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Abstract

We derive generalization error bounds — bounds on the expected inaccuracy of the predictions — for
traditional time series forecasting models. Our results hold for many standard forecasting tools including
autoregressive models, moving average models, and, more generally, linear state-space models. These
bounds allow forecasters to select among competing models and to guarantee that with high probability,
their chosen model will perform well without making strong assumptions about the data generating
process or appealing to asymptotic theory. We motivate our techniques with and apply them to standard
economic and financial forecasting tools — a GARCHmodel for predicting equity volatility and a dynamic
stochastic general equilibrium model (DSGE), the standard tool in macroeconomic forecasting. We
demonstrate in particular how our techniques can aid forecasters and policy makers in choosing models
which behave well under uncertainty and mis-specification.

Keywords: Generalization error, Prediction risk, Model selection.

1 Introduction

Generalization error bounds are probabilistically valid, non-asymptotic tools for characterizing the predic-
tive ability of forecasting models. This methodology is fundamentally about choosing particular prediction
functions out of some class of plausible alternatives so that, with high reliability, the resulting predictions
will be nearly as accurate as possible (“probably approximately correct”). While many of these results are
useful only for classification problems (i.e., predicting binary variables) and for independent and identically
distributed (IID) data, this paper adapts and extends these methods to time series models, so that economic
and financial forecasting techniques can be evaluated rigorously. In particular, these methods control the
expected accuracy of future predictions from mis-specified models based on finite samples. This allows for
immediate model comparisons which neither appeal to asymptotics nor make strong assumptions about the
data-generating process, in stark contrast to such popular model-selection tools as AIC.

To fix ideas, imagine IID1 data ((Y
1

, X
1

), . . . , (Yn, Xn)) with (Yi, Xi) 2 Y ⇥X , some prediction function
f : X ! Y, and a loss function ` : Y⇥Y ! R+ which measures the cost of bad predictions. The generalization
error or risk of f is

R(f) := E[`(Y, f(X))] (1)

where the expectation is taken with respect to P, the joint distribution of (Y,X). The generalization error
measures the inaccuracy of our predictions when we use f on future data, making it a natural criterion for

⇤Email: dajmcdon@indiana.edu, cshalizi@cmu.edu, mark@cmu.edu. This work is partially supported by a grant from the
Institute for New Economic Thinking. CRS was also partially supported by NIH Grant # 2 R01 NS047493. The authors wish
to thank David N. Dejong, Larry Wasserman, Alessandro Rinaldo and Darren Homrighausen for valuable suggestions.

1The IID assumption here is just for ease of exposition; we develop dependent-data results at length below.

1

mailto:dajmcdon@indiana.edu
mailto:cshalizi@cmu.edu
mailto:mark@cmu.edu


model selection, and a target for performance guarantees. To actually calculate the risk, we would need to
know the data-generating distribution P and have a single fixed prediction function f , neither of which is
common. Because explicitly calculating the risk is infeasible, forecasters typically try to estimate it, which
calls for detailed assumptions on P. The alternative we employ here is to find upper bounds on risk which
hold uniformly over large classes of models F from which some particular f is chosen, possibly in a data
dependent way, and uniformly over distributions P.

Our main results in Section 4 assert that for wide classes of time series models (including VARs and
state-space models), the expected cost of poor predictions is bounded by the model’s in-sample performance
inflated by a term which balances the amount of observed data with the complexity of the model. The bound
holds with high probability under the unknown distribution P assuming only mild conditions — existence of
some moments, stationarity, and the decay of temporal dependence as data points become widely separated
in time. As a preview, the following provides the general form of the result. Specific results which have this
flavor are Theorem 4.3 and Theorem 4.6 and their corollaries. We give applications in Section 5.

Result. Given a time series Y
1

, . . . , Yn satisfying some mild conditions and a prediction function f chosen

from a class of functions F (possibly by using the observed sample), then, with probability at least 1� ⌘,

R(f)  bRn(f) + CF (⌘, n) (2)

where R(f) is the expected cost of making prediction errors on new samples,

bRn(f) is the average cost of

in-sample prediction errors, CF (⌘, n) � 0 balances the complexity of the model from which f was chosen with

the amount of data used to choose it.

There are many ways to estimate the generalization error, and a comprehensive review is beyond the
scope of this paper. Traditionally, time series analysts have performed model selection by a combination of
empirical risk minimization, more-or-less quantitative inspection of the residuals, and penalties like AIC. In
many applications, however, what really matters is prediction, and none of these techniques work to control
generalization error, especially for mis-specified models. Empirical cross-validation is a partial exception,
but it is tricky for time series; see Racine [44] and references therein. In economics, forecasters have long
recognized the di�culties with these methods, preferring to use a pseudo-cross validation approach instead:
choose a prediction function using the initial portion of a data set and evaluate its performance on the
remainder (c.f. [2, 16, 19, 50]). This procedure provides approximate solutions to the problem of estimating
the generalization error, but it can be biased toward overfitting — giving too much credence to the observed
data — and hence tends to underestimate the true risk for at least three reasons. First, the held-out data, or
test set, is used to evaluate the performance of competing models despite the fact that it was already partially
used to build those models. For instance, the recent housing and financial crises have precipitated attempts
to enrich existing models with mechanisms designed to enhance their ability to predict just such a crisis (c.f.
[21–23]). Second, the test set may reflect only a small sampling of possible phenomena which could occur.
Finally, large departures from the normal course of events such as the recessions in 1980–82 and periods
before 1960 are often ignored, as in [19]. While these periods are considered rare and perhaps unpredictable,
models which are robust to these sorts of disruptive events will lead to more accurate predictions in future
times of turmoil.

In contrast to the model evaluation techniques typically employed in the literature, generalization error
bounds provide rigorous control over the predictive risk as well as reliable methods of model selection. They
are robust to wide classes of data generating processes and are finite-sample rather than asymptotic in nature.
In a broad sense, these methods give confidence intervals which are constructed based on concentration of
measure results rather than appeals to asymptotic normality. The results are easy to understand and can be
reported to policy makers interested in the quality of the forecasts. Finally, the results are agnostic about the
model’s specification: it does not matter if the model is wrong, whether the parameters have interpretable
economic meaning, or whether the estimation of the parameters is performed only approximately (linearized
DSGEs or MCMC). In all of these cases, we can still make strong claims about the ability of the model to
predict the future.

The bounds we derive here are the first of their kind for the time series models typically used in applied
settings — finance, economics, engineering, etc. — but there are results for other models more common
to computer science (cf. Meir [37], Mohri and Rostamizadeh [38, 39]). Those results require bounded loss
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functions, making them less general than ours, as well as hinging on specific forms of regularization which are
rarely used in time series. Furthermore, they rely on prediction functions f : X ! Y where the dependence
occurs in the X space. Therefore, these results are extensible to AR models or others which depend on only
the most recent past (assuming appropriate model space constraints are satisfied) but not, for instance, to
standard state-space models. For another view on this problem, [36] shows that stationarity alone can be
used to regularize an AR model following the results in [38], but leads to bounds which are much worse than
those given here, despite the stricter assumption of bounded loss.

The meaning of such results for forecasters, or for those whose scientific aims center around prediction
of empirical phenomena, is plain: they provide objective ways of assessing how good their models really are.
There are, of course, other uses for scientific models: for explanation, for the evaluation of counterfactuals
(especially, in economics, comparing the consequences of di↵erent policies), and for welfare calculations. Even
in those cases, however, one must ask why this model rather than another?, and the usual answer is that the
favored model approximates reality better than the alternative — it gets the structure approximately right.
Empirical evidence for structural correctness, in turn, usually takes the form of an argument from empirical
success: it would be very surprising if this model fit the data so well when it got the structure wrong [33].
Our results, which directly address the inference from past data-matching to future performance, are thus
relevant even to those who do not aim at prediction as such.

The remainder of this paper is structured as follows. Section 2 provides motivation and background for our
results, giving intuition in the IID setting by focusing on concentration of measure ideas and characterizations
of model complexity. Section 3 gives the explicit assumptions we make and describes how to leverage powerful
ideas from time series to generalize the IID methods. Section 4 states and proves risk bounds for the time
series forecasting setting, while we demonstrate how to use the results in Section 5 and give some properties
of those results in Section 6. Finally, Section 7 concludes and illustrates the path toward generalizing our
methods to more elaborate model classes.

