(2)

'2

×
:
(1− γ(mk)ρ)

!
(1 + γ(mk))− γ(mk)ρ

" 1

p12 + p21
− γ(mk)ρ

;

=
ρp12π

p12 + p21

&
µ(1) − µ(2)

'2
(1− p12 − p21) (102)

×
6
(1− γ(mk)ρ)

!
(1 + γ(mk))− γ(mk)ρ

"
− γ(mk)ρ (p12 + p21)

7
(103)

In order to uncover the conditions under which δ2 < 0, we note that the
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term in (102) is negative if and only if

p12 + p21 > 1. (104)

Furthermore, the term in (103) is positive if

1 < p12 + p21 < (
1

γ(mk)ρ
− 1)

!
(1 + γ(mk)(1− ρ)

"
. (105)

Thus, if p12 + p21 satisfies (105), δ2 < 0..

However, although the right bound in (105) is greater than 1 for any values

of 0 < γ(mk), ρ < 1, if γ(mk)ρ. > 1/3, there are values of 1 < p12 + p21 < 2 such

that

p12 + p21 > (
1

γ(mk)ρ
− 1)

!
(1 + γ(mk))− γ(mk)ρ

"
> 1, (106)

which implies that the term in (103) is negative, and thus δ2 > 0. We also

note that if p12+p21 < 1, both (102) and (103) are positive, thus, δ2 > 0. This

shows that the condition (105) is necessary and su¢cient for

δ = δ1 + δ2 = Cov(Z1,t, FE
reh(mk)
t+1|t )− γCov(Z1t, Z2t) < 0

Finally if the condition (105) is not satisfied and

δ2=
ρp12π

p12 + p21

&
µ(1) − µ(2)

'2
(1− p12 − p21)

×
6
(1− γ(mk)ρ)

!
(1 + γ(mk))− γ(mk)ρ

"
− γ(mk)ρ (p12 + p21)

7

>−δ1 = γ(mk)ρ2(1 + γ(mk))
h
σ2 + p12π

&
µ(1) − µ(2)

'2i

then

δ = δ1 + δ2 = Cov(Z1,t, FE
reh(mk)
t+1|t )− γCov(Z1t, Z2t) > 0.

Proof of Corollary 15
We formalize regime persistence by constraining µt to take the same value
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from t− 2 to t+ 1.Suppose (without a loss of generality) that

µt−2 = µt−1 = µt = µt=1 = µ
(1)

Imposing this constraint in (88), (85), and (89) specifies Z1,t, Z2,t, and FE
reh(mk)
t+1|t

as follows

Z1,t=(1 + γ
(mk))ρ

!
µ(1) − E (µt)

"
− γ(mk)ρ2

!
µ(1) − E (µt)

"

+(1 + γ(mk))ρ"t − γ(mk)ρ2"t−1,

Z2,t= ρ
!
µ(1) − E (µt)

"
+ ρ"t,

FE
reh(mk)
t+1|t =

!
µ(1) − E (µt)

"
+ "t+1.

This immediately implies that

E(Z1,t)= ρ(1 + γ
(mk) − γ(mk)ρ2)

!
µ(1) − E (µt)

"
, (107)

E(Z2,t)= ρ
!
µ(1) − E (µt)

"
, (108)

E(FE
reh(mk)
t+1|t )=

!
µ(1) − E (µt)

"
, (109)

Cov(Z1,t, Z2,t)= (1 + γ
(mk))ρ2σ2, (110)

Cov(Z1,t, FE
reh(mk)
t+1|t )= 0, (111)

which (via Proposition 12) indicates the following predictions for the coe¢-

cients of (48) in each of the regimes:

αde(mp)=
&
1− γ(mk)ρ

' !
µ(i) − E (µt)

"
(112)

×
3
(1 + γ(mk))ρ2σ2

V (Z1,t)
+ (1 + γ(mk) − γ(mk)ρ2)

4
, i=1, 2

βde(mp)=−γ(mk)(1 + γ(mk))ρ2σ2 < 0(113)

Thus, if a Markov chain is in the regime for which
!
µ(i) − E (µt)

"
> 0 ,

(
!
µ(i) − E (µt)

"
)< 0, αde(mp) > 0 (αde(mp) < 0).
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Proof of Corollary 16
As in the GS time-invariant model, in Section 5,

Z2,t= ρ"t,

FEreht+1|t= "t,

which, using (39), (42), (40), and (43, enables us to express Z1,t, in (51) as

follows:

Z1,t=
!
1 + γ(b)(1− ρ

"
ρ"t − γ(b)

h
ρ− E(ρ(b)t )

i
"t

−γ(b)E
,
ρ
(b)
t

-nh
ρ− E(ρ(b)t )

i
ρxt−1 +

h
µ− E(µ(b)t )

io
.

