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ABSTRACT 

Using data on industrial air pollution exposure in the United States, we compute three measures 
of environmental inequality: the Gini coefficient of exposure, the ratio of median exposure of 
minorities to that of non-Hispanic whites, and the ratio of median exposure of!poor households 
to that of non-poor households. Comparing inequalities!in states and Congressional districts, we 
find that relative rankings by the three measures vary considerably. We!conclude that different 
measures of environmental inequality may be appropriate for different analytical purposes. 
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1. Introduction 
 

Pollution is not an equal opportunity affair. A large body of research has established 

that racial and ethnic minorities and low-income households in the United States 

tend to face higher pollution burdens than non-Hispanic whites and higher-income 

households (see, for example, Szasz and Meuser, 1997; Ash and Fetter, 2004; Mohai, 

2008; Bullard et al. 2011). Patterns of environmental inequality vary substantially 

across regions of the country, however (Zwickl et al., 2014). 

 

This paper compares three measures of environmental inequality for the 50 U.S. 

states and 435 Congressional districts, using data on exposure to industrial air 

toxics from the Risk-Screening Environmental Indicators (RSEI) of the U.S. 

Environmental Protection Agency (EPA): (i) the Gini coefficient of exposure; (ii) the 

ratio of the median exposure of minorities to that of non-Hispanic whites; and (iii) 

the ratio of the median exposure of poor households to that of nonpoor households. 

 

The Gini coefficient is a measure of vertical inequality: differentiating the population 

only by exposure to industrial air toxics, it summarizes the extent of divergence 

from a perfectly equal distribution. The two ratios are measures of horizontal 

inequality: they compare exposure across population subgroups defined on the 

basis of minority status and poverty status, respectively.  

 

We find that exposure inequality rankings based on these measures vary 

considerably from each other, and conclude that which measure is most appropriate 
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depends on the question being posed. Regardless of the measure, environmental 

inequalities are likely to be of greatest policy concern in places with the highest 

overall pollution burdens.  We therefore identify the states and Congressional 

Districts that rank in the top half in terms of both median exposure and exposure 

inequality. 

 

Section 2 discusses reasons for measuring environmental inequality. Section 3 

introduces the data used in the analysis. Section 4 provides details on the calculation 

of the three measures. Section 5 presents results for the states level and section 6 

presents results for Congressional districts. Section 7 concludes.  

 

2. Environmental quality and environmental inequality 

 

Environmental inequalities matter for at least three reasons. The first is intrinsic, 

based on the normative principle that all individuals have an equal right to a clean 

and safe environment. The second is that environmental quality has important 

impacts on the distribution of opportunities to lead a healthy and productive life. 

The third is that environmental quality has economic impacts on individuals and 

communities. 

 

(i) Intrinsic value of environmental equity 
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The normative principle that every person has the right to a clean and safe 

environment is widely asserted in the most fundamental of legal documents, 

national constitutions. The post-apartheid constitution of the Republic of South 

Africa	
  declares,	
  for	
  example,	
  “Every	
  person	
  shall	
  have	
  the	
  right	
  to	
  an	
  environment	
  

which is not detrimental to his or her health or well-being.”	
  Similar	
  statements	
  

appear in the constitutions of many nations across the world: “All residents enjoy 

the right to a healthy,	
  balanced	
  environment”	
  (Argentina);	
  “Every person shall have 

the right	
  to	
  a	
  wholesome	
  environment”	
  (Belarus);	
  “All citizens shall have the right to 

a healthy	
  and	
  pleasant	
  environment”	
  (Republic	
  of	
  Korea);	
  “Everyone shall have the 

right to a healthy and ecologically balanced human environment and the duty to 

defend	
  it”	
  (Portugal).1 

 

Similar language can be found in many state constitutions in the United States, as 

illustrated by the following extracts: “The	
  people	
  shall	
  have	
  the	
  right	
  to	
  clean	
  air	
  and	
  

water”	
  (Massachusetts);	
  “The	
  people	
  have	
  a	
  right	
  to	
  clean	
  air,	
  pure	
  water,	
  and	
  the	
  

preservation of the natural, scenic, historic and esthetic values of the environment”	
  

(Pennsylvania); “All	
  persons	
  are	
  born	
  free	
  and	
  have	
  certain	
  inalienable	
  rights.	
  They	
  

include the right to a clean and healthful environment” (Montana); “Each	
  person	
  has	
  

the	
  right	
  to	
  a	
  clean	
  and	
  healthful	
  environment” (Hawaii).  

 

These constitutional principles put an intrinsic value on the distribution of 

environmental quality. A logical extension of the principle that all people have an 

                                                                    
1 For discussion, see Popovic (1996). 
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equal right to a clean and safe environment is that any shortfalls in environmental 

quality should be distributed equally as well. That is, the environmental rights of 

some people should not take precedence over the environmental rights of others. 

