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ABSTRACT 

We identify novel technologies using textual analysis of earnings conference calls, newspapers, 
announcements, and patents. Our approach enables us to document the rollout of 20 new 
technologies across firms and labor markets in the U.S. Four stylized facts emerge from our data. 
First, as technologies develop, the number of new positions related to them grows, but the 
average education requirements and wage levels of the positions drop. Second, as technologies 
develop, their employment impact diffuses across the country: initially, technologies are 
concentrated in local hubs, but over time, their adoption diffuses geographically. Third, despite 
this diffusion, the initial hubs retain a disproportionate share of employment in the technology, 
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particularly at the high-skill end of the spectrum. Finally, technology hubs are more likely to 
arise in areas with universities and high skilled labor pools.  
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1. Introduction 
 
Rising inequality has focused attention on the benefits of new technologies.2 Do these accrue 
primarily to inventors, early investors, and highly skilled users, or to society more widely as their 
adoption generates employment growth? This paper aims to trace out the impact of 20 new 
technologies on employment of low and high skilled workers, around the birthplace of the 
technology and across the US. 
 
Policymakers are also focused on the location of technology, with a growing source of competition 
between nations and regions involving the attraction of nascent industries and technologies. 
Whether payments to attract professors specializing in artificial intelligence and biotechnology 
researchers, the construction of facilities to house nascent firms, or matching funds provided to 
angel or venture capital investors, governments have sought to establish an early presence in 
promising industries.3  
 
In undertaking these initiatives, policymakers have been attracted by the success of technology 
clusters such as Silicon Valley, Herzliya, Shanghai, and Shenzhen. The success of the Boston area 
in biotechnology illustrates the positive dynamics that can occur. The initial wave of start-ups 
spinning out of Harvard and MIT in the 1980s and 1990s resulted in a number of significant 
enterprises, such as Biogen, Genzyme (now part of Sanofi), and Vertex Pharmaceuticals. The 
region has continued to attract new entrants, which raised almost $5 billion dollars in venture 
capital in 2018 alone. Finally, the presence of academic institutions and younger firms have 
attracted investments in major research facilities by established firms based elsewhere, such as 
Novartis, Pfizer, and Takeda. Between 2010 and 2018, the Massachusetts biopharmaceutical sector 
grew from 55 to 74 thousand jobs.4    
 
But despite the many billions of dollars devoted annually to the attraction of infant industries, these 
policies have attracted relatively little systemic attention from economists (e.g., Bloom, Van 
Reenen, and Williams 2019). Motivating these policy interventions are two propositions. The first 
is that public interventions will effectively enhance the presence of an emerging industry in a given 
region; the second, that this initial activity will yield long-run impacts for the region. This paper 
examines the second of these claims. 
 
To do so, we study the evolution of twenty new technologies in the United States from 2002 to 
2020. We develop a methodology for systematically identifying two-word phrases, or “bigrams,” 
associated with a new technology. We then look for documents linked to these new technologies, 
including U.S. patents, earning calls from publicly listed firms, and job announcements in the 

                                                            
2 See, for example, Katz and Murphy 1992, Goldin and Katz 2008, Autor, Katz, and Kearney 2008, 
Piketty and Saez 2013, and Song et al. 2019. 
3 A few of many examples of such efforts include https://www.straitstimes.com/singapore/a-home-
for-worlds-best-scientists; https://www.nytimes.com/2020/02/06/us/chinas-lavish-funds-lured-
us-scientists-what-did-it-get-in-return.html; https://www.businessinsider.com/neom-what-we-
know-saudi-arabia-500bn-mega-city-2019-9; and https://www.france24.com/en/20200325-
france-to-support-start-ups-with-%E2%82%AC4-billion-plan-amid-coronavirus-crisis. 
4 This paragraph is taken from press accounts and Massachusetts Biotechnology Council (2019). 
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Burning Glass database. This evidence allows us to assess the impact of these technologies along 
a dimension of crucial importance to policymakers: employment. In particular, we examine the 
evolution of the number, location, and quality of new jobs associated with these new technologies.  
 
The key results of this analysis are as follows: 
 

 Earnings call mentions and hiring announcements linked to the new technologies rise in 
parallel over time; 

 While initial hiring is focused on high-skilled jobs, over time the mean skill level in new 
positions associated with the technologies declines sharply, which we term a “skill-
broadening” effect; 

 New hiring in new technologies increases its geographic footprint over time, becoming less 
concentrated, which we dub “region broadening”; 

 The initial geographic hub retains an important advantage that persists over time. This 
pattern is particularly pronounced among high skill jobs; and 

 Hubs are most likely to arise around universities and areas with more educated populations. 
 
This work thus suggests a strong advantage for areas that were associated with the earliest activity 
in a technology. Despite the skill- and region-broadening effects alluded to above, not only does a 
disproportionate share of new employment continue to locate there, but especially the most 
desirable high-skilled positions.  
 
A natural follow-up question relates to the mechanisms behind the continued advantage of the 
initial hubs. One possibility is that these patterns are driven by continued entrepreneurial activity. 
Gompers, Lerner, and Scharfstein (2005) posit that entrepreneurial firms in venture-rich regions 
are particularly likely to spawn other ventures, leading to self-reinforcing cycle of activity. These 
claims are supported by Glaeser, Kerr, and Kerr’s (2015) work highlighting the extent to which 
cities’ initial endowments affect the long-term distribution of entrepreneurship.  
 
An alternative possibility, suggested by the evolution of the Boston biopharmaceutical sector, is 
that the persistence of nascent industries in their initial hubs is driven by firms based elsewhere 
moving into the initial hub, a phenomenon that we term “rehoming.” Moretti (2019) shows that 
productivity of inventors is increasing with the volume of invention in the same city, field, and 
year. These differentials in innovative efficiency may attract a broad set of firms to locate facilities 
in the initial hub.  We hope to better distinguish between these mechanisms in the next version of 
this paper, as well as to understand the characteristics of the firms that engage in rehoming. 
 
This study is related to the substantial literature on the diffusion of new technologies. Since the 
pioneering work of Griliches (1957), the diffusion process has long been understood by economists 
to be a gradual one. While broader sociological and organizational literature has examined the 
barriers to innovation, the recent work in economics has focused on understanding the importance 
of supply and demand factors on the speed of diffusion (e.g., Popp, 2002; Acemoglu and Linn, 
2004; Moscona, 2019). Despite this interesting work, Hall’s (2006) characterization of the study 
of diffusion as “a somewhat neglected one in the economics of innovation” still remains a fair 
observation.  
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Another related strand of literature looks specifically at programs that finance entrepreneurial 
firms and the research from which they spring. These papers typically look at the design of a single 
program, and exploit a discontinuity in program design to understand its consequences (e.g., 
Bronzini and Iachini, 2014; Criscuolo et al., 2017; Howell, 2017). While the cross-industry nature 
of our analysis implies that we must forego the sharp identification that characterizes many of 
these papers, we believe it can nonetheless yield valuable insights.  
 
The plan of this paper is as follows. Section 2 describes the construction of the data set. Section 3 
presents a first look at overall changes. We examine the differential patterns across geographic 
regions in Section 4. Section 5 looks at the role of academic hubs. The final section concludes the 
paper. 
 

2. Data Construction 
 
In this paper, we identify a set of recent and influential technologies. We associate with each new 
technology a set of business-relevant keywords, which will allow us to identify the evolution of 
these technologies. In particular, we seek to (a) build a firm-quarter-level measure of technology 
exposure, (b) use this measure to pinpoint when a given technology starts affecting businesses; (c) 
create a measure of technology exposure at the job-firm-location-quarter level, and (d) aggregate 
in various ways to measure technology adoption at the region and firm level. This section describes 
our approach in more detail. 
 

A. List of new technologies and associated keywords 
 
We initially want to identify influential technologies in as systematic manner as possible. We start 
by examining U.S. patent filings. Patents are an attractive starting point for our analysis for two 
reasons. First, they are by definition novel, particularly when we focus on the most influential 
patents. Second they must describe their technology and (at least some) key ways in which it is 
applied (the enablement requirement refers to the requirement of 35 U.S.C. 112(a)). We focus 
solely on patent awards by the U.S. Patent and Trademark Office (USPTO): because of the 
importance of the U.S. market, inventors worldwide will file important discoveries with the 
USPTO. 
 