2 Statistical learning theory

Our goal is to control the risk of predictive models, i.e., their expected inaccuracy on new data from the
same source as that used to fit the model. To orient readers new to this approach, we sketch how classical
results in the IID setting are obtained.

Let f : X ! Y be some function used for making predictions of Y from X. We define a loss function
` : Y ⇥ Y ! R+ which measures the cost of making poor predictions. Throughout this paper, we will
assume that `(y, y0) is a function solely of the di↵erence y � y0 where `(·) is nonnegative and `(0) = 0. For
the remainder of the paper, we take the liberty of denoting that function `(y � y0). Then the risk of any
predictor f 2 F (where f is fixed independently of the data) is given by

R(f) = E [` (Y � f(X))] , (3)

where (X,Y ) ⇠ P. The risk or generalization error is the expected cost of using f to predict Y from X on
a new observation.

Since the true distribution P is unknown, so is R(f), but we can try to estimate it based on our observed
data. The training error or empirical risk of f is

bRn(f) :=
1

n

n
X

i=1

` (Yi � f(Xi)) . (4)

In other words, the in-sample training error, bRn(f), is the average loss over the actual training points.
Because the true risk is an expectation value, we can say that

bRn(f) = R(f) + �n(f), (5)

where �n(f) is a mean-zero noise variable that reflects how far the training sample departs from being
perfectly representative of the data-generating distribution. By the law of large numbers, for each fixed
f , �n(f) ! 0 as n ! 1, so, with enough data, we have a good idea of how well any given function will
generalize to new data.
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However, forecasters rarely have the luxury of a theory which fixes for them, in advance of the data, a
single function f , free of adjustable parameters. Rather, there is a class of plausible functions F , possibly
indexed by some parameters ✓ 2 ⇥, which we will call “a model”. One picks out a single function (chooses one
particular parameter point) from the model via some method — maximum likelihood, Bayesian updating,
indirect inference, ad hoc methods — which often amounts to minimizing the in-sample loss. In this case,
the result is

bf = argmin
f2F

bRn(f) = argmin
f2F

(R(f) + �n(f)). (6)

Tuning the parameters so that bf fits the training data well thus conflates predicting future data well (low

true risk R( bf)) with exploiting the accidents and noise of the training data (large negative finite-sample

noise �n( bf)). The true risk of bf will generally be bigger than its in-sample risk precisely because we picked

it to match the data well. In doing so, bf ends up reproducing some of the noise in the data and therefore
will not generalize as well as bRn( bf) suggests. The di↵erence between the true and apparent risk depends on
the magnitude of the sampling fluctuations:

R( bf)� bRn( bf)  sup
f2F

|�n(f)| = �n(F) . (7)

The main goal of statistical learning theory is to mathematically control �n(F), finding tight bounds
on this quantity which make weak assumptions about the unknown data-generating process; i.e., to bound
over-fitting. Using more flexible models (allowing more general functional forms or distributions, adding
parameters, etc.) has two contrasting e↵ects. On the one hand, it improves the best possible accuracy,
lowering the minimum of the true risk. On the other hand, it increases the ability to, as it were, memorize
noise for any fixed sample size n. This qualitative observation — a form of the bias-variance trade-o↵ from
basic estimation theory — can be made usefully precise by quantifying the complexity of model classes. A
typical result is a confidence bound on �n (and hence on the over-fitting), which says that with probability
at least 1� ⌘,

�n(F)  �( (F), n, ⌘) , (8)

where  (·) measures the complexity of the model F .
To give specific forms of �(·), we need to show that, for a particular f , R(f) and bRn(f) will be close to

each other for each fixed n, without knowledge of the distribution of the data. We also need to understand
the complexity,  (F), so that we can claim R(f) and bRn(f) will be close uniformly over all f 2 F . Together

these two pieces tell us, despite little knowledge of the data generating process, how bad the bf which we
choose will be at forecasting future observations.

2.1 Concentration

The first step to controlling the di↵erence between the empirical and expected risk is to show that for each
f 2 F , R(f)� bRn(f) is small with high probability. The following is a standard result (c.f. [55] or [12]).

Theorem 2.1. Suppose that 0  `(y, y0)  K < 1. Then for each f 2 F ,

P
⇣

�

�

�

R(f)� bRn(f)
�

�

�

� ✏
⌘

 2 exp

⇢

�

2n✏2

K2

�

. (9)

Proof. The proof begins by using an exponential version of Markov’s inequality. For a fixed f , we have

E
h

bRn(f)
i

= R(f). Therefore

P
⇣

R(f)� bRn(f) > ✏
⌘

= P
⇣

exp{s(R(f)� bRn(f))} � exp{s✏}
⌘

(10)



E
h

exp{s(R(f)� bRn(f))}
i

exp{s✏}
. (11)
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We can bound the moment generating function, E
h

exp{s(R(f)� bRn(f))}
i

via Hoe↵ding’s inequality [26]:

E[exp{s(R(f)� bRn(f))}] =
n
Y

i=1

E
h

exp
n s

n
[R(f)� `(Yi, f(Xi))]

oi

(12)



n
Y

i=1

exp

⇢

s2K2

8n2

�

= exp

⇢

s2K2

8n

�

. (13)

With this result, we have

P
⇣

R(f)� bRn(f) > ✏
⌘

 exp{�s✏} exp

⇢

s2K2

8n

�

. (14)

This holds for all s > 0, so we can minimize the right hand side in s (this is known as Cherno↵’s method).
The minimum occurs for s = 4n✏/K2. Substitution gives

P
⇣

R(f)� bRn(f) > ✏
⌘

 exp

⇢

�

2n✏2

K2

�

. (15)

Exactly the same argument holds for P(R(f)� bRn(f) < �✏), so by a union bound, we have the result. ⌅

This result is quite powerful: it says that the probability of observing data which will result in a training
error much di↵erent from the expected risk goes to zero exponentially with the size of training set. The only
assumption necessary was that `(y � y0)  K. In fact, even this assumption can be removed and replaced
with some moment assumptions, as will be done for our main results below.

Theorem 2.1 holds for the single function f , and we want a similar result to hold uniformly over all
functions f 2 F and in particular, any bf that we might choose using the training data, i.e., we wish to

bound P
⇣

supf2F |R(f)� bRn(f)| > ✏
⌘

. How can we achieve this extension?

2.2 Capacity

For “small” models, we can just count the number of functions in the class and take the union bound.
Suppose that F = {f

1

, . . . , fN}. Then we have

P
✓

sup
1iN

|R(fi)� bRn(fi)| > ✏

◆



N
X

i=1

P
⇣

|R(fi)� bRn(fi)| > ✏
⌘

(16)

 N exp

⇢

�

2n✏2

K

�

, (17)

by Theorem 2.1. Most interesting models are not small in this sense, but similar results hold when model
size is measured appropriately.

There are a number of measures for the size or capacity of a model. Algorithmic stability [4, 5, 28]
quantifies the sensitivity of the chosen function to small perturbations to the data. Similarly, maximal
discrepancy [53] asks how di↵erent the predictions could be if two functions are chosen using two separate
data sets. A more direct, functional-analytic approach partitions F into equivalence classes under some
metric, leading to covering numbers [42, 43]. Rademacher complexity [3] directly describes a model’s ability
to fit random noise. We focus on a measure which is both intuitive and powerful: Vapnik-Chervonenkis
(VC) dimension [52, 53].

VC dimension starts as an idea about collections of sets.

Definition 2.2. Let U be some (infinite) set and S a finite subset of U. Let C be a family of subsets of U.
We say that C shatters S if for every S0

✓ S, 9C 2 C such that S0 = S \ C.

Essentially, C can shatter a set S if it can pick out every subset of points in S. This says that the
collection C is very complicated or flexible. The cardinality of the largest set S that can be shattered by C

is the latter’s VC dimension.
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Definition 2.3 (VC dimension). The Vapnik-Chervonenkis (VC) dimension of a collection C of subsets of

U is

vcd(C) := sup{|S| : S ✓ U and S is shattered by C}. (18)

To see why this is a “dimension”, we need one more notion.