 

The intrinsic value of environmental equity applies not only to the distribution of 

environmental quality across individuals, but also to its distribution across 

communities. The environmental justice movement has drawn attention to 

disproportionate environmental burdens often imposed on racial and ethnic 

minorities and low-income people in the U.S. 

 

Recognition of these disparities led to Executive Order 12898, issued by President 

Bill Clinton in 1994, which directed every federal agency to take steps to identify 

and	
  rectify	
  “disproportionately	
  high	
  and	
  adverse	
  human	
  health	
  or	
  environmental	
  

effects of its programs, policies, and activities on minority populations and low-

income	
  populations.” This Executive Order inscribed environmental equity into 

federal law. In a proclamation marking its 20th anniversary, President Barack 

Obama reaffirmed	
  “every	
  American's	
  right	
  to breathe freely, drink clean water, and 

live	
  on	
  uncontaminated	
  land” (Obama, 2014). 

 

Of course, equity is not all that matters when it comes to environmental quality. An 

environment in which all people are equally exposed to high levels of pollution is 

arguably worse than one in which some are exposed to that level and others to 

lower ones. For any given level of overall exposure, however, a more equal 
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distribution can be regarded as ethically superior and legally preferable to a less 

equal distribution. 

 

(ii) Equality of opportunities 

 

A second reason for concern about environmental inequalities rests on their 

implications for equality of opportunity.	
  “Much	
  more	
  important	
  than	
  inequality	
  of	
  

outcomes among adults is inequality of opportunity	
  among	
  children,” according to 

the authors	
  of	
  the	
  World	
  Bank’s	
  Human	
  Opportunity	
  Index.	
  “The	
  debate	
  should	
  not	
  

be about equality (equal rewards for all) but about equity (equal chances for all), 

because the idea of giving people equal opportunity early in life, whatever their 

socioeconomic	
  background,	
  is	
  embraced	
  across	
  the	
  political	
  spectrum”	
  (Barros et 

al., 2009, p. xvii). 

 

Children are especially vulnerable to the health and cognitive impacts of pollution, 

and	
  environmental	
  quality	
  can	
  significantly	
  affect	
  a	
  child’s	
  life chances (Currie, 

2011). Indeed the impacts can include life itself. A study of the effects of reduced air 

pollution during the 1981-82 recession in the U.S. found that each one percent 

decrease in total suspended particulates resulted in 0.35 percent lower infant 

mortality (Chay and Greenstone, 2003). Reductions in carbon monoxide emissions 

in California in the 1990s are estimated to have prevented approximately 1000 

infant deaths (Currie and Neidell, 2005). Even levels of air pollution that are 
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historically low have been found to have significant adverse impacts on fetal health 

and infant health (Currie, Neidell and Schmeider, 2009). 

 

Maternal exposure to air pollution during pregnancy is linked to restricted fetal 

growth, leading researchers to conclude that	
  “a substantial proportion of cases of 

low birthweight at term could be prevented in Europe if urban air pollution was 

reduced” (Pedersen et al., 2013). Fetal exposure to industrial chemicals has been 

linked to neurodevelopmental disabilities including autism, attention-deficit 

hyperactivity disorder, dyslexia, and other cognitive impairments (Grandjean and 

Landrigan, 2014). 

 

Apart from neurological impacts, air pollution can affect	
  a	
  child’s	
  education	
  by	
  

increasing school absences due to illness. A study of elementary and middle-school 

children in Texas found that air pollution had significant adverse effects on school 

attendance (Currie et al., 2009). Similarly, a Michigan study found that schools 

located in neighborhoods with the highest industrial air pollution levels had the 

lowest attendance rates and the highest proportions of students who failed to meet 

state educational testing standards (Mohai et al., 2011). 

 

Exposure to airborne toxics was found to have a statistically significant negative effect 

on academic test scores in metropolitan Los Angeles, after controlling for other 

socioeconomic predictors of school performance (Pastor et al., 2002, 2004). A study in 

East Baton Rouge, Louisiana, similarly found that proximity to Toxics Release 
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Inventory facilities, high concentrations of toxic emissions, and high-volume 

emitters of developmental neurotoxins are significantly related to school 

performance (Lucier et al., 2011). 

 

(iii) Economic impacts  

 

Pollution also has economic impacts on property values, days lost from work, and 

health costs.  

 

Air pollution has long been recognized to reduce property values (Nourse, 1967; 

Anderson and Crocker, 1971). Conversely, reductions in total suspended 

particulates in the 1970s as a result of implementation of the Clean Air Act are 

estimated to have led to a $45 billion increase in housing values over the decade 

(Chay and Greenstone, 2005). An analysis of industrial plants in the Toxics Release 

Inventory in five large states found that housing values within one mile decreased 

by 1.5% when plants opened, and increased by 1.5% when they closed (Currie et al., 

2013). 