More particularly, we identify patents with a primary or supplementary classification in the thirty 
three-digit technology classes with the most ultimately granted patents applied for between 1976 
and 2016.5  These thirty (out of 128 three –digit classes) account for the vast majority of activity, 
with roughly 88% of all patents filed here. For each class and application year, we then identified 
the ten most cited patents applied for in each year between 1976 and 2016. This approach yielded 
a total of 89,218 patents for analysis. 
 

                                                            
5 In this analysis, we employ the Combined Patent Classification (CPC) scheme, which is modeled 
after the International Patent Classification scheme and is far more conducive to economic analysis 
than its predecessor U.S.-specific scheme (Lerner, 1995). While the U.S. only switched to 
employing this scheme in 2013, it has retroactively classified earlier awards using this scheme. 
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We then study the language in these patents. From the text, we extract the universe of two-word 
combinations (“bigrams”), numbering about 17 million in total. We focus on bigrams because they 
were less ambiguous than single-word keywords: while words like “autopilot” or “cloud” could 
have a variety of colloquial meanings, “autonomous vehicle” and “cloud computing” were much 
less ambiguous. To undertake this processing, we follow the methodology in papers undertaking 
textual analyses of patents and earnings calls, such as Kelly et al. (2018) and Hassan et al. (2019). 
 
At the same time, many of the bigrams collected from the patents are not relevant for our purposes. 
One issue was that many of the bigrams, while related to a given technology, are not frequently 
encountered in business contexts, being too scientific or technical in nature. We address these 
concerns in two ways. 
 
First, we narrow the text down to “technical” bigrams by dropping the “non-technical” bigrams. 
To this end, we construct a library of “non-technical” bigrams using corpora collected by linguists.  
In particular, the Corpus of Historical American English (COHA) is a decade-by-decade 
representative sample of text constructed by linguists from prominent fiction and non-fiction 
sources. Similar to the patent text processing, we decompose this text into bigrams and construct 
a decade-by-decade library of “non-technical” bigrams (for instance, “of the,” “equipment used”). 
For patents applied for in a given year, we remove the bigrams that are included in the “non-
technical” library in the previous decade. For example, for a patent applied for in 2007, we remove 
bigrams that were mentioned in the non-technical library from 1990 to 2000. Figure A-1 illustrates 
the methodology to obtain technical bigrams from a patent.  Finally, in the remaining list of 
bigrams, we keep the most frequently appearing ones for each technology class and year. After 
these eliminations, we have a list of 15,716 “technical” bigrams in the most cited patents from 
1976 to 2016. 
 
In the second step, we focus on whether the bigrams figured into business discussion. Here we use 
earnings conference calls from publicly listed firms. We explain this in more detail in the section 
below. 
 
 

B. Earnings calls data 
 
Earnings call transcripts consist of two sections: a presentation by management (typically chief 
executive or financial officers) and then questions posed by investment analysts and the answers 
provided by the executives. 
  
We tabulate the bigrams in 321,373 conference calls held by 11,905 publicly held companies and 
compiled by Thomson Reuters between 2002 and 2020. Through this examination, we eliminate 
about 60% of the bigrams from the patents that do not ever figure in these calls. 
 
The final part of the data construction process focuses on the 500 technical bigrams most 
commonly encountered in the earnings calls. From this list, we use manual discretion to select 
those bigrams that appeared to clearly and unambiguously reflect specific technological advances 
that, in our reading, changed the way businesses operate. We then group those bigrams into 20 
technologies, which form the basis of our analysis. Table 1 shows this grouping for all 50 bigrams, 
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including, for example, “rapid prototyping,” “additive manufacturing,” “solar cell,” and “solar 
module,” where we group the former two bigrams to form a technology we refer to as 3D Printing, 
and the latter two to form the technology Solar Power.  
 
Another concern was that the language used by executives to characterize new technologies might 
not appear in patent awards. To explore the possibility that there was a business-specific 
vocabulary, we use an embedding vector algorithm trained on the set of earnings calls. This 
algorithm provides us a set of bigrams used in similar context to a given bigram. An embedding 
vector analysis employs a natural language processing algorithm to reduce a large corpus to a 
lower dimensional space using the contexts (neighboring words) that the words are used in, and as 
a byproduct provides a measure of the similarity (or the distance) between words in the corpus. 
We use the version of the algorithm that is an implementation of Mikolov et al. (2013). For each 
bigram in a given technology grouping, the algorithm suggests a list of “proximate” other bigrams. 
For example, the most proximate bigrams to “artificial intelligence” are “machine learning” and 
“deep learning.” From this list, we then add to the bigrams forming each technology those that, in 
our reading, also clearly and unambiguously describe the technology in question.  
 
At the end of the process, we wish to ensure that the shortlisted bigrams correctly captured firm-
level exposure to a given technology. To this end, we performed human audits where a team 
member went through 100 randomly sampled excerpts of the text from earnings calls for each 
bigram. He or she classified the snippet into true positive and false positive categories, along with 
suggestions regarding new keywords discovered and how the accuracy of the existing keywords 
could be improved. Finally, we incorporated the learnings from the human audit process and create 
a list of bigrams associated with 20 technologies.  
 
Table 2 provides the leading bigrams associated with a subset of technologies in the sample; Table 
A-1 provides a complete list of bigrams associated with each of the sample technologies. 
 

C. Burning Glass Job Postings 
 
As described in Hershbein and Kahn (2018), Burning Glass (BG) aggregates online job postings 
using “spider bots” from online job boards, employer websites, etc. into a machine readable, de-
duplicated database. From Burning Glass, we receive two datasets:  
 

 The first is a standardized dataset where each de-duplicated job posting is geo-coded and 
assigned to a Standard Occupational Classification (SOC), a United States government 
system of classifying occupations.  

 The second has raw unprocessed text of the job postings, which we use to assign exposure 
to our technology. Samples of the raw text in job postings with technology mentions are 
provided in Figure 1 and Figure 2.  

 
We receive these data from BG for 2007 and 2010-2020. We use the geo-coded dataset to assign 
job postings to a core-based statistical area (CBSA), using the scheme based on the 2010 Census. 
This dataset covers 917 CBSAs and 837 SOC codes.  
 

D. Constructing the Exposure Measures 
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Using these data, we then construct measures of exposure to the set of technologies for job 
postings, earnings calls and patents using the following rule: 
  

௜,఍,௧݁ݎݑݏ݋݌ݔ݁ ൌ 1ሼܾ఍߳	ܦ௜,௧ሽ, 
 
where ܦ௜,௧ is the set of bigrams contained in a job posting/earnings call/patent held or posted at 
time ݐ and ܾ఍ is a bigram associated with a technology ߞ. Essentially, a document is classified as 
exposed to a technology if it contains a bigram associated with the technology. Figure 1 and Figure 
2 provide illustrative Burning Glass job postings exposed to AI technology and solar technology, 
respectively. Table A-2 provides excerpts from earnings calls exposed to our technologies. 
 
We then aggregate over various documents D (job postings, earnings calls, and patents) to 
construct measures at occupation, firm, and geographic levels: 
  

௔,఍,௧݀݁ݏ݋݌ݔ݁	݁ݎ݄ܽݏ ൌ
∑ 1ሼܾ఍߳	ܦ௜,௧ሽ௜	ఢ	௔,௧

∑ 1ሼ	ܦ௜,௧ሽ௜	ఢ	௔,௧
 

 
where ܽ may be a firm, sector, urban region or occupation, and ݐ is time.  
 
Table 3a shows the top exposed occupations (using job postings) and in table 3b the top exposed 
firms (using earnings calls) for one sample technology.  
 

3. Key Employment Patterns 
 
We first seek to understand the overall patterns in the diffusion of these 20 technologies. The 
analysis suggests that growth in job postings referring to given technologies grows in tandem with 
references in earning calls. The general effect over time is for hiring to move from a sharp focus 
on high-skilled jobs to a much broader intake of workers. 
 
Figure 3 takes a first look at the adoption technologies. The 20 images plot two measures of activity 
on an annual basis for each technology. In each case, we depict the activity from shortly before 
the start date through 2019. 
 
First, the red line denotes the share of earnings calls that mention the given technology.  In some 
cases, such as touchscreen and RFID, the number of mentions climb and then fade, presumably 
reflecting the increasing ubiquity (and hence the declining competitive relevance) of the 
technologies. In others, such as 3-D printing and artificial intelligence, there is a steady climb over 
time.  
 