Definition 2.4 (Growth function). The growth function G(C, n) of a collection C of subsets of U is the

maximum number of subsets which can be formed by intersecting a set S ⇢ U of cardinality n with C,

G(n, C) := sup
S⇢U : |S|=n

|S ^ C| (19)

The growth function counts how many e↵ectively distinct sets the collection contains, when we can only
observe what is going on at n points, not all of U. If n  vcd(C), then from the definitions G(n, C) = 2n, If
the VC dimension is finite, however, and n > vcd(C), then G(n, C) < 2n, and in fact it can be shown [54]
that

G(n, C)  (n+ 1)vcd(C). (20)

This polynomial growth of capacity with n is why vcd is a “dimension”.
Using VC dimension to measure the capacity of function classes is straightforward. Define the indicator

function 1A(x) to take the value 1 if x 2 A and 0 otherwise. Suppose that f 2 F , f : U ! R. Each f
corresponds to the set

Cf = {(u, a) : 1
(0,1)

(f(u)� b) = 1, u 2 U, b 2 R}, (21)

so F corresponds to the class CF := {Cf : f 2 F}. Essentially, the growth function G(n,vcd(F)) counts
the e↵ective number of functions in F , i.e., how many can be told apart using only n observations. When
vcd(F) < 1, this number grows only polynomially with n. This observation lets us control the risk over
the entire model, providing one of the pillars of statistical learning theory.

Theorem 2.5 (Vapnik and Chervonenkis [54]). Suppose that vcd(F) < 1 and 0  `(y, y0)  K < 1.

Then,

P
 

sup
f2F

|R(f)� bRn(f)| > ✏

!

 4(2n+ 1)vcd(F) exp

⇢

�

n✏2

K2

1

�

, (22)

where K
1

depends only on K and not n or F .

The proof of this theorem has a similar flavor to the union bound argument given in (17).
This theorem has as an immediate corollary a bound for the out-of-sample risk. Since supf2F is inside

the probability statement in (22), it applies to both pre-specified and to data-dependent functions, including

any bf chosen by fitting a model or minimizing empirical risk.

Corollary 2.6. When Theorem 2.5 applies, for any ⌘ > 0 and any f 2 F , with probability at least 1� ⌘,

R(f)  bRn(f) +K
1

r

vcd(F) log(2n+ 1) + log 4/⌘

n
. (23)

The factor K
1

can be calculated explicitly but is unilluminating and we will not need it. Conceptually,
the right-hand side of this inequality resembles standard model selection criteria, like AIC or BIC, with
in-sample fit plus a penalty term which goes to zero as n ! 1. Here however, the bound holds with high
probability despite lack of knowledge of P and it has nothing to do with asymptotic convergence: it holds
for each n. It does however hold only with high P probability, not always.

VC dimension is well understood for some function classes. For instance, if F = {x 7! � · x : � 2 Rp
}

then vcd(F) = p + 1, i.e. it is the number of free parameters in a linear regression plus 1. VC dimension
does not always have such a nice relation to the number of free parameters however; the classic example
is the model F = {x 7! sin(!x) : ! 2 R}, which has only one free parameter, but vcd(F) = 1.2 At the

2This result follows if we can show that for any positive integer J and any binary sequence (r1, . . . , rJ ), there ex-
ists a vector (x1, . . . , xJ ) such that 1[0,1](sin(!xi)) = ri. If we choose xi = 2⇡10�i, then one can show that taking

! = 1
2

⇣PJ
i=1(1� ri)10

i + 1
⌘
solves the system of equations.
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same time, there are model classes (support vector machines) which may have infinitely many parameters
but finite VC dimension [11]. This illustrates a further di↵erence between the statistical learning approach
and the usual information criteria, which are based on parameter-counting.

The concentration results in Theorem 2.5 and Corollary 2.6 work well for independent data. The first
shows how quickly averages concentrate around their expectations: exponentially fast in the size of the data.
The second result generalizes the first from a single function to entire function classes. Both results, as
stated, depend critically on the independence of the random variables. For time series, we must be able to
handle dependent data. In particular, because time-series data are dependent, the length n of a sample path
Y
1

, . . . , Yn exaggerates how much information it contains. Knowing the past allows forecasters to predict
future data (at least to some degree), so actually observing those future data points gives less information
about the underlying process than in the IID case. Thus, while in Theorem 2.1 the probability of large
discrepancies between empirical means and their expectations decreases exponentially in n, in the dependent
case, the e↵ective sample size may be much less than n resulting in looser bounds.

3 Time series

In moving from the IID setting to time series forecasting, we need a number of modifications to our initial
setup. Rather than observing input/output pairs (Yi, Xi), we observe a single sequence of random variables
Y
1:n := (Y

1

, . . . , Yn) where each Yi takes values in Rp.3 We are interested in using functions which take past
observations as inputs and predict future values of the process. Specifically, given data from time 1 to time
n, we wish to predict time n+ 1.

While we no longer presume IID data, we still need to restrict the sort of dependent process we work
with. We first remind the reader of the notion of (strict or strong) stationarity.

Definition 3.1 (Stationarity). A random sequence Y1 is stationary when all its finite-dimensional distri-

butions are time-invariant: for all t and all non-negative integers i and j, the random vectors Yt:t+i and

Yt+j:t+i+j have the same distribution.

Stationarity does not imply that the random variables Yt are independent across time t, only that the
unconditional distribution of Yt is constant in time. We limit ourselves not just to stationary processes, but
also to ones in which widely-separated observations are asymptotically independent. Without this restriction,
convergence of the training error to the expected risk could occur arbitrarily slowly, and finite-sample bounds
may not exist.4 The next definition describes the sort of serial dependence which we entertain.

Definition 3.2 (�-Mixing). Consider a stationary random sequence Y1 defined on a probability space

(⌦,⌃,P1). Let �i:j = �(Yi:j) be the �-field of events generated by the appropriate collection of random

variables. Let P
0

be the restriction of P1 to ��1:0

, Pa be the restriction of P1 to �a:1, and P
0⌦a be the

restriction of P1 to �(Y1:0

, Ya:1). The coe�cient of absolute regularity, or �-mixing coe�cient, �a, is

given by

�a := ||P
0

⇥ Pa � P
0⌦a||TV , (24)

where || · ||TV is the total variation norm. A stochastic process is absolutely regular, or �-mixing, if �a ! 0
as a ! 1.

This is only one of many equivalent characterizations of �-mixing (see Bradley [6] for others). This
definition makes clear that a process is �-mixing if the joint probability of events which are widely separated
in time approaches the product of the individual probabilities, i.e., that Y1 is asymptotically independent.
Many common time series models are known to be �-mixing, and the rates of decay are known up to constant
factors which are functions of the true parameters of the process. Among the processes for which such results
are known are ARMA models [40], GARCH models [7], and certain Markov processes — see Doukhan [17]
for an overview. Additionally, functions of �-mixing processes are �-mixing, so if P1 could be specified by
a dynamic factor model or DSGE or VAR, the observed data would satisfy this condition.

3We can easily generalize this to arbitrary measurable spaces.
4In fact, Adams and Nobel [1] demonstrate that for ergodic processes, finite VC dimension is enough to give consistency,

but not rates.
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Knowing �a would let us determine the e↵ective sample size of time series Y
1:n. In e↵ect, having n

dependent-but-mixing data points is like having µ < n independent ones. Once we determine the correct
µ, we can (as we will now show) use concentration results for IID data like those in Theorem 2.1 and
Theorem 2.5 with small corrections.

4 Risk bounds

With the relevant background in place, we can put the pieces together to derive our results. We use �-mixing
to find out how much information is in the data and VC dimension to measure the capacity of the state-
space model’s prediction functions. The result is a bound on the generalization error of the chosen function
bf . After slightly modifying the definition of “risk” to fit the time-series forecasting scenario, and stating
necessary technical assumptions, we derive risk bounds for wide classes of economic forecasting models.

4.1 Setup and assumptions

We observe a finite subsequence of random vectors Y
1:n from a process Y1 defined on a probability space

(⌦,⌃,P1), with Yi 2 Rp. We make the following assumption on the process.

Assumption A. P1 is a stationary, �-mixing process with mixing coe�cients

5 �a, 8a > 0.

Under stationarity, the marginal distribution of Yt is the same for all t. We deal mainly with the joint
distribution of Y

1:n+1

, where we observe the first n observations and try predicting Yn+1

. For the rest of
this paper, we will call this joint distribution P. Our results extend to predicting more than one step ahead,
but the notation becomes cumbersome.

We must define generalization error and training error slightly di↵erently for time series than in the IID
setting. Using the same notion of loss functions as before, we consider prediction functions f : Rn⇥p

! Rp

Definition 4.1 (Time series risk).