 

Air pollution also results in lost work days. An analysis of 1976 household survey 

data in the U.S. found that one standard deviation increase in ambient particulate 

pollution was associated with a 10 percent increase in work days lost due to illness 

(Hausman et al., 1984). A 12.8% increase in exposure to sulfates in U.S. 

metropolitan areas in 1979-1981 was associated with 4800 extra days of 
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respiratory-related restrictions per 100,000 work days (Ostro, 1990). Air pollution 

has also been found to have significant adverse effects on worker productivity (Graff 

Zivin and Neidell, 2011). 

 

Since the publication of the 1981 report, Costs of Environment-Related Health Effects, 

which was produced by an expert committee convened by the U.S. Institute of 

Medicine and chaired by economist Kenneth Arrow, a number of studies have 

sought to estimate the	
  monetary	
  costs	
  of	
  the	
  “environmentally attributable	
  fraction”	
  

(EAF) of diseases in the U.S. The annual cost of EAF illnesses among children was 

estimated by Landrigan et al. (2002) at $54.9 billion (in 1997 dollars), with the 

largest single component coming from lifelong productivity losses attributable to 

early exposure to neurotoxins. Updated estimates by Transande and Liu (2011) put 

the annual cost at $76.6 billion (in 2008 dollars). Recent research on the impacts of 

air pollution on childhood asthma suggests that prior studies may have 

underestimated the associated health costs by measuring only the exacerbation of 

existing asthma and not impacts on its incidence (Brandt et al., 2012). 

 

The EPA estimates that Mercury and Air Toxics Standards announced in December 

2011 – the	
  agency’s	
  first	
  effort to impose mandatory limits on air toxics – will yield 

annual health benefits valued at between $37 billion and $90 billion, including the 

prevention of 4200-11000 premature deaths (EPA, 2011). The standards, which 

were upheld by a federal appeals court in April 2014, apply only to power plants – a 

subset of the industrial facilities whose air toxics releases are the basis for the 
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exposure data we use in this study. The EPA (2014) notes that these benefits are 

“especially	
  important	
  to	
  minority	
  and	
  low	
  income populations who are 

disproportionately	
  impacted	
  by	
  asthma	
  and	
  other	
  debilitating	
  health	
  conditions.” 

 

The distribution of environmental quality may contribute the widely observed 

gradient in which health varies inversely with socioeconomic status (Evans and 

Kantrowitz, 2002). A study of Bronx borough in New York found that proximity to 

noxious land uses, including Toxics Release Inventory facilities, is associated with a 

66% increase in the likelihood of hospitalization for asthma, and that poor and 

minority populations are more likely to live within specified distance buffers 

(Maantay, 2007). Exposure to multiple environmental hazards has cumulative 

impacts (Brender et al., 2011). Interactions among environmental hazards, 

individual biological susceptibility, and social vulnerability often exacerbate impacts 

in minority and low-income neighborhoods (Morello-Frosch et al., 2011). 

 

Whether the adverse impacts of pollution exposure could be	
  “compensated,”	
  in 

principle, by other amenities is a matter of debate. It has been argued, for example, 

that individuals may be willing to tradeoff environmental quality for income, and 

hence that people living in more polluted locations who have higher incomes than 

those in less polluted locations may be no worse off (Millimet and Slottje, 2002). 

However, if access to a clean and safe environment is regarded as an intrinsic right, 

one can question whether income can adequately compensate for its infringement 

on ethical grounds akin to the prohibitions against slavery and trafficking in human 
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organs. Human rights cannot be sold. This debate is irrelevant insofar as 

environmental inequalities mirror disparities in socioeconomic status rather than 

operating in the reverse direction. 

 

3. Mapping exposure to industrial air toxics in the United States 

 

To measure industrial air toxics exposure we use geographic microdata from the 

EPA’s Risk Screening Environmental Indicators (RSEI) model for the year 2010. The 

RSEI model covers air releases of more than 400 chemicals from more than 15,000 

industrial facilities that are required to report to the Toxics Release Inventory (TRI). 

RSEI models the dispersion of these releases in the environment, incorporating 

information on stack heights, exit gas velocities, wind patterns, and chemical decay 

rates to estimate ambient concentrations in more than 10,000 grid cells, each 810 

meters square, around each facility. To aggregate across chemicals, RSEI uses 

toxicity weights based on chronic human health effects from inhalation exposure.  

 

Although the RSEI data provide the best available measure of exposure to air toxics 

from industrial facilities, they only capture one component of overall air pollution. 