These expressions imply that

E (Z2,t)= 0,

E (Z1,t)= γ
(b)E

,
ρ
(b)
t

-: ρµ

1− ρ

h
ρ− E(ρ(b)t )

i
+
h
µ− E(µ(b)t )

i;
,

Cov(Z1,t, Z2,t)=
h
ρ
&
1 + γ(b)

'
− γ(b)E(ρ(b)t )

i
ρσ2,

E
&
FEreht+1|t

'
=0

Cov(Z1,t, FE
reh
t+1|t=0,

where we used E(xt−1) =
µ
1−ρ . Then, Proposition 12 implies the predictions

for the coe¢cients of the CG regression stated in the corollary.

Proof of Corollary 19
From (63) and (64), Yt+1|t

E
&
Yt+1|t

'
=0,

E
&
Z1,|t

'
=0,

which, from (61), implies that

αfire(mk) = 0 at all t
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(63) and (64) also imply that

Cov(Yt+1|t, Z1,|t) = ρ
6&
Eµt+1µt

'
− [E (µt)]

27 ,

which, using (77), enables us to express

Cov(Yt+1|t, Z3,|t) =
ρp12π

p12 + p21

&
µ(1) − µ(2)

'2
(1− p12 − p21) .

Then, (62) implies predictions for βfire(mk) stated in the corollary.
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16 Online Appendix B

16.1 Full-Sample Individual CG Regressions

Whereas the forecast error is always observed anytime a forecast is reported,

the data point for the forecast revision requires two consecutive forecasts sub-

mitted by an individual. Table B1 is sorted by the number, N, of observations

available for individuals in the survey with more than 50 observations for re-

visions. α̂ and β̂ in the table are, respectively, the full-sample estimate of the

constant and the slope in the CG regression, (47). These results are summa-

rized in Table 2 in the body of the paper.

Table B1: Full-Sample Individual-Level Estimates

N α̂ β̂ N α̂ β̂ N α̂ β̂

94 0.006
[1.24]

−0.041
[−0.08]

68 0.001
[0.24]

−0.002
[−0.84]

57 0.011
[2.08]

−0.319
[−1.39]

90 −0.004
[−1.21]

−0.261
[−1.67]

65 −0.007
[−1.37]

−0.476
[−4.87]

56 0.001
[0.41]

0.149
[0.54]

82 −0.004
[−1.30]

−.215
[−1.31]

65 0.001
[0.40]

0.477
[1.11]

54 0.003
[1.09]

−0.367
[−2.79]

80 −0.003
[−0.58]

−0.313
[−1.44]

63 0.001
[.21]

0.196
[0.60]

53 0.001
[0.18]

−0.281
[−1.94]

78 −0.004
[−0.73]

−0.053
[−0.17]

62 −0.001
[−0.22]

−0.199
[−0.51]

52 −0.008
[−3.44]

−0.075
[−0.45]

78 −0.002
[−0.52]

−0.007
[−0.03]

61 0.002
[0.06]

−0.212
[−3.08]

52 0.001
[0.16]

1.266
[2.45]

78 0.001
[0.31]

−0.117
[−0.62]

61 −0.005
[−1.80]

−0.007
[−0.05]

52 0.003
[1.66]

0.135
[0.37]

70 −0.002
[−0.84]

0.053
[0.16]

59 0.002
[0.12]

0.266
[2.58]

51 0.000
[0.10]

0.067
[0.49]

Caption: t-values are displayed in brackets under the parameter estimates.

16.2 Overview of MIS

MIS was first proposed by Ericsson (2012) as an extension of robust estimation

methods which, respectively, detect outliers and mean shifts: impulse indica-

tor saturation (IIS), developed in Hendry, et al. (2008), and step indicator

saturation (SIS), developed in Castle, et al. (2015). The general idea of MIS

is to multiply each regressor by a step indicator for each observation that is

equal to unity up until time j and zero thereafter. This allows for breaks in
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the regressors’ coe¢cients separately and at any point in time. Combined with

IIS and SIS, in the context of the CG regression yields:

xt+1 − Ft(xt+h)=α + β[Ft(xt+h)− Ft−1(xt+h)] + ΣT−1i=1 β
iµ1t<i[Ft(xt+h)− Ft−1(xt+h)]

+ΣTi=1δ1 + Σ
T−1
i=2 β

iµ1t<i + error.

The impulse indicators ΣTi=1δ1 (one for each observation) allow for an out-

lier at any point in time. The step indicators ΣT−1i=2 β
iµ1t<i, allow for a dif-

ferential shift in the constant, relative to the end-of-sample constant.20 The

multiplicative indicators ΣT−1i=1 β
iµ1t<i[Ft(xt+h) − Ft−1(xt+h)] allow for a dif-

ferential slope coe¢cient at any point in time, relative to the end-of-sample

estimate.

The significant multiplicative step and impulse indicators are selected by

the Autometrics tree search algorithm (Doornik, 2009). After the multiplica-

tive indicators have been determined by the algorithm, a model-selection bias

correction is applied (Hendry and Krolzig, 2005). This correction eliminates

the well-known bias originally documented by Lovell (1983).21

16.3 MIS Estimates of CG Regression

Figures B1-B4 below display MIS estimates of statistically significant breaks in

the constant and revision coe¢cient of individual regressions based on survey

data from the 24 forecasters. These results have been grouped in rows 2-5 and

columns 3-5 of Table 3.