Rn(f) := E
h

` (Yn+1

� f(Y
1:n))

i

. (25)

The expectation is taken with respect to the joint distribution P and therefore depends on n. The
function f may use some or all of the past to generate predictions. A function using only the most recent d
observations as inputs will be said to have fixed memory of length d. Other functions have growing memory,
i.e., f may use all the previous data to predict the next data point. This incongruity makes the notation for
time series training error somewhat problematic.

We will define the training error with a subscript i 2 N on f within the summation. Strictly speaking,
there is only one function f which we are using to make forecasts. In typical fixed memory settings —
standard VAR forecasting models and so on — fi = fj = f for all i, j 2 N. But for models with growing
memory, a fixed forecasting method — an ARMA model, DSGE,6 or linear state-space model — will use
all of the past to make predictions, so the dimension of the domain changes with i. We write the risk of f
as a single function, because, once we parameterize a forecasting method, an entire sequence of forecasting
functions f

1

, f
2

, . . . is determined.

Definition 4.2 (Time series training error).

bRn(f) :=
1

n� d� 1

n�1

X

i=d

` (Yi+1

� fi(Y1:i)) . (26)

5In order to apply the results, one must either know �a for some a or be able to estimate it with su�cient precision and
accuracy. McDonald et al. [34] shows how to estimate the mixing coe�cients non-parametrically, based on a single sample from
the process.

6A DSGE is a nonlinear system of expectational di↵erence equations, so estimating the parameters is nontrivial. Likelihood
methods typically work by finding a linear approximation using Taylor expansions and the Kalman filter, though increasingly
complex nonlinear methods are now intensely studied. See for instance DeJong and Dave [13], Fernández-Villaverde [20] or
DeJong et al. [15]
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In order to make use of this single definition of training error, we let d � 0. In fixed memory cases —
say an AR(2) — d has an obvious meaning, while with growing memory, d = 0 is allowed.

To control the generalization error for time series forecasting, we make one final assumption, about the
possible magnitude of the losses. Specifically, we weaken the bounded loss assumption we used in §2 to allow
for unbounded loss as long as we retain some control on moments of the loss.

Assumption B. Assume that for all f 2 F

Qn(f) :=

r

EP
h

` (Yn+1

� f(Y
1:n))

2

i

 M < 1. (27)

Assumption B is still quite general, allowing even some heavy tailed distributions.

4.2 Fixed memory

We can now state our results giving finite sample risk bounds for the problem of time series forecasting. We
begin with the fixed memory setting; the next section will allow the memory length to grow.

Theorem 4.3. Suppose that Assumption A and Assumption B hold, that the model class F has a fixed

memory length d < n, and that we have a sample Y

n
1

. Let µ and a be integers such that 2µa+ d  n. Then,

for all ✏ > 0,

P
 

sup
f2F

Rn(f)� bRn(f)

Qn(f)
> ✏

!

(28)

 8(2µ+ 1)vcd(F) exp

8

<

:

�

µ exp
⇣

W
⇣

�

2✏2

e4

⌘

+ 4
⌘

4

9

=

;

+ 2µ�a�d,

where W (·) is the Lambert W function.

The implications of this theorem are considerable. Given a finite sample of length n, we can say that
with high probability, future prediction errors will not be much larger than our observed training errors. It
makes no di↵erence whether the model is correctly specified. This stands in stark contrast to model selection
tools like AIC or BIC which appeal to asymptotics. Moreover, given a model class F , we can say exactly
how much data we need to have good control of the prediction risk. As the e↵ective data size increases, the
training error is a better and better estimate of the generalization error, uniformly over all of F .

The Lambert W function in the exponential term deserves some explanation. The Lambert W function
is defined as the inverse of f(w) = w expw (cf. Corless et al. [9]). A strictly, but only slightly, worse bound
can be achieved by noting that

exp

✓

W

✓

�

2✏2

e4

◆

+ 4

◆



✏8/3

42/3
(29)

for all ✏ 2 [0, 1].
The di↵erence between expected and empirical risk is only interesting when Rn(f) exceeds bRn(f). Due

to the supremum, events where the training error exceeds the expected risk are irrelevant. Therefore, we
are only concerned with 0 

bRn(f)  Rn(f). Of course, as discussed in Section 2, for most estimation
procedures, f is chosen to make bRn(f) as small as possible.

One way to understand this theorem is to visualize the tradeo↵ between confidence ✏ and e↵ective data
µ. Consider, by way of illustration, what happens when vcd(F) = 1, �a = 0, and M = 1. Then (28) and
(29) become

P
 

sup
f2F

Rn(f)� bRn(f) > ✏

!

 8 exp

⇢

log(2µ+ 1)�
µ✏8/3

45/3

�

(30)

Our goal is to minimize ✏, thereby ensuring that the relative di↵erence between the expected risk and the
training risk is small. At the same time we want to minimize the right side of the bound so that the
probability of “bad” outcomes — samples where the di↵erence in risks exceeds ✏ — is small. Of course
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Figure 1: Visualizing the tradeo↵ between confidence (✏, y-axis) and e↵ective data (µ, x-axis). The black
curve indicates the region where the bound becomes trivial. Below this line, the probability is bounded by
1. Darker colors indicate lower probability of the “bad” event — that the di↵erence in risks exceeds ✏. The
colors correspond to the natural logarithm of the bound on this probability.

we want to do this with as little data as possible, but the smaller we take ✏, the larger we must take µ to
compensate. We depict this tradeo↵ in Figure 1.

The figure is structured so that movement toward the origin is preferable. We have tighter control on
the di↵erence in risks with less data. But moving in that direction leads to an increased probability of the
bad event — that the di↵erence in risks exceeds ✏. The bound becomes trivial below the solid black line
(the bad event occurs with probability no larger than one). The desire for the bad event to occur with low
probability forces the decision boundary to the upper right.

Another way to interpret the plot is as a set of indi↵erence curves. Anywhere in the same color region is
equally desirable in the sense that the probability of equally bad events is the same. So if we had a budget
constraint trading ✏ and data (i.e. a line with negative slope), we could optimize within the budget set to
find the lowest probability allowable.

Before we prove Theorem 4.3, we will state a corollary which puts the same result in a form that is
sometimes easier to use.

Corollary 4.4. Under the conditions of Theorem 4.3, for any f 2 F , the following bound holds with

probability at least 1� ⌘, for all ⌘ > 2µ�a�d:

Rn(f)  bRn(f) +M

r

E(4� log E)

2
, (31)

with

E =
4vcd(F) log(2µ+ 1) + log 8/⌘0

µ
, (32)

and ⌘0 = ⌘ � 2µ�a�d.
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We now prove both Theorem 4.3 and Corollary 4.4 to provide the reader with some intuition for the types
of arguments necessary. We defer proof of the remainder of the theorems in this section to the appendix.

Proof of Theorem 4.3 and Corollary 4.4. The first step is to move from the actual sample size n to the
e↵ective sample size µ which depends on the �-mixing behavior. Let a and µ be non-negative integers such
that 2aµ + d  n. Now divide Y

n
1

into 2µ blocks, each of length a, ignoring the remainder. Identify the
blocks as follows:

Uj = {Yi : 2(j � 1)a+ 1  i  (2j � 1)a}, (33)

Vj = {Yi : (2j � 1)a+ 1  i  2ja}. (34)

Let U be the sequence of odd blocks Uj , and let V be the sequence of even blocks Vj . Finally, let U0 be a
sequence of blocks which are mutually independent and such that each block has the same distribution as a
block from the original sequence. That is construct U 0

j such that

L(U 0
j) = L(Uj) = L(U

1

), (35)

where L(·) means the probability law of the argument.
Let bRU(f), bRU0(f), and bRV(f) be the empirical risk of f based on the block sequences U, U0, and V

respectively. Clearly bRn(f) =
1

2

( bRU(f) + bRV(f)). Then,

P
 

sup
f2F

Rn(f)� bRn(f)

Qn(f)
> ✏

!

(36)

= P
 

sup
f2F

"

Rn(f)� bRU(f)

2Qn(f)
+

Rn(f)� bRV(f)

2Qn(f)

#

> ✏

!

 P
 

sup
f2F

Rn(f)� bRU(f)

Qn(f)
+ sup

f2F

Rn(f)� bRV(f)

Qn(f)
> 2✏

!

(37)

 P
 

sup
f2F

Rn(f)� bRU(f)

Qn(f)
> ✏

!

+ P
 

sup
f2F

Rn(f)� bRV(f)

Qn(f)
> ✏

!

(38)

= 2P
 

sup
f2F

Rn(f)� bRU(f)

Qn(f)
> ✏

!