The data do not include pollution from mobile sources, or from small point sources 

such as dry cleaning establishments. Industrial point sources often loom large, 

however, in the risks faced by those communities with the most hazardous air 

pollution (Boyce and Pastor, 2012). 
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Using RSEI geographic microdata, we calculate toxicity-weighted exposures for each 

grid cell, aggregated across all industrial facilities with releases that impact that cell.  

We then map the grid cell exposures to census blocks, the finest level of geographic 

resolution in U.S. Census data. We obtain income and demographic variables at the 

census tract level from the American Community Survey, using the five-year 

averages 2006-2010. To merge these two data sets, we calculate exposure at the 

census tract-level as the area-weighted	
  average	
  of	
  exposure	
  in	
  the	
  tract’s 

constituent blocks. To control for the influence of outliers, we censor the resulting 

tract-level exposure variable at the 97th percentile nationwide. 

 

Figure 1 maps nationwide variations in exposure to industrial air toxics, 

partitioning census tracts into national exposure quintiles. The uneven distribution 

of exposure is evident not only across states but also within them. A number of 

states include tracts that rank in both the highest and lowest quintiles, suggesting 

the presence of substantial intra-state exposure inequalities. 

 

[insert Figure 1 here] 

 

4. Three measures of environmental inequality 

 

We compute three measures of environmental inequality: 

 

(i) Gini coefficient 
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The Gini coefficient is widely used to measure inequality in the distribution of 

income and assets. It is a measure of vertical inequality: individuals are 

differentiated only by the measured attribute, such as income, and the Gini 

coefficient summarizes the extent of the differences. The Gini coefficient has been 

applied to environmental variables, too, including carbon emissions (Heil and 

Wodon, 2000), resource use (Druckman and Jackson, 2008), and industrial air toxics 

exposure in the state of Maine (Bouvier 2014). 

 

The Gini coefficient is calculated by the following formula: 

                                                   n                                                                               n 

        Gini = (1/n)[n + 1 - 26i=1 (n  + 1 – i) EXPOSUREi]/6i=1 EXPOSUREi 
 
where EXPOSUREi  = industrial air toxics exposure in Census tract i, and n = the 

number of tracts, indexed in non-decreasing order (EXPOSUREi d EXPOSUREi+1 ). The 

Gini coefficient was calculated using Stata’s	
  ineqdecO package, including tracts with 

zero exposure and weighting tracts by total population. The Gini coefficient lies 

between the hypothetical values 0 and 1. Here 0 would mean that all tracts in the 

state or Congressional district have the same exposure, and 1 would mean that the 

state’s	
  or	
  district’s	
  exposure	
  is entirely confined to a single tract. 

 

(ii) Minority/white exposure ratio 
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Our other two measures refer to horizontal inequality: they compare exposure 

across population subgroups differentiated by attributes apart from exposure itself. 

To compare exposure of racial and ethnic minorities to that of non-Hispanic whites 

(hereafter, simply	
  “whites”),	
  we calculate exposure levels for the two subgroups as 

follows: 

 

     EXPOSUREjs = 6s(EXPOSUREi  * TOTALPOPk * Xjk)/ 6s(TOTALPOPk * Xjk) (2) 

 

where subscript j indexes the population subgroup; the subscript s indexes the state 

(or Congressional district); and Xjk is the share of subgroup j in the population of 

census tract k.  

 

We then calculate the ratio of the median exposures for the minority and white 

population subgroups. We refer	
  to	
  this	
  as	
  the	
  “minority/white	
  exposure	
  ratio.” 

 

(iii) Poor/nonpoor exposure ratio 

 

Using the same method, we measure horizontal equity in the distribution of 

exposure between the poor (defined as households below the federal poverty line) 

and nonpoor. For this purpose we calculate median exposures of the poor and 

nonpoor population subgroups and again compute their ratio. We refer to this as the 

“poor/nonpoor	
  exposure	
  ratio.” 
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5. Environmental inequality in the states 

 

The three measures of environmental inequality for the 50 U.S. states (plus 

Washington, DC) are reported in Table 1. The Gini coefficients are 0.70 or higher in 

29 of the 50 states, indicating a high degree of vertical inequality in industrial air 

pollution exposure. They range from 0.32 in the smallest state, Rhode Island, to 0.91 

the largest state, Alaska. The relationship between the Gini and physical area is not 

surprising given that pollution is concentrated in particular locations, so that 

smaller states tend to show less spatial variation in exposure. 