In each case, we begin about the time that the technology became significant, which we henceforth 
refer to as the “start date.” To compute this, for each of our technologies, we first take the 
maximum of the “share of earnings calls” time series in Figure 3. We take the start date to be the 
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year in which the time series first attains at least 10% of this value. Table A-3 in the Appendix 
lists the start date for each technology.6  
 
The second series, denoted with gray dots, indicates the share of positions in Burning Glass 
exposed to a given technology (as defined above). While in some cases, a given technology 
continues to be important in hiring even after its mentions in earning calls drop off (e.g., GPS 
technologies), in general the two series are quite closely correlated. The correlation coefficient 
between them across the figures is 0.68. The close tie between these series helps validate the 
reasonableness of our empirical methodology. 
 
We next turn to examining the skill component of technology job postings over time. Figure 4 
plots the same red line as in the previous table (the share of earnings calls exposed to a given 
technology) against a measure of skill of these job postings (the blue circles). We compute for 
each SOC code, as reported by Burning Glass, the corresponding skill level as reported in the U.S. 
Census Bureau’s American Community Survey for 2015. We present here the results with the 
share of employees in the position who are college educated. When multiple SOC codes are 
associated with a given technology τ in year t, we compute a weighted average of the Skill measure 
as follows: 
 

݈݈ܵ݇݅௧
చ ൌ 	

∑ ௢ܰ;௧
ఛ 	χ୭;ଶ଴ଵହ௢

∑ ௢ܰ;௧
ఛ

௢
 

 
where o is a Census SOC code, Nτ

o; t is the number of Burning Glass job postings exposed to 
technology τ and SOC code o at time t, and χo; 2015 is the average skill level for SOC o, as measured 
by the 2015 ACS sample.  
 
The figure suggests that in general there is a sharp decline in the skill level required for the 
positions associated with new technologies over time. Even in cases where demand for positions 
is sharply accelerating (such as AI and virtual reality), the share of skilled positions subsides over 
time. (LCD screens is one of the few exceptions.)  These results are consistent with the view that 
new technologies start with high-skill occupations and then pull in larger parts of the workforce 
over time.7 
 
We summarize this information by presenting a binned scatterplot in Figure 5. This depiction 
shows the relationship across all 20 technologies as time elapsed after the “start date” and the mean 
share of the workforce that is college educated. (We control as well for technology fixed effects.) 
The strong linear trend--the declining demand for a college-trained workforce--is apparent: the 
fitted line has an R2 in a simple linear regression of 81.9%. 
 

                                                            
6 We are currently assigning technologies that were above the 10% threshold in 2002 as starting 
in 2000. We will refine this methodology in the next version of the paper. 
7 In Figures A-2,A-3 and A-4 in the Appendix, we present similar measures, using instead wage 
income, average years of schooling and share of post graduate persons. The results are quite 
similar. 
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Table 4 looks at this relationship in a simple ordinary least squares (OLS) regression analysis. 
Here, we use five alternative measures of the skills required in the positions associated with a given 
technology. The sample consists of annual observations of each technology between 2007 and 
2019. The independent variables include the share of the weighted SOC classes that are college 
educated (as of 2015), the share with Ph.Ds., the share with graduate degrees, and mean wages, 
and the mean years of schooling. Each regression uses as the key independent variable the years 
since the start date, with controls for the technology and the calendar year of the observation. Using 
each measure, there is a strong negative relationship between the maturity of the technology and 
the reliance on a highly educated workforce. For instance, in Table 4 Column 1 and Column 4 
show that each additional year since start of the technology is associated with a fall of about 1.2%  
in share of college educated people and $1200 in wages for the job postings advertised for the 
technology. 
 
This skill broadening effect sheds an interesting light on how high-skilled labor is complementary 
to low-skilled work. While there is an important body of work highlighting the way in 
technological change has favored high-skilled occupations and contributed to wage inequality 
(Acemoglu, 2002; Goldin and Katz, 2010, Acemoglu and Autor, 2011 are examples), the way in 
which the hiring associated with new technologies can transition over time does not appear to have 
been previously documented. 
 

4. The Geographic Evolution of Nascent Technologies 
 
In the second part of the analysis, we examine how the evolution of job creation played out across 
geographies. We show that hiring in new technologies became less concentrated over time. But at 
the same time as we see this “region broadening,” the initial geographic hub retains its advantage. 
 
Figure 6 examines how the variation across regions (we use Core Based Statistical Areas – a 
division of the United States into metro and micropolitan areas) changes over time. To examine 
this, we create a measure entitled the Normalized Share of Technology jobs for every CBSA, 
technology τ, and year t: 
 

௖௕௦௔,ఛ,௧݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௖௕௦௔,ఛ,௧݀݁ݏ݌ݔ݁	ݏܾ݋݆	݁ݎ݄ܽݏ
ఛ,௧݀݁ݏ݌ݔ݁	ݏܾ݋݆	݁ݎ݄ܽݏ

, 

 
which reflects the regional over or underrepresentation of job postings associated with each 
technology relative to the overall distribution. This normalization allows us to control for the fact 
that, for instance, Los Angeles will have a large share of job posting of nearly every type and that 
different technologies may be implemented at very different scales at a given point in time.  
 
The figure depicts, for each technology, the ratio of the standard deviation and the mean of this 
measure across urban areas by year, or the coefficient of variation. The analysis reveals a sharp 
pattern. Across technologies, there is a sharp decline in the coefficient of variation. Put another 
way, the distribution of activity over time become more heterogeneous. 
 
Again, this decline can be illustrated in a binned scatterplot. Figure 7 shows the relationship across 
all 20 technologies between the time elapsed since the “start date” and the mean share of the 
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workforce that is college educated. (Once again, we add technology fixed effects.) The figure 
reveals a decline in the coefficient of variation over time. The fitted line has an R2 in a simple 
linear regression of 34.6%. 
  
This point can be underscored in a regression analysis. Table 5 examines the change in the 
concentration of job postings associated with new technologies using, in addition to the coefficient 
of variation, several measures of concentration: the mean squared deviation from one, the mean 
absolute deviation from the mean, the mean, the standard deviation, and the share of the top one 
percent of urban areas. Again, we regress these measures on the time since the technology’s start 
date, as well as year and technology dummies.  For all measures of deviation there is a strong 
negative relationship. Column 6 of Table 5 suggests that an additional year since technology start 
is associated with a 6.2% reduction in dispersion of technology relative to the mean. 
 
We next used the SOC codes to divide our sample of job postings into three categories. We 
undertake these divisions using the share of college educated in the SOC codes associated with the 
technologies. Again, we use information from the 2015 ACS to determine the training of 
individuals in various SOCs. We termed them high skilled (job postings for occupations with at 
least 60% college educated), medium (with 30% to 59% college educated) and low skilled (less 
than 30% college educated). For instance, almost all optometrists in the ACS are college educated: 
thus all job postings for optometrists are allocated to the high-skill category. We then examine 
how the decline in the coefficient of variation described above changes after the start date, and 
how these shifts differ across different skill levels. 
 
Figure 8 takes a first look at these patterns. It again is a binned scatterplot with technology-specific 
controls. It shows that the decline in the coefficient of variation across regions is substantially 
steeper for low-skilled jobs than that for medium- and especially high-skilled ones. While the low-
end jobs rapidly disperse across the country, the higher-end ones remain more bunched together. 
 
Table 6 takes another look at these patterns, emulating the structure of Table 5, but now breaking 
the observations of technologies into the three skill buckets. Across the five measures of dispersion 
reported, the duration since the start date has a consistently negative coefficient for the low-skilled 
group. By the time we reach the high-skilled group, only one coefficient is significantly negative. 
Many of the others have positive (if statistically insignificant) signs. Consistent with Figure 8, it 
appears that the decline in the concentration of job postings is much sharper in positions for lower-
skilled workers. 
 