. (39)

Now, apply Lemma 4.1 in Yu [56] (reproduced as Lemma A.1 in Section A) to the of the event
n

supf2F
Rn(f)� bRU(f)

Qn(f)
> ✏
o

.

This allows us to move from statements about dependent blocks to statements about independent blocks
with a slight correction. Therefore we have,

2P
 

sup
f2F

Rn(f)� bRU(f)

Qn(f)
> ✏

!

 2P
 

sup
f2F

Rn(f)� bRU0(f)

Qn(f)
> ✏

!

+ 2(µ� 1)�a�d, (40)

where the probability on the right is for the �-field generated by the independent block sequence U0. There-
fore,

2P
 

sup
f2F

Rn(f)� bRU0(f)

Qn(f)
> ✏

!

 8(2µ+ 1)vcd(F) exp

8

<

:

�

µ exp
⇣

W
⇣

�

2✏2

e4

⌘

+ 4
⌘

4

9

=

;

(41)
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where we have applied Theorem 7 in Cortes et al. [10] (reproduced as Lemma A.2) to bound the independent
blocks U0.

To prove the corollary, set the right hand side of (41) to ⌘, take ⌘0 = ⌘ � 2(µ � 1)�a�d, and solve for ✏.
We get that for all f 2 F , with probability at least 1� ⌘,

Rn(f)� bRn(f)

Qn(f)
 ✏. (42)

Solving the equation

⌘0 = 8(2µ+ 1)h exp

8

<

:

�

µ exp
⇣

W
⇣

�

2✏2

e4

⌘

+ 4
⌘

4

9

=

;

(43)

implies

✏ = M

r

E(4� log E)

2
(44)

with

E =
4vcd(F) log(2µ+ 1) + log 8/⌘0

µ
. (45)

⌅

The only obstacle to the use of Theorem 4.3 is knowledge of vcd(F). For some models, the VC dimension
can be calculated explicitly.

Theorem 4.5. For the class of AR(d) models, FAR(d),

vcd(FAR(d)) = d+ 1. (46)

For the class of VAR(d) models with k time series, FV AR(k, d),

vcd(FV AR(k, d)) = kd+ 1. (47)

Theorem 4.5 applies equally to Bayesian VARs. However, this is likely too conservative as the prior tends
to restrict the e↵ective complexity of the function class.7

4.3 Growing memory

Most macroeconometric forecasting model classes have growing rather than fixed-length memories. These
model classes include dynamic factor models, ARMA models, and linearized dynamic stochastic general
equilibrium models. However, all of these models have the property that forecasts are linear functions of
past observations, and, moreover, the weight placed on the past generally shrinks exponentially. These
properties let us get bounds similar to our previous results.

Any linear predictors with growing memory can be put in the following form (1  d < n):

bYd+1:n+1

= BY
1:n (48)

7Here we should mention that these risk bounds are frequentist in nature. We mean that if one treats Bayesian methods as
a regularization technique and predicts with the posterior mean or mode, then our results hold. However, from a subjective
Bayesian perspective, our results add nothing since all inference can be derived from the posterior. For further discussion of the
frequentist risk properties of Bayesian methods under mis-specification, see for example Kleijn and van der Vaart [29], Müller
[41] or Shalizi [47]
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where

B =

2

6

6

6

4

bd,1 · · · bd,d
0bd+1,1 · · · bd+1,d bd+1,d+1

...
...

. . .
bn,1 · · · bn.d bn,d+1

· · · bn,n

3

7

7

7

5

. (49)

With this notation, we can prove the following about growing memory linear predictors.

Theorem 4.6. Suppose that Assumption A and Assumption B hold, and that the model class F is linear in

the data, with growing memory. Further assume that the loss function ` satisfies the following conditions:

1. for some � > 0, `(y + y0)  �(`(y) + `(y0)) (modified triangle inequality).

2. `(yy0)  `(y)`(y0) (sub-multiplication).

Given a time-series of length n, fix some 1  d < n, and let µ and a be integers such that 2µa+d  n. Then

the following bound holds simultaneously for all f 2 F :

P
 

sup
f2F

Rn(f)� bRn(f)� �d(f)

Qn(f)
> ✏

!

(50)

 8(2µ+ 1)h exp

8

<

:

�

µ exp
⇣

W
⇣

�

2✏2

e4

⌘

+ 4
⌘

4

9

=

;

+ 2µ�a�d,

where

�d(f) = �
2E
⇥

` (Y
1

)
⇤

n�d�1

X

j=1

` (bn,j) +
�

n� d� 1

n�1

X

i=d+1

`

0

@

i�d
X

j=1

bi,jyj

1

A . (51)

We should clarify the conditions on the loss function, and the role of the approximation term.
The assumptions on the loss function are quite mild. Both conditions are satisfied for any norm: the

triangle inequality holds with � = 1 (by the definition of “norm”), and sub-multiplication holds by the
Cauchy-Schwarz inequality. Thus the assumptions hold when, for instance, vector-valued predictions have
their accuracy measured using matrix norms. Likewise, absolute error loss (`(y�y0) = |y�y0|) satisfies both
conditions with � = 1, while squared error loss satisfies the conditions with � = 2.

The �d(f) term arises from taking a fixed-memory approximation, of length d, to predictors with growing
memory. As will become clear in the proof, we make this approximation to apply the previous theorem, but
it involves a trade-o↵. As d % n, �d(f) & 0, but this drives µ & 0, resulting in fewer e↵ective training
points whereas smaller d has the opposite e↵ect. Also, �d(f) depends on E

⇥

` (Y
1

)
⇤

which is not necessarily
desirable. However, Assumption B has the consequence that E

⇥

` (Y
1

)
⇤

 M < 1.

Corollary 4.7. Given a sample Y

n
1

such that Assumption A and Assumption B hold, suppose that the model

class F is linear in the data and has growing memory. Fix some 1  d < n. Then, for any f 2 F , the

following bound holds with probability at least 1� ⌘,

Rn(f)  bRn(f) + �d(f) +M

r

E(4� log E)

2
, (52)

where E and ⌘ are as in Theorem 4.3.

To apply Theorem 4.6, we specialize to linear Gaussian state-space models, where we can calculate �d(f)
directly, and demonstrate that it will behave well as n grows. Such models are not, unfortunately, universal,
but all of the most common macroeconomic forecasting models — including dynamic factor models, ARMA
models, GARCH models, and even linearized DSGEs — have linear-Gaussian state-space representations.
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The general specification of a a linear Gaussian state-space model, FSS , is

yt = Z↵t + ✏t, ✏t ⇠ N(0, H),

↵t+1

= T↵t + ⌘t+1

, ⌘t ⇠ N(0, Q), (53)

↵
1

⇠ N(a
1

, P
1

).

We make no assumptions about the sizes of the parameter matrices Z, T , H, Q, a
1

, or P
1

, but we do require
stationarity. This amounts to forcing the eigenvalues of T to lie inside the complex unit circle. Stationarity
ensures that �d(f) will be bounded as well as conforming to our assumptions about the data generating
process.

To forecast using FSS , one uses the Kalman filter (Durbin and Koopman [18], Kalman [27]). To estimate
the unknown parameter matrices, we either: (1) maximize the likelihood returned by the filter; or (2) use the
EM algorithm, alternating between running the Kalman filter (the E-step) and maximizing the conditional
likelihood by least squares (the M-step). (Bayesian estimation works like EM, replacing the M-step with
Bayesian updating.) Either way, one can show [18] that given the parameter matrices, the (maximum a

posteriori) forecast of yt is given by

byt+1

= Z
t�1

X

j=1

t
Y

i=j+1

LiKjyj + ZKtyt + Z
t
Y

i=1

Lia1 (54)

where

Ft = (ZPtZ
0 +H)�1, Kt = TPtZ

0Ft,

Lt = T �KtZ, Pt+1

= TPtL
0
t +Q. (55)

This yields the form of �d(f) for linear state-space models. We therefore have the following corollary to
Theorem 4.6.

Corollary 4.8. Let F correspond to a state-space model as in (53), and fix 1 < d < n. Then the following

bound holds simultaneously for all f 2 F : with probability at least 1� ⌘,

Rn(f)  bRn(f) + �d(f) +M

r

E(4� log E)

2
, (56)

where E is as in Theorem 4.3, and

�d(f) = �
2E
⇥

` (Y
1

)
⇤

n�d
X

j=1

`

0

@

n
Y

i=j+1

LiKj

1

A (57)

+
�

n� d� 1

n�1

X

t=d+1

`

0

@

t�d
X

j=1

t
Y

i=j+1

LiKjyj

1

A .