 

[insert Table 1 here] 

 

How does exposure inequality compare to income inequality? State-level Gini 

coefficients of income distribution calculated from the census tract data (thereby 

omitting intra-tract variation, as in the case of our exposure data) range from 0.13 to 

0.33. Intra-tract variation in income is likely to be considerably greater, however, 

than intra-tract variation in air pollution exposure. State-level income Ginis 

calculated from individual household-level data for the year 2010 range from 0.54 

to 0.68 (Frank 2014). Tract-level exposure Ginis in the majority of the states 

therefore exceed the highest household-level income Gini in any state. We conclude 

that exposure to industrial air toxics in the United States in general is distributed 

more unequally than income. 
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The minority/white exposure ratio ranges from 0.03 in North Dakota to 4.79 in 

Wisconsin. It is below one in only ten states, and less than 0.67 only in the Dakotas 

and Montana where Native Americans, many of whom live far from industrial 

facilities, comprise the largest minority. The minority/white exposure ratio is above 

3.0 in several states, including California, Michigan, Minnesota and Wisconsin. 

 

The poor/nonpoor exposure ratio ranges from 0.35 in Idaho to 3.59 in Wyoming. 

This ratio reflects the balance between two opposing forces. On the one hand, if the 

presence of industry is correlated with higher incomes as well as more pollution, 

exposure of the poor would be expected to be lower than exposure of the nonpoor, 

yielding a ratio less than one. On the other hand, if polluting facilities are more likely 

to be located in low-income neighborhoods, this would yield a ratio greater than 

one. The ratio is greater one in 26 states – and above 3.0 in Virginia and Wyoming – 

indicating the latter effect often outweighs the former.  

 

Table 2 reports correlation coefficients among the three measures of exposure 

inequality. The low correlations imply that rankings of states in terms of exposure 

inequality are highly sensitive to the specific measure used.  

 

[insert Table 2 here] 

 

The correlation between the two horizontal inequality measures – the 

minority/white ratio and the poor/nonpoor ratio – is positive, as one would expect 



 17 

given higher poverty rates among minorities. More notable is the fact that it is quite 

low (r=0.19), implying that disproportionate exposures among the poor are not 

simply an artifact of correlations between race and class.  

 

The correlations between the Gini coefficient and the two horizontal inequality 

measures are negative, albeit again low. This is surprising, in that one might expect 

states with greater vertical inequality generally to have greater horizontal 

inequality, as well. To show how the contrary may be true, Figure 2 depicts 

percentile-wise exposures for minorities and whites in two states, Ohio and Virginia. 

Ohio has a relatively low Gini but a relatively high ratio of median minority 

exposure to median white exposure, while Virginia has the opposite. The contrast 

between them illustrates why distinct dimensions of environmental inequality 

require distinct measures.2 

 

[insert Figure 2 here] 

 

To examine the relationship between exposure inequality and overall exposure 

levels, we also report in Table 2 the correlations between our inequality measures 

and median exposure in the state. The correlation is negative in the case of the Gini 

                                                                    
2 Two  further  observations  from  Figure  2  warrant  mention.  First,  more  than  15%  of  Ohio’s  minority  
population lives in census tracts with industrial air toxics exposure at or above the 97th percentile 
nationwide (where the exposure data are censored, flattening the curve). Second, the most exposed decile 
of whites in Virginia face considerably higher exposure than the most exposed decile of minorities. As 
noted  above,  Virginia’s  poor/nonpoor  median  exposure  ratio  is  among  the  highest  in  the  nation;;  together  
these observations imply disproportionately high exposures among poor whites in that state. 
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coefficient, positive in the case of the minority/white ratio, and near zero in the case 

of the poor/nonpoor ratio. 

 

The negative correlation between the Gini coefficient and median exposure (–0.49) 

implies that industrial air pollution tends to be more unequally distributed in states 

with less of it. Again, this result is not surprising. A state with little industrial air 

pollution exposure in most tracts, but substantial exposure in a few, will have low 

median exposure and a high exposure Gini, as in the cases of Alaska and Vermont.  

 

The positive, although modest, correlation between the minority/white ratio and 

median exposure (0.23) implies that pollution tends to be somewhat more 

concentrated in minority communities in states with more pollution. This may 

reflect less stringent environmental regulation in states where pollution burdens 

fall more disproportionately on disadvantaged groups, or more vigorous efforts to 

shift exposure burdens onto disadvantaged communities in states with more 

pollution. That is, environmental justice may be related to overall environmental 

quality as both cause and effect. The positive correlation is consistent with the view 

that	
  environmental	
  justice	
  can	
  be	
  “good	
  for	
  white	
  folks,” too, in that more equal 

distribution of exposure is associated with lower pollution levels overall (Ash et al., 

2013). 

 

From a policy standpoint, environmental inequalities are likely to be of greatest 

concern in states where overall pollution levels are high. The maps in Figures 3a-3c 
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partition the states into four groups, based on whether their median exposure and 

exposure inequality are above or below the average values for all states. We again 

see a contrast between our different measures. States with above-average exposure 

and above-average Ginis are concentrated in the south central region, while those 

with above-average exposure and above-average minority/white and poor/nonpoor 

ratios are concentrated in the northern Midwest. 