A follow-on analysis, Table 7, examines pooled regressions across the technologies. The unit of 
observation is at the technology-year level, with the measures of dispersion used in Table 6 as the 
dependent variables. Again controlling for year and technology fixed effects, we include as before 
the time since the start date as an independent variable; but now we also include an indicator 
indicating if the observation is for a low-skilled occupation, and an interaction between this 
dummy and the duration measure. In all the regressions for measures of dispersion, the interaction 
term is significantly negative. The analysis suggests that jobs associated with new technologies in 
general become less concentrated over time, but that the decline of concentration is indeed faster 
in low-skilled occupations. For example, if we look in column (4), the coefficient on time is -0.093 
suggesting that the standard-deviation (our measure of dispersion) of technology jobs falls by 4.6% 
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each year (given the sample mean of 2.74). The coefficient for the interaction with low-skill is -
0.091, so that for low skilled jobs this dispersion falls at a rate of -0.184 (adding these coefficients) 
almost double the rate for the excluded category of medium and high skilled jobs. 
 
The last two tables in this section look at the normalized number of technology job postings over 
time as the dependent variable. Table 8 presents an analysis at the technology-year-CBSA level.  
 
The first two columns look at the persistent advantage of technology hubs. We characterize the 
hubs in two manners. The first panel uses as the key independent variable the number of job 
postings associated with a given technology in a CBSA at the start date; the second a dummy 
designating whether the region was a technology hub.  (We define the hubs for a given technology 
as the CBSAs in the starting year or 2007—whichever is later—that collectively accounted for 
80% of the job postings in the nascent technology.8) Each regression controls for the region, the 
year, the duration since the start date, and the technology. 
 
In general, we see a strong pattern of continuity in where the new jobs locate. The number of jobs 
posted in a given technology and urban area in the starting year has strong predictive power for 
the location of jobs posted in future years. While there is a modest dissipation of this effect in the 
regressions, it would take many decades—in some specifications, more than a century—for the 
initial advantage to dissipate based on the predicted decay rates. 
 
The last two columns of Table 8 look at the impact of being proximate to a technology hub. Rather 
than looking at the initial employment in the CBSA itself, we look at that in nearby CBSAs. (We 
exclude hubs themselves from the analysis.) In particular, we compute the inverse distance 
weighted average for each non-hub CBSA. This measure is defined as: 
 

ሻ௖,చܾݑ݄	݄ܿ݁ݐሺܹܦܫ ൌ
Σ௖ 1 ௖,௖ᇱൗݐݏ݅݀ 1ሼ݄ܿ݁ݐ	ܾݑ݄ሽ௖ᇱ

Σ௖ 1 ௖,௖ᇱൗݐݏ݅݀
, 

 
where ݀݅ݐݏ௖,௖ᇱ is the distance between CBSA c and CBSA c’, and 1ሼ݄ܿ݁ݐ	ܾݑ݄ሽ௖ᇱ is an indicator 
for a technology hub. Each regression again controls for the urban region, the year, the duration 
since the start date, and the technology.  
 
The results suggest a strong positive impact of proximity. Those urban areas that are near 
technology hubs also see far higher levels of technology jobs, consistent with the strong persistence 
of hiring in hubs documented above. The interaction with time in column (4) is negative but not 
significant, suggesting little (if any) diminution in the benefits of being located near a technology 
hub.  
 
In Table 9, we repeat the analysis in Panel B in Table 8 (that is, using the technology hub 
designation) but further dividing the job postings into low-, medium-, and high-skilled jobs. 

                                                            
8 All regressions take inverse hyperbolic sines of the key independent variables, which is a 
generalization of the logarithmic transformation. The one exception is the first two regressions in 
Panel B, where the key independent variables are 0/1 dummies.  
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Consistent with the results in Table 7, we see that there is a strong differential in the concentration 
of jobs. There is much greater concentration over time in high-skilled jobs. In general, the decay 
effects over time are modest, as in Table 8, with lower skilled jobs seeing faster decay than medium 
skilled jobs and particularly highly skilled jobs.  
 

5. Academia and Technology Hubs 
 
Up until this point, we have ignored the characteristics of the original locations where the 
technologies did the bulk of their hiring at the time of the start date. In the final section, we explore 
their features. As we saw in Section 4, these initial location decisions have enormous implications 
for the subsequent locations of jobs, particularly high-skilled ones. In particular, we highlight that 
there is a strong relationship between academic centers and where nascent industries begin.  
 
Table 10 takes a first look at this question, looking at the job postings in the starting year in each 
urban area across technologies. We take the start date to be 2007 for technologies that started 
before the coverage of the BG data. We use as a dependent variable the normalized share of jobs 
in a given technology, defined as before and winsorized at the 1% level. The key independent 
variables are the number of research universities in the urban area, the volume of university R&D 
spending in that year, and the share of the population that is college educated or has a post-graduate 
degree. The number of research universities is calculated using the number of institutions which 
grant a bachelor’s or higher degree and had at least $150,000 allocated separately for R&D 
expenditures during 2013 fiscal year. We determine this information from the higher education 
R&D survey and ACS 2015. Finally, this analysis controls for technology specific fixed effects.  
 
The analysis suggests a strong cross-sectional pattern. Urban regions with a greater academic 
presence—whether manifested by greater research university presence or a more educated 
workforce—were more likely to enjoy a surge of initial hiring as a new industry emerges. 
 
Figure 9 looks at this pattern graphically. The strong positive relationship between the normalized 
share of jobs for each technology and the number of research universities is evident.  
 
We can estimate a similar regression, now looking at specific technologies. Table 11 presents the 
results of this analysis when use the number of research universities in an urban area and their 
R&D spending as dependent variables. The t-statistics on the academic variables are almost 
entirely positive and statistically significant, suggesting that this pattern is not driven by any single 
technology or a handful of ones. The other academic-related variables produce similar results. 
 
We undertake a similar analysis, now pooling all the observations of the different technologies. 
We then can estimate the overall sensitivity of the number of job postings in a given urban area, 
technology, and year to the presence of research universities. Figure 10 presents the results of such 
an analysis.  
 
Again, we see a strong positive relationship between the share of job postings in each technology, 
year, and region and the amount of academic activity. For instance, in the upper-left panel, which 
examines the number of research universities, as we move from one to three universities (from 
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zero to a little more than one when the logarithm is taken), the predicted coefficient moves from 
about 0.35 to about twice this level.  
 

6. Conclusion 
 

Policymakers have devoted enormous energy in recent years to seeking to develop capabilities in 
nascent technologies. Such an infant industry strategy is predicated on the notion that early 
advantages will yield lasting benefits for regions, particularly in the form of high-quality 
employment. 
 
This analysis suggests a nuanced view. On the one hand, the skill-broadening and region-
broadening effects documented here suggest that it is naïve to equate new technologies exclusively 
with high-skilled jobs. Similarly, employment from new technologies diffuses over time 
geographically. The complementarities over time between high- and low-skilled positions 
associated with new technologies are also intriguing.  
 
On the other hand, the disproportionate share of the employment activity in the initial hub appears 
to be very persistent. This effect is most pronounced among the high-skilled positions, which may 
be particularly desirable. The strong association of academia with the location of the initial hubs 
is also striking. 
 
The analysis leaves several questions open, which we hope to explore in the next draft of the paper. 
The first relates to the drivers of the persistence hiring activity in initial technology hubs. To what 
extent is it driven by hiring by the initial entrants or the start-ups that they spawn? Or is it instead 
largely a consequence of rehoming by incumbent firms based elsewhere? A related question is 
what types of firms choose to rehome. Is it the firms that were particularly prescient in identifying 
the new technology? Those who saw it as it as an especial competitive threat? Answers to these 
questions will help us better explain these fascinating phenomena. 
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Table 1 - Top selected bigrams from Patenting and EC process 

Bigram # EC Technology group 
flat panel 1864 lcds 
fiber optic 1527 optical fiber 
disk drive 1421 disk drive 
monoclonal antibody 1296 monoclonal antibody 
fiber network 1280 optical fiber 
disk drives 1012 disk drive 
mobile computing 965 cloud 
virtual reality 928 virtual reality 
solar cell 786 solar 
panel display 770 lcds 
monoclonal antibodies 749 monoclonal antibody 
fiber optics 736 optical fiber 
touch screen 720 touch screen 
coalbed methane 555 fracking 
smart card 555 smart card 
solar panel 533 solar 
hydraulic fracturing 516 fracking 
hybrid electric 511 electric cars 
optical fiber 497 optical fiber 
additive manufacturing 463 3dprinting 
fiber networks 441 optical fiber 
machine vision 363 machine vision 
cellular phone 355 smartphone 
unmanned aerial 337 drone 
solar modules 329 solar 
global positioning 328 gps 
solar module 317 solar 
autonomous vehicle 310 driverless 
hybrid vehicle 243 electric cars 
rapid prototyping 228 3dprinting 
oled display 224 oled 
vehicle charging 211 electric cars 
unmanned aircraft 196 drone 
disc drive 194 disk drive 
touch panel 171 touch screen 
fiber cable 153 optical fiber 