It is simple to compute �d(f) using Kalman filter output, so the corollary lets us compute risk bounds
for common macroeconomic forecasting models.

5 Bounds in practice

We now show how the theorems of the previous section can be used both to quantify prediction risk and to
select models. We first estimate a simple stochastic volatility model using IBM return data and calculate
the bound for the predicted volatility using Corollary 4.8. Then we show how the same methods can be used
for typical macroeconomic forecasting models.
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Figure 2: This figure plots daily volatility (squared log returns) for IBM from 1962–2011.

5.1 Stochastic volatility model

We estimate a standard stochastic volatility model using daily log returns for IBM from January 1962 until
October 2011 — n = 12541 observations. Figure 2 shows the squared log-return series.

The model we investigate is

yt = �zt exp(⇢t/2), zt ⇠ N(0, 1), (58)

⇢t+1

= �⇢t + wt, wt ⇠ N(0,�2

w), (59)

where the disturbances zt and wt are mutually and serially independent. Following Harvey et al. [24], we
linearize this non-linear model as follows:

log y2t = +
1

2
⇢t + ⇠t, (60)

⇠t = log z2t � E[log z2t ], (61)

 = log �2 + E[log z2t ]. (62)

The noise term ⇠t is no longer Gaussian, but the Kalman filter will still give the minimum-mean-squared-error
linear estimate of the variance sequence ⇢

1:n+1

. The observation variance is now ⇡2/2.
To match the data to the model, let yt be the log returns and remove 688 observations where the return

was 0 (i.e., the price did not change from one day to the next). Using the Kalman filter, the negative log
likelihood is given by

L(Y
1:n|,�,�

2

⇢) /
n
X

t=1

logFt + v2tF
�1

t . (63)

Minimizing this gives estimates  = �9.62, � = 0.996, and �2

w = 0.003. Taking the `(y, y0) = (y � y0)2 gives
training error bRn(f) = 3.333.

To actually calculate the bound, we need a few more values. First, using the methods in McDonald
et al. [34, 35], we can estimate �

8

= 0.017. For a > 8, the optimal point estimate of �a is 0. While this is
presumably an underestimate, we will take �a = 0 for a > 8. For the upper bound in Assumption B, we use
M =

p

2
Combining these values with the VC dimension for the stochastic volatility model, we can bound the

prediction risk. For d = 2, the VC dimension can be no larger than 3. Finally, taking µ = 538, a = 11,
d = 2, and E[Y 2

1

] = 1, we get that �
2

(f) = 0.60 + 2.13 = 2.73. The result is the bound

Rn(f)  7.04 (64)

with probability at least 0.85. In other words, the bound is much larger than the training error, but this
is to be expected: the data are highly dependent, so the large n translates into a relatively small e↵ective
sample size µ.
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Table 1: This table shows the training error and risk bounds for 3 models. AIC is given as the di↵erence
from predicting with the global mean (the smaller the value, the more support for that model).

Model Training error AIC-Baseline Risk bound (1� ⌘ > 0.85)
SV 3.33 -2816 7.04
AR(2) 3.54 -348 4.52
Mean 3.65 0 4.29
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Figure 3: Time series used to estimate the RBC model. These are quarterly data from 1948:I until 2010:I.
The blue line is GDP (output), the red line is consumption, the green line is investment, and the orange line
is hours worked. These data are plotted as percentage deviations from trend as discussed in Section C.

For comparison, we also computed the bound for forecasts produced with an AR(2) model (with intercept)
and with the global mean alone. In the case of the mean, we take µ = 658 and a = 9 since in this case, d = 0.
The results are shown in Table 1. The stochastic volatility model reduces the training error by 5% relative
to predicting with the mean, an improvement which is marginal at best. But the resulting risk bound clearly
demonstrates that given the small e↵ective sample size, even this gain may be spurious: it is likely that the
stochastic volatility model is simply over-fitting.

5.2 Real business cycle model

In this section, we will discuss the methodology for applying risk bounds to the forecasts generated by the
real business cycle (RBC) model. This is a standard tool in macroeconomic forecasting. For a discussion of
the RBC model and the standard methods used to bring the model to the data, see, for example DeJong
and Dave [13], DeJong et al. [14], Fernández-Villaverde [20], Kydland and Prescott [30], Romer [46], Sims
[49], Smets and Wouters [50].

To estimate the parameters of this model, we use four data series. These are GDP yt, consumption ct,
investment it, and hours worked nt. (The data from the Federal Reserve Economic Database, FRED.) The
series we use are shown in Figure 3.

The basic idea of the estimation is to transform the model from an inter-temporal optimization form into
a state space model. This leads to a linear, Gaussian state-space model with four observed variables (listed
above), and two unobserved state variables. The mapping from parameters of the optimization problem to
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parameters of the state-space model is nonlinear, but, for each parameter setting, the Kalman filter returns
the likelihood, so that likelihood methods are possible. As the data are uninformative about many of the
parameters, we estimate by maximizing a penalized likelihood, rather than a simple likelihood. Then the
Kalman filter produces in-sample forecasts which are linear in past values of the data, so that we could
potentially apply the growing memory bound.

For macroeconomic time series, there is not enough data to give nontrivial bounds, regardless of the
mixing coe�cients or the size of the finite memory approximation. Figure 3 shows n = 249 observations.
The minimal possible finite approximation model is a VAR with one lag and four time series, which, by
Theorem 4.5, has VC dimension 5. In this case, since we are dealing with vector valued forecasts, we take
`(y � y0) = ||y � y0||

2

. We assume that the Assumption B is satisfied with M = 0.1 and demand confidence
0.85 (⌘ = 0.15),

Again, using the methods of McDonald et al. [34, 35], we can estimate the �-mixing coe�cients of the
macroeconomic data set. The result is a point estimate �

4

= 0. Assuming that this is approximately
accurate (0 is of course an underestimate), this suggests that the e↵ective size of the macroeconomic data
set is no more than about µ = 31, much smaller then n = 249. To calculate the bound, we assume that
E[||Y ||

2

] < 0.1. Since the loss function is a norm, then � = 1. The training error of the fitted RBC model
is bRn(f) = 0.00059. Thus our bound is given by

Rn(f)  bRn(f) + �
1

(f) + penalty = 0.00059 + 0.18 + 3.07 = 3.26. (65)

The bound here is four orders of magnitude larger than the training error. If the bound is tight, then this
suggests that the training error severely underestimates the true prediction risk. Of course, this should not
be too surprising since the RBC model has 11 parameters and we are trying to get confidence intervals using
only 31 e↵ective data points.

In some sense, the empirical results in this section seem slightly unreasonable. Since the results are only
upper bounds, it is important to get an idea as to how tight they may be. We address this issue in the next
section.

6 Properties of our results

In the previous section, we showed that the upper bound for the risk of standard macroeconomic forecasting
models may be large. This of course raises the question “How tight are these bounds?” We address this
question next and then discuss how to use the bounds for model selection.

6.1 How tight are the bounds?

Here we give some idea of how tight the bounds presented in Section 4 are. Call bferm is the function that
minimizes the training error (or penalized training error) over F , and

f⇤ = argmin
f2F

Rn(f) (66)

is the minimizer of the true risk (“pseudo-truth”), i.e. the best-predicting function in F . We call

Ln(⇧) := inf
P2⇧

EP[Rn( bferm)�Rn(f
⇤)] = inf

P2⇧

EP[Rn( bferm)]�Rn(f
⇤) (67)

the “oracle loss”; it describes how well empirical risk minimization works relative to the best possible predictor
f⇤ over the worst distribution P. Vapnik [52] shows that for classification and IID data, for su�ciently large
n, there exist constants c and C such that

c

r

vcd(F)

n
 Ln(⇧)  C

r

vcd(F) log n

n
, (68)

where ⇧ is the class of all distributions satisfying P(`(y � y0) > K) = 0. In other words, for IID data,

the best we can hope to do is a rate of O

✓

q

vcd(F)

n

◆

and prediction methods which perform worse than
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O

✓

q

vcd(F) logn
n

◆

are ine�cient. We will derive similar bounds for the �-mixing setting. First, we need a

slightly di↵erent version of Theorem 4.3.