All of the individual regressions experience breaks in either the constant

or revision coe¢cient, which are significant at 1%. We can see, however, that

the constant and the slope break at di§erent times, including frequent cases

where the constant changes but the slope does not. As discussed in Section

20The impulse indicator and step indicator, as specified, are identical in the first observa-
tion, so the latter is summed only from the second observation.
21The correction reduces the absolute value of the coe¢cients. The size of the adjustment

depends inversely on the t-values and significance level used for selection. This reduces the
selection bias, because this adjustment is larger when there is a greater probability of Type
II error.
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13.3, this supports our argument for using MIS, rather than the Bai-Perron

test, as a procedure for testing the stability of the individual coe¢cients in the

CG regression.

Figure B1: MIS Estimates of Significant Breaks in CG Regressions Not

Rejecting FIRE in Full Sample

α β
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α β
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α β

Figure B1 presents the MIS estimates of structural breaks in the 14 indi-

vidual regressions that have not rejected α = β = 0 based on the full sample.

As summarized in row 2 of Table 2, all 14 of these CG regressions experience

breaks in either the constant (13/14) or the slope (8/14).
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Figure B2: MIS Estimates of Significant Breaks in CG Regressions

Apparently Consistent with DE Based on the Full Sample

α β

Figure B2 displays the MIS estimates of significant, at 1%, structural

breaks in five individual regressions that are consistent with α = 0 and β < 0,

based on the full sample. As summarized in row 3 of Table 3, all regressions
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experience breaks in either α or β, which rejects time-invariant DE. Among

them are two cases where MIS estimates indicate a time-invariant β < 0,

which, assuming regime persistence, could render it consistent with Model C

in Table 1. However, these cases also experience breaks in α that are inconsis-

tent with Model C’s predictions: α switches between two di§erent values with

the same sign.

Figure B3: MIS Estimates of Significant Breaks in Regressions Apparently

Consistent with Noisy-Information REH Based on the Full Sample

α β

As shown in Figure B3, neither individual regression is consistent with

noisy information after MIS. One indicates a sign change in β, while the other

that β = 0. Both detect significant breaks in α, some of which maintain the

same sign. Thus, these two cases are not consistent with any of our models in

Table 1.
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Figure B4: MIS Estimates of Significant Breaks in Individual Regressions

Indicating α 6= 0 and β = 0 Based on the Full Sample

α β

Figure B4 presents MIS estimates of the 3 remaining CG regressions. These

full-sample regressions were not consistent with any of the models in Table 1.

However, we need to test for breaks, because the regression could indicate

breaks in α, which with a time-invariant β < 0 could be consistent with Model

C. As Figure B4 shows, one of the CG regressions is indeed consistent with

time-invariant β < 0, but indicates breaks in α, while maintaining the same

sign. Again, none is consistent with any of our eight specifications in Table 1.
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16.4 Bai-Perron Test for Structural Breaks in the CG

Regression

The Bai-Perron Procedure determines the significant break dates subject to

a user-input significance level and a trimming parameter which dictates the

minimum duration and maximum number of breaks. A new regression is then

estimated within those breaks.

MIS also detects breaks in each parameter at a user-input significance level.

However, it does not constrain the constant and slope coe¢cient(s) to break

simultaneously.22

We largely follow Bai-Perron (2003) with a 5% significance level, 15% trim-

ming parameter (corresponding to a maximum of five breaks), and using the

HAC standard errors with the Andrews’ automatic kernel bandwidth estima-

tor. We also use one-lag of pre-Whitening.

We recall that we used 1% significance for MIS. The 5% significance level

used here for Bai-Perron should detect more breaks than if 1% were used for

Bai-Perron. Nonetheless, Bai-Perron finds fewer individual regressions experi-

encing breaks than MIS (13 for Bai-Perron vs. all 24 for MIS).

Table B2 provides the estimates produced by the Bai-Perron procedure.

For ease of interpretation, the model classifications are color coded. Red in-

dicates a full sample or sub-sample estimates consistent with time-invariant

FIRE (α = β = 0), green indicates DE (α = 0 and β < 0), and blue Noisy

Information RE (α = 0 and β > 0). The light green and light blue indicate,

respectively, a significant β and α. The white indicates α 6= 0 and β = 0.
22MIS also has the advantage of controlling for outliers using the impulse indicator satu-

ration of Hendry, et al. (2008).
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Table B2: Bai-Perron Estimates of Structural Breaks in the Individual CG

Regressions

71



The Bai-Perron test did not detect breaks for eight individual regressions

that did reject FIRE in the full sample (the first eight individual regressions

displayed in Figure B1). Therefore, it was unable to reject time-invariant FIRE

for one-third of the regressions. Similarly, the Bai-Perron procedure did not

detect breaks for two of the five individual regressions consistent with α = 0

and β < 0, as well as for the two consistent with α 6= 0 and β = 0, based on
the full-sample estimates. By contrast, MIS finds breaks in either α or β for

all individual regressions.
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