 
Notes: The table lists (in Column 1) top shortlisted bigrams and their technology groups (in Column 3) from the 
process detailed in section 3, by the number of earnings calls that the bigrams were mentioned in (in Column 2). We 
use these bigrams to select 20 prominent recent technologies. 
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Table 2 - Top Keywords for sample technologies by number of online job postings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The table lists top bigrams (in Column 1 for each technology) by the number of online job postings that they 
are mentioned in (Column 2) 2007-19, for 4 out of 20sample technologies. For a full list of all bigrams associated with 
the set of 20 technologies, refer to Appendix Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

electric cars AI 
keyword jobs keyword jobs 
electric vehicles 90348 machine learning 1212056
electric vehicle 57993 artificial intelligence 283341
hybrid electric 14670 predictive analytics 166832
electric drive 9960 deep learning 140793
electric cars 8313 language processing 120323
electric car 6574 neural networks 48776
hybrid vehicle 6366  
electric hybrid 5106  
hybrid vehicles 3992  
electrical vehicle 2861       
   

fracking 3dprinting 
keyword jobs keyword jobs 
hydraulic fracturing 10519 rapid prototyping 105885
shale gas 9258 d printing 68132
horizontal drilling 6303 additive manufacturing 39123
fracking 6300 d printers 17304
unconventional gas 5526 d printer 9021
shale plays 3684 d printed 4448
shale oil 2254 d print 3886
gas shale 1393 binder jetting 124
unconventional shale 1097  
oil shale 911       
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Table 3a - Top Exposed Occupations to Virtual Reality 

Standard Industry Occupation Name 
Total 
Jobs 

Exposed 
Jobs 

% 
Exposed 

Computer Hardware Engineers 100329 1000 1
Fine Artists, Including Painters, Sculptors, and Illustrators 67574 658 0.97
Multimedia Artists and Animators 75492 607 0.8
Computer and Information Research Scientists 233763 1630 0.7
Art Directors 84990 422 0.5
Sound Engineering Technicians 29187 140 0.48
Interior Designers 92453 382 0.41
Producers and Directors 152199 576 0.38
Astronomers 11905 45 0.38
Computer Science Teachers, Postsecondary 36470 134 0.37
Social Science Research Assistants 56496 207 0.37
Biomedical Engineers 18654 65 0.35
Film and Video Editors 16458 56 0.34
Instructional Coordinators 187871 587 0.31
Commercial and Industrial Designers 205700 632 0.31
Communications Teachers, Postsecondary 20412 62 0.3
Natural Sciences Managers 349157 1027 0.29
Helpers--Electricians 20492 60 0.29
Designers, All Other 226587 575 0.25

 
Notes: The table above lists top exposed occupations (in column 1) by percentage of job postings (in Column 4) 
exposed to virtual reality technology. Table only shows occupations with at least 10,000 job postings in Burning Glass 
between 2007 and 2019. 
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Table 3b - Top Exposed Firms to Virtual Reality 

Company SIC 

Tech 
Exposure 
(in pct.) # ECs 

Snap Inc 7370 100% 12 
Gannett Co Inc 2711 59% 17 
Facebook Inc 7370 52% 31 
Dave & Buster's Entertainment Inc 5810 50% 20 
eMagin Corp 3679 48% 64 
Lumentum Holdings Inc 3576 47% 19 
DIRTT Environmental Solutions  2522 41% 17 
Adobe Inc 7372 40% 30 
Shopify Inc 7370 37% 19 
Wayfair Inc 5961 36% 22 
GoPro Inc 3861 35% 23 
Immersion Corp 7372 31% 65 
InvenSense Inc 3674 30% 20 
Shanda Interactive Entertainment 7370 30% 27 
GSV Capital Corp 6797 28% 29 
MicroVision Inc 3679 27% 71 
Technicolor SA 7812 27% 15 
Charter Communications Inc 4841 27% 15 
AVEVA Group PLC 7372 27% 15 

 
Notes: The table above lists top exposed firms (in column 1) by percentage of earnings calls (in column 3) mentioning 
virtual reality technology. Table only shows firms with at least 10 earnings calls in the Thomson Reuters database 
between 2002 and 2019. 
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Table 4 - Skill measure of technology job postings against year since start 

  (1) (2) (3) (4) (5) 

 
share college 

educated * 100 

share phd * 
100 

share post 
graduate * 

100 
avg. wage 

avg. 
schooling 

years since start -1.243*** -0.0698*** -0.493*** -1,248*** -0.0654*** 
 (0.245) (0.0167) (0.0963) (248.7) (0.0130) 
   

Observations 203 203 203 203 203 
R-squared 0.833 0.971 0.892 0.835 0.854 
Tech FE YES YES YES YES YES 
Year FE YES YES YES YES YES 
 
Notes: This table reports the results from a regression of approximate skill composition of technology jobs ݈݈ܵ݇݅௧

చ ൌ

	
∑ ே೚;೟

ഓ 	஧౥;మబభఱ೚

∑ ே೚;೟
ഓ

೚
 on the left hand side, where 	χ୭;ଶ଴ଵହ is the skill measure of interest from ACS 2015 at the occupation 

level), against the years since start of the technology on the right hand side. The regression uses online Burning Glass 
job postings data between 2007 and 2019. Standard errors are clustered by technology. 
 
 
 
 

Table 5 - Concentration during the technology life cycle 

  (1) (2) (3) (5) (6) 

 
Mean sq. dev. 

from 1 
mean abs. dev. 

from mean 
Normalized 
share top 1% SD CV 

years since 
start 

-0.0505*** -0.0120*** -0.150*** -0.0245*** -0.0625** 
(0.0167) (0.00415) (0.0466) (0.00503) (0.0219) 

Observations 203 203 203 203 203 
R-squared 0.669 0.915 0.835 0.878 0.929 
Tech FE YES YES YES YES YES 
Year FE YES YES YES YES YES 
 
Notes: This table reports the results from regressions of various measures of concentration during lifecycle of a 
technology regressed on years since inception of the technology. The dependent variables are aggregations over 

௖௕௦௔,ఛ,௧݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ	௖௕௦௔,ఛ,௧ for every technology and year, where݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೎್ೞೌ,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

. 

Mean sq dev from 1 is calculated as the average over square deviations of normalized share of technology jobs for 
every CBSA from 1, Mean abs dev from mean is calculated as the average over absolute deviations of normalized 
share across CBSAs over its average, Mean Top 1% share is calculated as the average normalized share of tech jobs 
for top 1% of CBSAs, and similarly others. ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧ is winsorized by technology and year.  SD is 
standard deviation of normalized shares across CBSA and CV is the coefficient of variation of this. Standard errors 
for all specifications are clustered by technology. 
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Table 6 - Concentration during the life cycle - By Skill 

Panel A: Low Skill 

(1) (2) (3) (4) (5) 

Mean sq. 
deviation 

from 1 

Mean abs. 
dev. from 

mean 

Normalized 
share top 1% 

SD CV 

years since start -0.185*** 
-

0.0320*** -0.520*** -0.0727*** -0.106*** 

 (0.0370) (0.00551) (0.0732) (0.00701) (0.0264) 
   

Observations 202 202 202 202 200 

R-squared 0.859 0.800 0.832 0.831 0.891 
  

Panel B: Medium Skill (1) (2) (3) (5) (6) 

years since start -0.124* -0.0133 -0.268** -0.0365** 
-

0.0924***

 (0.0674) (0.0133) (0.107) (0.0178) (0.0279) 
   

Observations 203 203 203 203 202 

R-squared 0.568 0.849 0.807 0.826 0.934 
  

Panel C: High Skill (1) (2) (3) (5) (6) 

years since start -0.0837** -0.0107 -0.107 -0.0192* -0.0532* 

 (0.0373) (0.00984) (0.0777) (0.0107) (0.0274) 
   