Theorem 6.1. Suppose that `(y�y0) < K, that Assumption A holds, and that F has a fixed memory length

d < n. Let µ and a be integers such that 2µa+ d  n. Then, for all ✏ > 0,

P
 

sup
f2F

|Rn(f)� bRn(f)| > ✏

!

 8(2µ+ 1)vcd(F) exp

⇢

�

µ✏2

K2

1

�

+ 2µ�a�d. (69)

where K
1

depends only on K.

The proof of Theorem 6.1 is exactly like that for Theorem 4.3.

Assumption C. The time series Y1 is exponentially (or geometrically) �-mixing, i.e.

�a = c
1

exp(�c
2

a) (70)

for some constants c
1

, c
2

,.

Theorem 6.2. Suppose `(y � y0) < K and that Assumption C holds. Then, for su�ciently large n, there
exist constants c and C, independent of n and vcd(F), such that

c

r

vcd(F)

n
 Ln(⇧)  C

r

vcd(F) log n

n/(1+)
. (71)

Proof. Theorem 6.1 implies that simultaneously

P
⇣

|Rn( bferm)� bRn( bferm)| > ✏
⌘

(72)

 8(2µ+ 1)vcd(F) exp

⇢

�

µ✏2

K2

1

�

+ 2(µ� 1)�a�d

and

P
⇣

|Rn(f
⇤)� bRn(f

⇤)| > ✏
⌘

(73)

 8(2µ+ 1)vcd(F) exp

⇢

�

µ✏2

K2

1

�

+ 2(µ� 1)�a�d.

Since bRn( bferm)� bRn(f⇤)  0, then

P
⇣

|Rn( bferm)�Rn(f
⇤)| > 2✏

⌘

(74)

 8(2µ+ 1)vcd(F) exp

⇢

�

µ✏2

K2

1

�

+ 2(µ� 1)�a�d.

Letting Z = |Rn( bferm)�Rn(f⇤)|, k
1

= 8(2µ+ 1)vcd(F), and k
2

= 1/K2

1

and ignoring constants,

E[Z2]  s+ k0
1

Z K

s
e�k2µn✏d✏+ 4

Z K

0

µn�an�dd✏ (75)

Ln(⇧)  s+ k0
1

Z 1

s
e�k2µn✏d✏+ 4

Z K

0

µn�an�dd✏ (76)

= s+
k0
1

e�k2µn✏

k
2

µn
+ k

3

µn�an�d. (77)

Using Assumption C, take an = n1/(1+), µn = n/(1+), and s = log k0
1

n/(1+)k2
to balance the exponential and

linear terms. Then,

Ln(⇧) = O

 

r

vcd(F) log n

n/(1+)

!

. (78)

For the lower bound, apply the IID version. ⌅
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If we instead assume algebraic mixing, i.e. �a = c
1

a�r, then we can retrieve the same rate where
0 <  < (r � 1)/2 (see Meir [37]). Theorem 6.2 says that in dependent data settings, using the blocking
approach developed here, we may pay a penalty: the upper bound on Ln(⇧) goes to zero more slowly than
in the IID case. But, the lower bound cannot be made any tighter since IID processes are still allowed under
Assumption C (and of course under the more general Assumption A). In other words, we may have  ! 1

so we can not rule out the faster learning rate of O

✓

q

vcd(F) logn
n

◆

.

6.2 Structural risk minimization

Our presentation so far has focused on choosing one function bf from a model F and demonstrating that
the prediction risk Rn( bf) is well characterized by the training error inflated by a complexity term. The

procedure for actually choosing bf has been ignored. Common ways of choosing bf are frequently referred
to as empirical risk minimization or ERM: approximate the expected risk Rn(f) with the empirical risk
bRn(f), and choose bf to minimize the empirical risk. Many likelihood based methods have exactly this
flavor. But more frequently, forecasters have many di↵erent models in mind, each with a di↵erent empirical
risk minimizer. Regularized model classes (ridge regression, lasso, Bayesian methods) implicitly have this
structure — altering the amount of regularization leads to di↵erent models F . Or one may have many
di↵erent forecasting models from which the forecaster would like to choose the best. This scenario leads to
a generalization of ERM called structural risk minimization or SRM.

Given a collection of models F
1

,F
2

, . . . each with associated empirical risk minimizers bf
1

, bf
2

, . . ., we wish
to use the function which has the smallest risk. Of course di↵erent models have di↵erent complexities, and
those with larger complexities will tend to have smaller empirical risk. To choose the best function, we
therefore penalize the empirical risk and select that function which minimizes the penalized version. Model
selection tools like AIC or BIC have exactly this form, but they rely on specific knowledge of the data
likelihood and use asymptotics to derive approximate penalties. In contrast, we have finite-sample bounds
for the expected risk. This leads to a natural model selection rule: choose the predictor which has the
smallest bound on the expected risk.

The generalization error bounds in Section 4 allow one to perform model selection via the SRM principle
without knowledge of the likelihood or appeals to asymptotic results. The penalty accounts for the complexity
of the model through the VC dimension. Most useful however is that by using generalization error bounds
for model selection, we are minimizing the prediction risk. So in the volatility forecasting exercise above, we
would choose the mean.

If we want to make the prediction risk as small as possible, we can minimize the generalization error
bound simultaneously over models F and functions within those models. This amounts to treating VC
dimension as a control variable. Therefore, by minimizing both the empirical risk and the VC dimension,
we can choose that model and function which has the smallest prediction risk, a claim which other model
selection procedures cannot make [32, 53].

7 Conclusion

This paper demonstrates how to control the generalization error of common macroeconomic forecasting
models — ARMA models, vector autoregressions (Bayesian or otherwise), linearized dynamic stochastic
general equilibrium models, and linear state-space models. We derive upper bounds on the risk, which hold
with high probability while requiring only weak assumptions on the data-generating process. These bounds
are finite sample in nature, unlike standard model selection penalties such as AIC or BIC. Furthermore,
they do not su↵er the biases inherent in other risk estimation techniques such as the pseudo-cross validation
approach often used in the economic forecasting literature.

While we have stated these results in terms of standard economic forecasting models, they have very
wide applicability. Theorem 4.3 applies to any forecasting procedure with fixed memory length, linear or
non-linear. Theorem 4.6 applies only to methods whose forecasts are linear in the observations, but a similar
result for nonlinear methods would just need to ensure that the dependence of the forecast on the past decays
in some suitable way.
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Rather than deriving bounds theoretically, one could attempt to estimate bounds on the risk. While
cross-validation is tricky [44], nonparametric bootstrap procedures may do better. A fully nonparametric
version is possible, using the circular bootstrap (reviewed in [31]). Bootstrapping lengthy out-of-sample
sequences for testing fitted model predictions yields intuitively sensible estimates of Rn(f), but there is
currently no theory about the coverage level. Also, while models like VARs can be fit quickly to simulated
data, general state-space models, let alone DSGEs, require large amounts of computational power, which is
an obstacle to any resampling method.

While our results are a crucial first step for the learning-theoretic analysis of time series forecasts, many
avenues remain for future exploration. To gain a more complete picture of the performance of forecasting
algorithms, we would want minimax lower bounds (cf. [51]). These would tell us the smallest risk we could
hope to achieve using any forecaster in some larger model class, letting us ask whether any of the models
in common use actually approach this minimum. Another possibility is to target not the ex ante risk of the
forecast, but the ex post regret: how much better might our forecasts have been, in retrospect and on the
actually-realized data, had we used a di↵erent prediction function from the model F [8, 45]? Remarkably, we
can find forecasters which have low ex post regret, even if the data came from an adversary trying to make
us perform badly. If we target regret rather than risk, we can actually ignore mixing, and even stationarity
[48].

An increased recognition of the abilities and benefits of statistical learning theory can be of tremendous
aid to financial and economic forecasters. The results presented here represent an initial yet productive
foray in this direction. They allow for principled model comparisons as well as high probability performance
guarantees. Future work in this direction will only serve to sharpen our ability to measure predictive power.

A Auxiliary results

Lemma A.1 (Lemma 4.1 in [56]). Let Z be an event with respect to the block sequence U. Then,

|P(Z)� eP(Z)|  �a(µ� 1), (79)

where the first probability is with respect to the dependent block sequence, U, and

eP is with respect to the

independent sequence, U

0
.

This lemma essentially gives a method of applying IID results to �-mixing data. Because the depen-
dence decays as we increase the separation between blocks, widely spaced blocks are nearly independent
of each other. In particular, the di↵erence between expectations over these nearly independent blocks and
expectations over blocks which are actually independent can be controlled by the �-mixing coe�cient.