 

[insert Figures 3a-3c here] 

 

6. Environmental inequality in the Congressional districts 

 

Table 3 reports the top ten Congressional districts by each of our three 

environmental inequality measures among all districts that have median exposure 

above the national median.3 Although three states – Illinois, Ohio and Pennsylvania 

– account for 40% (12 of 30) of the top-ten rankings in Table 3, no individual district 

ranks in the top ten by more than one measure, further evidence that exposure 

inequality’s	
  multiple	
  dimensions	
  cannot be captured adequately by a single 

measure. 

 

[insert Table 3 here] 

 

                                                                    
3 The data here refer to Congressional districts as demarcated at the time of the 2012 elections. 
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In the full set of 435 Congressional districts, Gini coefficients of exposure range from 

0.04	
  in	
  New	
  York’s	
  15th district	
  to	
  0.96	
  in	
  Michigan’s	
  1st district.4 The former, located 

in the Bronx, is the smallest Congressional district in the nation, illustrating the 

sensitivity of exposure Ginis to physical area. The latter, comprised of Michigan’s	
  

Upper Peninsula and the northern tier of the Lower Peninsula, is a large area with 

relatively little industrial air pollution, as	
  reflected	
  in	
  the	
  district’s low median 

exposure. 

 

The minority/white exposure ratio varies from	
  0.03	
  in	
  North	
  Dakota’s	
  at-large 

district	
  (comprising	
  the	
  entire	
  state)	
  to	
  31.56	
  in	
  Colorado’s	
  3rd district and more 

than	
  67,000	
  in	
  Florida’s	
  25th district. These extremely low value for North Dakota 

reflects exceptionally low median exposure among minorities (most of whom are 

Native Americans) in that state. The very high value for Colorado’s	
  3rd district, a 

large territory in western and south-central portions of the state with relatively 

little industrial pollution, reflects very low median exposure among whites. In 

Florida’s	
  25th district, stretching from the western suburbs of Miami to the 

Everglades, where the minority share of population in the average census tract 

exceeds 80%, the median exposure of whites is extremely low. The minority/white 

exposure ratio is greater than one in 65% (284) of	
  the	
  nation’s	
  Congressional 

districts, and it is 2.0 or higher in 13.8% (60) of them. 

 

                                                                    
4 Complete data for all Congressional Districts available from the authors on request. 
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The poor/nonpoor exposure ratio ranges from 0.04 in Utah’s	
  3rd Congressional 

District to 24.37 in Colorado’s	
  3rd.  As noted above, this ratio reflects the balance 

between two opposing forces: the tendency for industrial activity to be associated 

with higher incomes as more pollution, and the tendency for polluting facilities to be 

located in lower-income communities. The ratio is greater than one in the majority 

of Congressional districts (229), and it is 2.0 or higher in 5.5% (24) of them. 

 

Table 4 reports correlation coefficients among the three measures across 

Congressional districts. The low correlations again imply that the different 

measures capture distinct dimensions of exposure inequality. Consistent with our 

findings at the state level, we again see a significant negative correlation between 

the Gini and the	
  district’s	
  median exposure. 

 

[insert Table 4 here] 

 

The Gini coefficient of exposure is sensitive to physical area, as we have noted: 

larger spatial units tend to have higher Ginis. Exposure to pollution from industrial 

point sources is unevenly across the landscape (which is why we are interested in 

exposure inequality), and larger spatial areas provide more room for variation. We 

also find a negative correlation between the Gini coefficient and median exposure: 

when most tracts have low exposure, high exposure in a few tracts can produce a 

high Gini. Controlling for these effects, we find a modest positive correlation 

(significant at the 5% level) between the Gini coefficient and the poor/nonpoor ratio 
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for Congressional districts, but still no statistically significant correlation between 

the Gini and the minority/white ratio.5 

 

Figures 4a-4c partition	
  the	
  nation’s	
  Congressional	
  districts into four groups, again 

based on whether exposure inequality and median exposure are above or below 

average values. Comparing these to state-level patterns, we see considerable 

diversity within states. Michigan, Wisconsin and Minnesota, all of which are in the 

high exposure and high minority/white ratio quadrant, have some Congressional 

districts with both low exposure and a low minority/white ratio. Exposure 

inequality is sensitive to jurisdictional scale, as well as to the choice of measure. 