Observations 203 203 203 203 202 

R-squared 0.733 0.908 0.866 0.890 0.945 

Tech FE YES YES YES YES YES 

Year FE YES YES YES YES YES 

 
Notes: This table reports the results from regressions of various measures of concentration during lifecycle of a 
technology by skill against year since start of the technology. To calculate the different measures of concentration by 
skill, we aggregate the job postings data over occupation, CBSA and year, and then separately for high skill 
occupations (with share of college educated people > 60%), medium skill occupations (with share of college educated 
people > 30%), and low skill occupations (with share of college educated people < 30%). Finally, the measures of 
concentration are calculated over ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧,௦௞௜௟௟ across CBSAs by skill group, technology and time, 
similarly as in table 5. Standard errors are robust. 
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Table 7 - Concentration during the life cycle - High vs Low skill 

  (1) (2) (3) (4) (5) 

 

Mean sq. 
deviation 

from 1 

Mean abs. 
dev. from 

mean 

Normalized 
share top 1% 

SD CV 

            
(year since t0) * 
(skill == low) 

-0.0905*** -0.0269*** -0.388*** -0.0552*** -0.0527*** 

 (0.0310) (0.00520) (0.0677) (0.00920) (0.0134) 
(year since t0) -0.0932** -0.0102 -0.134* -0.0214** -0.0568*** 

 (0.0421) (0.00833) (0.0682) (0.0107) (0.0210) 
   

Observations 405 405 405 405 402 
R-squared 0.539 0.817 0.756 0.786 0.879 
Tech FE YES YES YES YES YES 
Skill FE YES YES YES YES YES 
Year FE YES YES YES YES YES 
 
Notes: This table tests for differential dispersion trends for high and low skill technology job postings by regressing 
various measures of concentration (as in table 5) against the interaction term (year since t0) * (skill == low). To 
calculate the different measures of concentration by skill, we aggregate the job postings data over occupation, CBSA 
and year, and then separately for high skill occupations (with share of college educated people > 60%), medium skill 
occupations (with share of college educated people > 30%), and low skill occupations (with share of college educated 
people < 30%). Finally, the measures of concentration are calculated over ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧,௦௞௜௟௟ across 
CBSAs by skill group, technology and time. The regression only uses data for low and high skill occupations, 
excluding medium skill occupations. Standard errors are robust. 
 
  



24 
 

 
 

Table 8 - Differential hiring for Technology hubs 

Panel A: W/ intensive margin 
(1) (2) (3) (4) 

Normalized Share 
          
IHS(tech jobs at t0) 0.314*** 0.346*** 0.295*** 0.295*** 

 (0.0156) (0.0163) (0.0152) (0.0152) 
ihs(tech jobs at t0)  * (year since 
technology start) 

-0.00297***  
(0.000846)  

IHS(IDW(tech jobs at t0)) 
0.317*** 0.359*** 
(0.0431) (0.0492) 

ihs(IDW(tech jobs at t0))  * (year 
since technology start) 

 -0.00353 
 (0.00233) 

  
Observations 140,537 140,537 140,537 140,537 
R-squared 0.220 0.221 0.224 0.224 

  
  

Panel B: W/ tech hub dummy (1) (2) (3) (4) 

          
tech hub 0.565*** 0.883***  

 (0.0340) (0.0614)  
tech hub*(year since t0)) -0.0261***  

 (0.00419)  
ihs(IDW(tech hub)) 0.216*** 0.201*** 

 (0.0357) (0.0452) 
ihs(IDW(tech hub))*(year since t0))  0.00115 

  (0.00224) 
  

Observations 140,537 140,537 134,092 134,092 
R-squared 0.171 0.173 0.112 0.112 

Tech FE YES YES YES YES 
Year FE YES YES YES YES 
Year since FE YES YES YES YES 
CBSA FE YES YES YES YES 

 
Notes: The table shows results from regression of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧,௦௞௜௟௟ against the total number of jobs for 
the cbsa at the time of start of the technology (in Panel A) and technology hub status dummy of the CBSA (in Panel 
B). ihs(tech jobs at t0) denotes the inverse hyperbolic sine of the absolute number of technology jobs at time t for 
CBSA c. Top CBSAs which account for 80% of total technology job postings at t0 are given a technology hub status 
for a technology. ihs(IDW(tech jobs at t0))) denotes the inverse hyperbolic sine of the total inverse distance weighted 
(distance between CBSAs c and c') technology jobs for CBSA c. Similarly, ihs(IDW(tech hub)) is the inverse distance 
weighted technology hub measure for a CBSA c. These results exclude observations at the time of and before the start 
year of a technology, and exclude CBSAs with less than 1000 job postings. Panel B, Column (3) and (4) exclude 
observations for technology hubs. Standard errors for all specifications are robust. 
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Table 9 - Differential Hiring for Technology Hubs by Skill 

Panel A: Low Skill 
(1) (2) (3) (4) 

Normalized Share 
          
tech hub 0.449*** 0.954***  

 (0.0388) (0.0765)  
tech hub*(year since t0)) -0.0405***  

 (0.00540)  
IHS(IDW(tech hub)) 0.382*** 0.595*** 

 (0.0614) (0.0766) 
IHS(IDW(tech hub))*(year since t0)) -0.0164*** 

 (0.00380) 
  

Observations 169,099 169,099 169,099 169,099 
R-squared 0.085 0.089 0.082 0.083 

  
Panel B: Medium Skill (1) (2) (3) (4) 
          
tech hub 0.558*** 0.830***  

 (0.0370) (0.0698)  
tech hub*(year since t0)) -0.0226***  

 (0.00480)  
IHS(IDW(tech hub)) 0.498*** 0.576*** 

 (0.0523) (0.0617) 
IHS(IDW(tech hub))*(year since t0)) -0.00608** 

 (0.00286) 
  

Observations 169,099 169,099 169,099 169,099 
R-squared 0.140 0.142 0.134 0.134 

  
Panel C: High Skill (1) (2) (3) (4) 
          
tech hub 0.660*** 0.839***  

 (0.0438) (0.0677)  
tech hub*(year since t0)) -0.0151***  

 (0.00451)  
IHS(IDW(tech hub)) 0.562*** 0.602*** 

 (0.0629) (0.0704) 
IHS(IDW(tech hub))*(year since t0)) -0.00313 

 (0.00334) 
  

Observations 169,099 169,099 169,099 169,099 
R-squared 0.187 0.188 0.178 0.178 
Tech FE YES YES YES YES 
Year FE YES YES YES YES 
Year Since FE YES YES YES YES 
CBSA FE YES YES YES YES 

Notes: This table reports the results from regressions of	ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧,௦௞௜௟௟ on technology hub status 
dummy of the CBSA and the inverse distance weighted technology hub measure for the CBSA c, separately for low 
skill (panel A), medium skill (panel B) and high skill (panel C). To calculate the different measures of concentration 
by skill, we aggregate the job postings data over occupation, CBSA and year, and then separately for high skill 
occupations (with share of college educated people > 60%), medium skill occupations (with share of college educated 
people > 30%), and low skill occupations (with share of college educated people < 30%). Finally, the measures of 
concentration are calculated over ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧,௦௞௜௟௟across CBSAs by skill group, technology and time. 
Standard errors are robust. These results exclude observations at the time of and before the start year of a technology, 
and exclude CBSAs with less than 1000 job postings. Standard errors for all specifications are robust. 
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Table 10 - Technology hiring at the beginning year by skilled composition 

  (1) (2) (3) (4) 
 
          
log(1 + # research unis) 0.284***  

 (0.0279)  
log(1+ R and D uni spend) 0.0314***  

 (0.00298)  
Share College Educated 2.852***  

 (0.260)  
Share post graduate 6.496*** 

 (0.649) 
  

Observations 18,531 18,531 18,340 18,340 
R-squared 0.049 0.050 0.055 0.055 
Tech FE YES YES YES YES 