Lemma A.2 (Theorem 7 in Cortes et al. [10]). Under Assumption B,

P
 

sup
f2F

Rn(f)� bRn(f)

Qn(f)
> ✏

r

2 + log
1

✏

!

 4(2n+ 1)vcd(F) exp

⇢

�

n✏2

4

�

(80)

Corollary A.3.

P
 

sup
f2F

Rn(f)� bRn(f)

Qn(f)
> ✏

!

 4(2n+ 1)vcd(F) exp

8

<

:

�

n exp
⇣

W
⇣

�

2✏2

e4

⌘

+ 4
⌘

4

9

=

;

. (81)

B Proofs of selected results

Proof of Theorem 4.5. The VC dimension of a linear classifier f : Rd
! {0, 1} is d (cf. Vapnik [53]). Real

valued predictions have an extra degree of freedom.
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For the VAR case, we are interested in the VC dimension of a multivariate linear classifier. Thus, one
must be able to shatter collections of vectors where each vector is a binary sequence of length k. For a
VAR, each coordinate is independent, thus, one can shatter a collection of vectors if one can shatter each
coordinate projection. The result then follows from the AR case. ⌅

Proof of Theorem 4.6 and Corollary 4.7. Let F be indexed by the parameters of the growing memory model.
Let F 0 be the same class of models, but predictions are made based on the truncated memory length d. Define
eRn(f 0) to be the training error of this truncated predictor f 0. Then, for any f 2 F , and f 0

2 F

0

Rn(f)� bRn(f)  (Rn(f)�Rn(f
0)) + (Rn(f

0)� eRn(f
0)) + ( eRn(f

0)� bRn(f)). (82)

We will need to handle all three terms. The first and third terms are similar. Let B be as above and define
the truncated linear predictor to have the same form but with B replaced by

B

0 =

2

6

6

6

4

bd,1 bd,2 · · · bd,d
0bd+1,2 · · · bd+1,d bd+1,d+1

0

. . .
bn,n�d+1

· · · bn,n

3

7

7

7

5

. (83)

Then notice that

eRn(f
0)� bRn(f)  |

eRn(f
0)� bRn(f)| (84)

=

�

�

�

�

�

1

n� d� 1

n�1

X

i=d

` (Yi+1

� biYi�d+1:i) �
1

n� d� 1

n�1

X

i=d

` (Yi+1

� b

0
iYi�d+1:i)

�

�

�

�

�

(85)



�

n� d� 1

n�1

X

i=d

` ((bi � b

0
i)Yi�d+1:i) (86)

by the triangle inequality where bi is the ith row of B and analogously for b0
i. Therefore

eRn(f
0)� bRn(f) 

�

n� d� 1

n�1

X

i=d

` ((bi � b

0
i)Yi�d+1:i) (87)

=
�

n� d� 1

n�1

X

i=d

`

0

@

i�d
X

j=1

bi,jyj

1

A (88)

For the case of the expected risk, we need only consider the first rows of B and B

0. Using linearity of
expectations and stationarity

Rn(f)�Rn(f
0) = |E[` (Yn+1

� bnY1:n+1

)]� E[` (Yn+1

� b

0
nY1:n+1

)] (89)

 �E[` ((bn � b

0
n)Y1:n+1

)] = �E
"

`

 

n�d
X

i=1

bnjYj

!#

(90)

 �2

n�d
X

i=1

E[` (bnjYj)]  �
2

n�d
X

i=1

` (bnj)E[` (Yj)] (91)

 �2E[` (Y
1

)]
n�d
X

i=1

` (bnj) (92)

Then,
Rn(f)� bRn(f)� �d(f)  Rn(f

0)� eRn(f
0) (93)

where

�d(f) = �
2E
⇥

` (Y
1

)
⇤

n�d
X

j=1

` (bn,j) +
�

n� d� 1

n�1

X

i=d

`

0

@

i�d
X

j=1

bi,jyj

1

A (94)
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Divide through by Qn(f) and take the supremum over F and F

0

sup
f2F

Rn(f)� bRn(f)� �d(f)

Qn(f)
 sup

f 02F 0,f2F

Rn(f 0)� eRn(f 0)

Qn(f)
. (95)

Finally,

sup
f2F, f 02F 0

Qn(f 0)

Qn(f)
 1 (96)

since F

0
✓ F . So,

sup
f 02F 0,f2F

Rn(f 0)� eRn(f 0)

Qn(f)
= sup

f 02F 0,f2F

Rn(f 0)� eRn(f 0)

Qn(f 0)

Qn(f 0)

Qn(f)
(97)

 sup
f 02F 0

Rn(f 0)� eRn(f 0)

Qn(f 0)
. (98)

Now,

P
 

sup
f2F

Rn(f)� bRn(f)� �d(f)

Qn(f)
> ✏

!

 P
 

sup
f 02F 0

Rn(f 0)� eRn(f 0)

Qn(f 0)
> ✏

!

. (99)

Since F

0 is a class with finite memory, we can apply Theorem 4.3 and Corollary 4.4 to get the results. ⌅

Proof of Corollary 4.8. This follows immediately from Corollary 4.7 and (54). ⌅

C Data

The data to estimate the RBC model is publicly available from the Federal Reserve Economic Database,
FRED (http://research.stlouisfed.org/fred2/). The necessary series are shown in the Table 2. All of
the data is quarterly. The required series are PCESVC96, PCNDGC96, GDPIC1, HOANBS, and CNP16OV.
These five series are used to create four series [y0t, c0t, i0t, h0

t] as follows:

c0t = 2.5⇥ 105
PCESV C96 + PCNDGC96

CNP16OV
(100)

i0t = 2.5⇥ 105
GDPIC1

CNP16OV
(101)

y0t = ct + it (102)

h0
t = 6000

HOANBS

CNP16OV
. (103)

We use the preprocessed data which accompanies DeJong and Dave [13] (http://www.pitt.edu/
~

dejong/

seconded.htm). We then apply the HP-filter described in Hodrick and Prescott [25] to each series individ-

ually to calculate trend components
h

eyt, ect, eit, eht

i

. The HP-filter amounts to fitting the smoothing spline

e

x

1:n = argmin
z1:n

n
X

t=1

(x0
t � zt)

2 + �
n�1

X

t=2

((zt+1

� zt)� (zt � zt�1

))2, (104)

with the convention � = 1600. We then calculate the detrended series that will be fed into the RBC model
as

xt = log x0
t � log ex0

t. (105)

The result is shown in Figure 3.
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Table 2: Data series from FRED
Series ID Description Unit Availability
PCESVC96

Real Personal
Consumption
Expenditures: Services

Billions of
Chained 2005 $

1/1/1995

PCNDGC96 Real Personal
Consumption
Expenditures:
Nondurable Goods

Billions of
Chained 2005 $

1/1/1995

GDPIC1
Real Gross Domestic
Investment

Billions of
Chained 2005 $

1/1/1947

HOANBS Nonfarm Business
Sector: Hours of All
Persons

Index: 2005=100 1/1/1947

CNP16OV Civilian
Noninstitutional
Population

Thousands of
Persons

1/1/1948

Table 3: Priors, constraints, and parameter estimates for the RBC model.
Prior Constraint

Parameter Estimate Mean Variance Lower Upper
↵ 0.24 0.29 2.5⇥10�2 0.1 0.5
� 0.99 0.99 1.25⇥10�3 0.90 1
� 4.03 1.5 2.5 1 5
' 0.13 0.6 0.1 0 1
� 0.03 2 2.5⇥10�2 1⇥10�3 0 0.2
⇢ 0.89 0.95 2.5⇥10�2 0.80 1
�✏ 3.45⇥10�5 1⇥10�4 2⇥10�5 0 0.05
�y 1.02⇥10�6 – – 0 1
�c 2.30⇥10�5 – – 0 1
�i 6.11⇥10�4 – – 0 1
�n 1.68⇥10�4 – – 0 1

D Estimation

To estimate, we maximize the likelihood returned by the Kalman filter, penalized by priors on each of
the “deep” parameters. This is because the likelihood surface is very rough and there exists some prior
information about the parameters. Additionally, each of the parameters is constrained to lie in a plausible
interval. Each parameter has a normal prior with means and variances similar to those in the literature.
We generally follow those in DeJong et al. [14]. The priors, constraints (which are strict), and estimates are
shown in Table 3.
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