 

[insert Figures 4a-4c here] 

 

7. Conclusions 

 

Environmental inequality is a multi-dimensional phenomenon. When examining 

how inequality in exposure to industrial air toxics varies across the United States, 

                                                                    
5 To control for the effects of area and median exposure, we estimated the following econometric 
model: 
 
   Gini = D+ E1lnAREA + E2MEDEXPOSURE + E3HI + P    
 
where lnAREA = the natural logarithm of the physical area of the Congressional district; 
MEDEXPOSURE = the exposure of the median resident; HI = horizontal inequality, measured by the 
minority/white exposure ratio or the poor/nonpoor exposure ratio; and P is an error term. Results 
available from the authors on request. 
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we must choose the dimension on which to focus as well as the spatial units to be 

compared. 

 

Three dimensions of environmental inequality are examined in this study: the Gini 

coefficient of exposure, the median exposure of racial and ethnic minorities relative 

to that of non-Hispanic whites, and the median exposure of the poor relative to that 

of the nonpoor. The first is a measure of vertical inequality. The latter two are 

measures of horizontal inequality. 

 

The three measures yield markedly different rankings of environmental inequalities 

in the states and Congressional districts. We find a modest positive correlation 

between the two horizontal inequality measures (0.2 for states; 0.3 for 

Congressional districts), as would be expected given the link between minority 

status and poverty status. The correlations between the Gini coefficient and the 

other two measures are much weaker, and negative for states. 

 

Which type of inequality is of greatest concern? There is no across-the-board 

answer to this question. If we start from the normative principle that every 

individual has an equal right to a clean and safe environment, then vertical 

inequality is relevant as it measures the extent to which the distribution of exposure 

is	
  inconsistent	
  with	
  an	
  “equal	
  right.”	
  To	
  be	
  sure,	
  it	
  can	
  be	
  argued	
  that	
  the	
  extent	
  to	
  

which exposures exceed	
  what	
  is	
  “clean	
  and	
  safe”	
  is	
  most	
  important	
  here.	
  Even 

where median exposure is low, vertical inequality may be of interest since it reveals 
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the extent to which summary measures for a population may mask more serious 

risks borne by some individuals. Vertical inequality is of most concern, however, 

when absolute exposure levels are high. 

 

An unequal distribution of exposure can be regarded as more objectionable when 

the communities with higher exposure are disadvantaged in other respects as well. 

Starting from this normative premise, horizontal inequality between minorities and 

whites, and between the poor and nonpoor, is particularly relevant. The explicit 

reference “minority populations and low-income populations” in Executive Order 

12898 translates this principle into federal government policy in the United States. 

 

Of course, inequality is not the only useful criterion for assessing environmental 

outcomes. Few would claim that welfare would be improved by increasing pollution 

until exposure in every census tract in the state or district equals that in the most 

exposed tract, notwithstanding the fact that in principle this is one way to eliminate 

exposure inequality. But when the policy choice is where to concentrate pollution 

abatement efforts, or where to locate new pollution sources, environmental 

inequality may be a relevant objective.  

 

Promising avenues for further research on environmental inequality include the 

following. It would be interesting to develop measures of inequality in exposure to 

mobile-source air pollution and water pollution, and to explore whether spatial 

variations in these aspects of environmental inequality are correlated with 
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variations in exposure to industrial air toxics. The development of measures that 

combine absolute levels of exposure together with exposure inequality could be 

useful for policy makers in prioritizing sites for remedial actions. In addition, 

measurement of environmental inequality makes it possible to analyze how this is 

related to socioeconomic variables such as income distribution and residential 

segregation, and to political variables such as voting behavior and state 

environmental policies. 
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Figure 1: Industrial air toxics exposure by U.S. Census tract, 2010 
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Figure 2: Minority and white exposure by percentile, Ohio and Virginia 

 
 

 
 
 
 Key:  

  Ohio minorities 
  Ohio whites 
  Virginia minorities 
  Virginia whites  
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Figure 3a: Median exposure and exposure Gini in the states 
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Figure 3b: Median exposure and minority/white ratio in the states 
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Figure 3c: Median exposure and poor/nonpoor ratio in the states 
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Figure 4a: Median exposure and exposure Gini in Congressional districts 
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Figure 4b: Median exposure and minority/white ratio in Congressional 
districts 
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Figure 4c: Median exposure and poor/nonpoor ratio in Congressional districts 
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Table 1: Environmental inequalities by state 
 

State 
 

Gini coefficient 
of exposure 

 

Minority/white 
exposure ratio 

 

Poor/nonpoor 
exposure ratio 

 