 
Notes: The table presents results from a regression of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧ at time t0 on various measures of 
skill level of the CBSA. For some of our technologies, we do not have BG coverage throughout their lifetime. For 
these technologies, we take the starting year to be 2007, the starting year for our BG sample. Standard errors for all 
specifications are clustered by CBSA. Standard errors for all specifications are robust 
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Table 11 - Regression of Normalized Share on uni variables by technology 

technology start year tstat log(1+research uni) tstat - log(1 + research uni spend) 
lcds 2000 5.06 4.69 
rfid 2003 6.84 5.84 
electric cars 2005 2.72 2.88 
smartcard 2000 6.96 6.12 
opticalfiber 2000 -0.89 -0.23 
3dprinting 2005 4.41 3.96 
smartphone 2006 6.53 6.29 
bluetooth 2000 5.57 4.68 
driverless 2014 4.02 4.21 
oled 2002 3.18 3.09 
monoclonal antibody 2000 4.58 4.81 
fracking 2003 1.71 1.75 
machine vision 2000 2.54 2.37 
virtual reality 2015 5.93 6.15 
solar 2003 3.34 3.5 
gps 2000 1.04 1.63 
ai 2014 10.88 9.83 
diskdrive 2000 5.5 5.2 
touchscreen 2002 1.83 1.79 
cloud 2008 9.13 8.52 

 
Notes: The table presents t-stats of regressions of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧ on university 
presence (in column 3) and research budget of universities (in column 4) in the CBSA, technology 
by technology (in column 1). T-stats are calculated using robust standard errors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

Appendix Tables 
 

Appendix Table 1 - List of Keywords by Technology 

technology keywords 

3dprinting 
3d printing,3d printed,3d printer,3d printers,3d print, additive manufacturing, inkjet 
bioprinting, binder jetting, rapid prototyping 

ai 
artificial intelligence, machine learning, neural networks, deep learning, predictive 
analytics, language processing 

bluetooth bluetooth 

cloud 

cloud computing, cloud technology, cloud resources, cloud storage, cloud applications, 
cloud services, public cloud, cloud business, private cloud, cloud service, hybrid cloud, 
cloud platform, cloud infrastructure, cloud solutions, cloud providers, cloud offering, 
cloud revenue, cloud offerings, cloud solution, cloud based, service cloud, cloud 
customers, cloud data, enterprise cloud, cloud environment, mobile computing, cloud 
security, cloud environments, cloud deployments, cloud application, cloud platform 

disk drive disk drive, disc drive, hard drive, hard disk, hard disc 

driverless 

autonomous car, autonomous cars, selfdriving car, selfdriving cars, selfdriving truck, 
selfdriving trucks, autonomous trucks, autonomous vehicles, selfdriving vehicles, 
autonomous driving, autonomous vehicle, automated driving, driverless car, driverless 
cars, driverless vehicle, driverless vehicles 

electric cars 

electric car, electric vehicle, electric cars, electric vehicles, electric hybrid, hybrid car, 
hybrid bus, electric bus, hybrid vehicle, hybrid electric, hybrid vehicles, electric drive, 
plugin hybrid, hybrid cars, electric buses, vehicle charging, electrical vehicles, 
electrical vehicle 

fracking 
horizontal drilling, coalbed methane, unconventional gas, hydraulic fracturing, tight 
sandstones, shale rock, shale gas, shale oil, unconventional shale, oil shale, gas sands, 
shale plays, gas shale, hydraulic fracturing, fracturing activity, fracking 

gps global positioning, gps 

lcds flat panel, lcd, panel display, panel tv, flatpanel 

machine vision machine vision 

monoclonal antibody monoclonal antibody, monoclonal antibodies 

oled oled 

optical fiber 
optical fiber, optical fibre, fiber optic, fibre optic, fiber optics, fibre optics, optical 
transport, optical networks, fiber access, fiber channel, fiber cable 

rfid rfid 

smartcard smart card, smart cards 

smartphone 
smart phone, smart phones, samsung galaxy, android phone, android phones, 
smartphones tablets, smartphone, smartphones, iphone 

solar 

solar power, solar energy, solar business, solar cell, solar projects, solar market, solar 
capital, solar industry, solar cells, solar panels, solar project, solar panel, solar pv, solar 
module, solar modules, solar side, solar technology, solar farm, solar products, solar 
assets, solar systems, solar industries, solar generation, solar pwr, solar markets, solar 
wafer, solar plant, solar grade, solar capacity, solar facility, solar farms, solar 
companies, solar plants, solar installations, solar equipment, solar product, solar 
technologies, solar thermal, solar customers, solar segment, solar applications, solar 
installation, solar materials, solar facilities, solar sales 

touch screen touch screen, touch screens, touchscreen, touchscreens 

virtual reality virtual reality, augmented reality, mixed reality 

Notes: The table provides list of all keywords (in Column 2) by technology (in Column 1) for each of the 20 technologies in 
our sample. This list is first constructed using most cited patents from 1976-2016, then extrapolated using embedding vectors 
algorithm trained on Earnings calls, and finally, corrected using human audit checks performed individually for each keyword. 
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Appendix Table 2 - Selected Earnings Calls Excerpts of Top Exposed Firms 

Technology 
Company Name 
(Tech Exposure) 

Month Excerpt 

RFID 
Progressive Gaming 
International 
Corp(0.81) 

May-2005 

on that and we today are tracking approximately 
million per day of bets using RFID technology so 
i think the speculation that is RFID a viable 
technology to track bets 

Optical 
fiber 

Optical 
Communication 
Products Inc(1.0) 

Nov-2003 

and optical transponders with indiscernible 
ranging from oc oc oc to indiscernible ethernet and 
FIBER CHANNEL  oc or gbps and ocy gbps 
indiscernible ranging from several hundred meters 
to over 

LCD 
Samsung Electronics 
Co Ltd(1.0) 

Jan -2009 

with tvs the tv divisions third quarter market share 
was number one in the FLAT PANEL tvs and 
LCD tv segment in terms of both shipment and 
revenue in addition 

Bluetooth 
Dialog 
Semiconductor 
PLC(1.0) 

Nov-2019 

in new product development in iot we continue to 
increase our footprint with our BLUETOOTH 
low energy products which delivered year-on-year 
revenue growth in q consumer appetite for a 
growing 

AI Cloudera Inc(1.0) Jun-2017 

build scale and deploy MACHINE LEARNING 
solutions using the most popular programming 
languages and DEEP LEARNING frameworks 
our data science workbench delivers to the market 
the ip that we acquired 

3dprinting Voxeljet AG(1.0) Nov-2019 

our technology are flying in space and we are 
implementing with vjet an ADDITIVE 
MANUFACTURING solution for true mass 
production in our indirect parts segment  

Cloud Basware Oyj(1.0) Jan-2019 

of sales comes primarily or the costs in cogs is 
primarily related to the CLOUD BUSINESS  
cloud grew kind of doubledigit while then cost of 
sales in q came down 

SmartCard 
Next Biometrics 
Group ASA(1.0) 

Nov-2018 

we see is a new wave of biometric applications 
that are emerging in the SMART CARD and 
government identification space these markets 
require a largesized sensor so that you can 

Notes: The table reports excerpts with 15 words each side of a technology keyword (in column 4) from earnings 
calls of top exposed firms (in column 2) for a handful of technologies (in column 1). The sample of earnings calls 
is between 2002 and 2019. Exposure for each of the firms is calculated as the percentage of earnings calls exposed 
to the technology and reported for each firm in brackets in column 2. 
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Appendix Table 3 - Start Year by Technology 

tech start year
3dprinting 2005
ai 2014
bluetooth 2000
cloud 2008
disk drive 2000
driverless 2014
electric cars 2005
fracking 2003
GPS 2000
LCDs 2000
machine vision 2000
monoclonal antibody 2000
OLED 2002
optical fiber 2000
RFID 2003
smart card 2000
smart phone 2006
solar 2003
touch screen 2002
virtual reality 2015

 

 

 

 

 

 

 

 

 

Notes: The table reports start year (in Column 2) for each of the 20 
technologies (in Column 1) in our sample. The start year is 
calculated as the year in which the share of firms (in Earnings calls) 
first attains 10% of the maximum between 2002 and 2019. For 
technologies, which start out at 10% of the sample max in 2002, we 
denote their start years to be 2000.  