Median 
exposure 

 
Alabama 0.73 0.94 0.86 815.33 
Alaska 0.91 1.00 0.89 12.49 
Arizona 0.76 1.10 1.07 331.61 
Arkansas 0.81 3.24 1.02 269.70 
California 0.80 3.48 1.25 275.23 
Colorado 0.71 1.76 1.32 324.45 
Connecticut 0.61 1.06 1.17 1680.44 
Delaware 0.48 1.36 1.07 1022.00 
Florida 0.72 1.88 1.19 124.58 
Georgia 0.70 1.89 0.94 638.59 
Hawaii 0.53 2.02 1.12 297.34 
Idaho 0.81 1.05 0.35 257.17 
Illinois 0.60 2.92 1.73 3633.57 
Indiana 0.65 2.01 1.36 1558.14 
Iowa 0.82 1.22 1.19 251.68 
Kansas 0.74 2.20 0.57 1023.45 
Kentucky 0.71 3.66 0.50 1187.81 
Louisiana 0.65 1.76 0.84 2581.43 
Maine 0.77 1.45 0.95 99.01 
Maryland 0.69 0.67 1.80 163.73 
Massachusetts 0.63 1.05 1.10 462.68 
Michigan 0.68 3.10 1.28 1292.35 
Minnesota 0.69 4.59 1.12 832.43 
Mississippi 0.82 0.85 0.76 341.85 
Missouri 0.77 2.48 1.52 772.55 
Montana 0.83 0.46 0.92 78.03 
Nebraska 0.67 2.07 1.16 529.72 
Nevada 0.85 0.78 0.95 48.59 
New Hampshire 0.63 2.15 0.95 175.10 
New Jersey 0.61 2.05 1.25 2328.42 
New Mexico 0.80 1.03 0.81 20.67 
New York 0.59 2.41 1.54 1137.93 
North Carolina 0.79 1.06 0.93 171.75 
North Dakota 0.77 0.03 0.94 25.88 
Ohio 0.59 2.20 1.48 3148.11 
Oklahoma 0.76 1.81 0.58 553.12 
Oregon 0.64 1.61 0.72 2938.53 
Pennsylvania 0.59 0.98 0.91 2786.53 
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Rhode Island 0.32 0.97 1.06 195.10 
South Carolina 0.71 1.03 0.78 1010.19 
South Dakota 0.86 0.23 0.43 67.07 
Tennessee 0.67 2.56 1.17 1149.95 
Texas 0.75 1.19 0.82 702.60 
Utah 0.58 1.42 0.73 4934.29 
Vermont 0.84 1.14 1.00 4.78 
Virginia 0.85 1.11 3.17 119.07 
Washington 0.72 1.15 1.00 270.76 
Washington, DC 0.34 1.13 0.96 112.60 
West Virginia 0.76 0.80 0.74 569.95 
Wisconsin 0.65 4.79 1.55 1237.28 
Wyoming 0.78 2.09 3.59 93.51 
National 0.76 1.46 1.11 594.92 
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Table 2: Correlations for states 
 

  
Gini 

coefficient 
Minority/white 

ratio 
Poor/ nonpoor 

ratio 
Median 

exposure 
Gini coefficient 1      
Minority/white ratio -0.20 1     
Poor/nonpoor ratio -0.01 0.19 1  
Median exposure  -0.49   0.23   -0.05 1 
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Table 3:  
Top ten Congressional districts by environmental inequality measure 

 

 
  Note: Top ten among all districts with median exposure higher than national median. 
  

Gini coefficient of exposure Minority/white exposure ratio 

 
 
Poor/nonpoor exposure ratio 

Texas, District 1 0.77 Pennsylvania, District 3 5.41 Kentucky, District 3 3.54 
Pennsylvania, District 5 0.77 California, District 33 4.11 New York, District 25 3.18 
Illinois, District 12 0.75 New York, District 25 3.76 Kansas, District 3 2.42 
Iowa, District 1 0.75 Texas, District 36 3.64 Pennsylvania, District 16 2.26 
Tennessee, District 4 0.74 New Jersey, District 3 3.56 Illinois, District 7 2.05 
Mississippi, District 4 0.74 Ohio, District 7 3.54 Illinois, District 2 2.04 
Indiana, District 9 0.73 Ohio, District 2 3.31 Ohio, District 11 2.01 
Virginia, District 9 0.73 New York, District 24 3.06 Ohio, District 3 2.01 
Tennessee, District 7 0.73 Illinois, District 2 3.00 Michigan, District 3 2.00 
Indiana, District 4 0.72 Illinois, District 17 2.97 Oklahoma, District 1 2.00 
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Table 4: Correlations for Congressional districts 

 
 

 Note: Excluding	
  Florida’s	
  25th and	
  Colorado’s	
  3rd district. 
 

  
Gini 

coefficient 
Minority/white 

ratio 
Poor/nonpoor 

ratio 
Median 

exposure 
Gini coefficient 1      
Minority/white ratio 0.14 1    
Poor/nonpoor ratio 0.01 0.30 1  
Median exposure        -0.42  0.04  0.07  1 