31 
 

Appendix Table 4 – Summary Statistics 

Panel A: Occupation Level N Mean SD P10 P25 P50 P75 P90 

technology jobs 174,140 41.19 852.93 0.00 0.00 0.00 2.00 21.00 

wage 21,850 41,298.11 27,429.40 16,859.27 23,693.96 33,643.25 48,301.86 74,628.82

share phd 21,850 0.02 0.07 0.00 0.00 0.00 0.01 0.05 

share post graduate 21,850 0.14 0.23 0.01 0.01 0.03 0.16 0.47 

share college educated 21,850 0.33 0.31 0.04 0.07 0.18 0.54 0.84 

avg. years of schooling 21,850 13.85 2.02 11.84 12.29 13.40 14.87 16.57 

Panel B: CBSA Level  

normalized share of technology jobs 188,468 0.49 1.44 0 0 0 0.50 1.37 

technology exposed jobs at t0 18,531 6.03 77.42 0 0 0 0 4 

# of research unis in the CBSA 18,531 0.66 2.24 0 0 0 1 2 

research uni expenditure 18,531 71,542.28 28,8430.10 0 0 0 2,860 162,658 

PanelC: CBSA - Skill Level  

Normalized share (low skill) 203,195 0.49 1.95 0 0 0 0.08 1.30 

Normalized share (medium skill) 203,960 0.45 1.78 0 0 0 0 1.23 

Normalized share (high skill) 203,960 0.37 1.44 0 0 0 0 0.92 
Notes: The table provides summary statistics for datasets at the occupation level (Panel A), CBSA level (Panel B), CBSA-skill level (Panel C) aggregated year 
by year and pooled for each of our 20 technologies. In Panel A, technology hiring data at the occupation level is aggregated over 6-digit SOC occupation codes 
provided by BG between 2007 and 2019. Wage, share of phds and other skill data is collected from the American Communities survey 2015 at the occupation 

level. In Panel B, technology hiring data is aggregated over CBSA using BG geo-code job postings. ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೎್ೞೌ,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

 Where 

 ௖௕௦௔,ఛ,௧ is the percentage of job postings geo-coded to a CBSA and exposed to a technology. Number of research universities and their݀݁ݏ݌ݔ݁	ݏܾ݋݆	݁ݎ݄ܽݏ
research expenditure is obtained from Higher Education Research and Development Survey and aggregated over CBSAs. In Panel C, we repeat the same process 
as in Panel B but separately for low, medium and high skill occupations. Normalized share of technology jobs is winsorized by technology and year. 



Notes: The picture is a sample job posting, which mentions AI technology related keywords, with a standardized job title, processed by Burning Glass, and the text of the job
advertisement posted online on glassdoor.com.

Figure 1 – Sample Job for AI Technology



Figure 2 – Sample Job for Solar Technology

Notes: The picture is a sample job posting, which mentions solar technology related keywords, with a standardized job title, processed by Burning Glass, and the text of the job
advertisement posted online on glassdoor.com.
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Figure 3 – Technology Exposure in Earnings Calls and Jobs Postings – Time Series

Notes: The pictures plot (year by year) the share of firms (red line) which mention technology related keywords in earnings calls, and the share of job postings (gray circles) in Burning
Glass which mention technology related keywords. The vertical grey line highlights the year of inception of the technology, which is defined as the year at which firms timeseries (red
line) attains at least 10\% of sample max. The overall correlation between these two time series is 68.87 \%.
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Notes: The pictures plot (year by year) the share of firms (red line) which mention technology related keywords in earnings calls, and the approximate share of technology job postings
which require college educated people(blue circles, where the size of the circle represents the total number of technology job postings), calculated using 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝜍𝜍 =
∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏
χ
o;2015∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏 , where

χ
o;2015

is the share of college educated people in an occupation in ACS 2015 and 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏 is the number of technology job postings in technology 𝜏𝜏. The vertical grey line highlights the year of

start of the technology, which is defined as the year at which firm time series (red line) attains at least 10% of sample max.

Figure 4 - Share of college educated by year
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Figure 5 - Share of college educated by year since start of technology

Notes: The figure plots a bin scatter (with 10 bins) of the approximate share of college educated technology job postings for each technology and calendar year against the years since 
start of the technology. The approximate share of college educated job postings for a technology is measured as  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝜍𝜍 =
∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏
χ
o;2015∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏 , where  χ
o;2015

is the share of college educated 

people in an occupation in ACS 2015 and 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏 is the number of technology job postings in technology 𝜏𝜏. The figure controls for technology fixed effects.
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Figure 6 – Coefficient of Variation by year since start of technology

Notes: The figure plots coefficient of variation measured as coefficient of variation of normalized share of technology jobs for each of 20 technologies by year from 2007-2019 against the
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Figure 7 – Coefficient of variation by year since start of technology

Notes: The picture shows binscatter of coefficient of variation by technology and time against year since start of the technology controlling for technology level fixed effects. Coefficient of 
variation is calculated over normalized share of technology job postings for each technology  and for each year between 2007 and 2019. 



Figure 8 – Coefficient of Variation by year since start of technology – by skill
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Notes: This figure plots a binscatter with 30 bins of coefficient of variation by technology and time against year since start of the technology by skill. To calculate the coefficient of
variation by skill, we aggregate the job postings data over occupation, CBSA and year, and then separately for high skill occupations (with share of college educated people > 60%),
medium skill occupations (with share of college educated people > 30%), and low skill occupations (with share of college educated people < 30%). Coefficient of variation is calculated
over Normalized share of technology jobs by skill group, technology and time.
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Figure 9 - Technology jobs vs local skill composition

Notes: The figure plots a binscatter of normalized share of jobs at time t0 on various measures of skill level of the CBSA. For some of our technologies, we do not have BG coverage
throughout their lifetime. For these technologies, we take the starting year to be 2007, the starting year for our BG sample.
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Figure 10 - Technology jobs vs local skill composition

Notes: The figure plots a binscatter of Normalized Share at time t0 (start date of the technology) on various measures of skill level of the CBSA. For some of our technologies, we do not 
have BG coverage throughout their lifetime. For these technologies, we take the starting year to be 2007, the starting year for our BG sample. The figures control for technology level 
averages.



Appendix Figure 1 - Sample USPTO Patent and Technical Bigrams

Panel A: All bigrams Panel B: Technical bigrams
Bigram Frequency Bigram Frequency
of the 223 conductivity type 147
of said 175 crystalline semiconductor 111

thin layer 147 semiconductor material 105
conductivity type 147 elongate zones 77

layer of 141 irradiated surface 69
single crystalline 139 photovoltaic cell 69

crystalline semiconductor 111 upper irradiated 59
semiconductor material 105 photovoltaic cells 54

said first 97 solar cell 43
the thin 94 type layer 40

Notes: This figure shows all (Panel A Column 1) and technical bigrams (Panel B Column 1) along with their frequencies (in Column 2) obtained technical bigrams (detailed in section 2)
for a sample USPTO patent titled “Photovoltaic semi-conductor devices”.
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Appendix Figure 2 – Average Years of Schooling by Year

Notes: The pictures plot (year by year) the share of firms (red line) which mention technology related keywords in earnings calls, and the approximate average years of schooling for 
technology jobs (blue circles, where the size of the circle represents the total number of technology job postings), calculated using  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝜍𝜍 =
∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏
χ
o;2015∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏 , where  χ
o;2015

is the average years 

of schooling for persons employed in an occupation in ACS 2015 and 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏 is the number of technology job postings in technology 𝜏𝜏. The vertical grey line highlights the year of start of 

the technology, which is defined as the year at which firm time series (red line) attains at least 10% of sample max.
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Notes: The pictures plot (year by year) the share of firms (red line) which mention technology related keywords in earnings calls, and the approximate average wage offered for 
technology jobs (blue circles, where the size of the circle represents the total number of technology job postings), calculated using  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝜍𝜍 =
∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏
χ
o;2015∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏 , where  χ
o;2015

is the average wage 

offered for persons employed in an occupation in ACS 2015 and 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏 is the number of technology job postings in technology 𝜏𝜏. The vertical grey line highlights the year of start of the 

technology, which is defined as the year at which firm time series (red line) attains at least 10% of sample max.

Appendix Figure 3 – Average Wage by Year
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Appendix Figure 4 – Share Post Graduate by Year

Notes: The pictures plot (year by year) the share of firms (red line) which mention technology related keywords in earnings calls, and the approximate share of post graduate employees 
in technology jobs (blue circles, where the size of the circle represents the total number of technology job postings), calculated using  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝜍𝜍 =
∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏
χ
o;2015∑𝑜𝑜 𝑁𝑁𝑜𝑜;𝑡𝑡

𝜏𝜏 , where  χ
o;2015

is the share of 

post graduates employed in an occupation in ACS 2015 and 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏 is the number of technology job postings in technology 𝜏𝜏. The vertical grey line highlights the year of start of the 

technology, which is defined as the year at which firm time series (red line) attains at least 10% of sample max.
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