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Abstract

Inspired by the Coasean “market vs firm” dichotomy, we offer a new definition of
efficiency by applying the notions of network cost and network efficiency as developed in
complex network theory. Network analysis is relevant for every system of interconnected
exchanging agents. One such system is the banking sector. It is showed that the notions
hereby presented may improve upon the predictions of Allen & Gale’s standard model,
where agents exchange liquidity and where troubles in a local area of the network may

lead to systemic collapse.
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NETWORK EFFICIENCY AND THE BANKING SYSTEM

§1. Introduction: from Coase to banks

In a classic statement, Ronald Coase declared: “The main reason why it is
profitable to establish a firm would seem to be that there is a cost of using the
price mechanism”, the latter being “[t|he cost of negotiating and concluding a
separate contract for each exchange transaction which takes place on a market”
(Coase 1937, 390-1). The passage is interpreted as meaning that, in the absence
of a firm, each input owner would possibly have to contract with every other
owner of the inputs whose cooperation is required in the production process,
while within the firm each input owner negotiates a single contract with the
entrepreneur. In case N inputs must cooperate to obtain the final product, a total
of N(IV - 1)/2 bilateral contracts would be required in the free market, while only
(IV—1) contracts would suffice within a firm. If, as argued by Coase, each contract
has a cost, the latter is the most efficient solution to produce the output. Firms
thus emerge as the efficient response to the costly process of contracting.

This well-known explanation of the origin of firms relies on the implicit
assumption that efficiency in production is tantamount to cost minimization.
However, there may be production processes where an alternative notion of
efficiency, based on the effectiveness with which knowledge, or information, or
any other kind of valuable input, is transmitted from one agent to the other,
sounds more appropriate. In such a case, the existence of a direct connection, in
the form of a contractual relation, between any two agents participating in a
common production process is a more effective way for exchanging knowledge
between them than the alternative solution of having knowledge flow through the
firm’s hierarchy from, say, an agent up to the entrepreneur, and then from there
down to another agent. Moreover, a network of direct relationships between input

owners makes the production process more resilient to possible breakdowns in



communication flows. In the case of a firm, each agent is connected to the others
only through its contractual relationship with the entrepreneur, so much so that
any interruption of this relationship (due to, say, adverse weather conditions or a
contractual breakdown) determines the agent’s inability to contribute to the
production process. This is not so when the agent is connected to many others
via a number of contracts: even if one, or few, of its relationships break down, she
will still be able to contribute to the joint endeavor (e.g., by providing essential
information) through the remaining ones. An alternative definition of efficiency
should ideally encompass these phenomena, while retaining a key role for cost
minimization.

The paper’s underlying intuition is that the heuristic potential of such an
alternative efficiency notion would go much beyond the “market vs firm”
dichotomy. For example, assume the production process under scrutiny is the
provision of liquidity to end users (households or businesses) via the banking
system. Coase’s dichotomy may thus be interpreted as two possible ways to
“produce” the liquidity required by the real sector of the economy. First, think of a
centralized banking system, where the liquidity collected from depositors is
channeled by individual branches towards a central institution — a money center
(as in Eboli 2001) — which then oversees its redistribution to borrowers, either
directly or through its branches. The main advantage of such a system would be
similar to that of the Coasean firm: the minimization of the cost required to build
the network of financial channels. Each contract to transmit liquidity entails a
cost, if only in terms of the information about the borrower that the lender has to
gather before making the loan. Hence, the centralized system is the most cost-
effective way to provide liquidity. In addition, there is a further advantage in
terms of the network’s protection from systemic crisis: the failure of one branch
to repay its debts (i.e., return the liquidity to its depositors) would have little if
any impact at system level because the ensuing financial imbalance would not
propagate beyond the money center that, by definition, has the potential to offset
it in its sizeable balance sheets.

Think now of a decentralized financial system where each agent is an
independent bank that exchanges liquidity with the other banks. Liquidity may
now circulate much more effectively and always be promptly transmitted from

agents in surplus (be they banks or depositors) to those in deficit. Moreover, an



interbank network for exchanging liquidity represents a safety net for each bank,
which may now get liquidity from several channels, as well as for the system as a
whole, because it warrants that, even in case of default of a single bank, liquidity
will still continue to flow to and from every local area of the economy via
alternative channels. On the minus side, such a system is very costly because
now each bank has to gather information about every other bank with which it
exchanges liquidity, as well as about each of its partners’ partners (because
financial troubles of any of the latter may impact on the bank’s direct partners’
ability to repay debts). Moreover, the very same safety net provided by the
interbank network has the potential to create a contagion from the failure of a
single bank to repay its debts to the balance sheets of its lenders that, when
roughly of the same size, may in turn become unable to honor their own debts,
thereby triggering a (possibly explosive) propagation of the liquidity crisis.

In Coasean fashion, we may ask ourselves which of the two systems is the most
efficient one for liquidity circulation. Is it preferable to have a cost-minimizing,
vertically integrated system, which is also less exposed to the risk of systemic
crisis, or a decentralized, interlocked system that may quickly transfer liquidity
everywhere in the market and is locally robust to failures, but that may more
easily suffer from global collapse? A trade-off seems to exist between mutual
insurance and systemic risk in a banking system.!

What limits the centralization of transactions? The standard answer, once again
inspired by Coase 1937, is that as firms grow bigger, it becomes ever more costly
to manage them. A threshold of managerial complexity exists beyond which it is
less expensive for the firm to leave certain kinds of transactions or activities to
the market, rather than integrate them. This intuition can be generalized by
observing that every agent has only a bounded ability to handle the — potentially
very large amount of — inputs (or knowledge, or information) received. A crucial
insight is that an agent’s position in the network determines the seriousness of
the troubles caused by her limited capacity. For example, the cost-minimizing
centralized system may breakdown when the amount of inputs received by the

central agent trespasses the latter’s maximum capacity to effectively manage

! The trade-off is well-known in the literature. See Allen & Gale 2000; Eboli 2001; Iori, Jafarey & Padilla 2006; Nier et
al. 2007; Rotemberg 2008. As opposite real-world examples, think of a banking system that is closely supervised and
coordinated by a central bank and a shadow banking system that is entirely decentralized.



them. The problem may be solved by either paying the cost of building a
decentralized network that may spread the inputs’ load over more agents or by
bearing a new kind of cost addressed at augmenting the central agent’s capacity.

Think again of the banking system. A bank exceeds its capacity when the
demand for its liquidity is higher than its ability to collect it. The unsatisfied
demand may then turn to another bank, but this may cause further troubles if
the latter exceeds its own capacity to provide liquidity; the new troubles may then
spread to a third bank, and so on. The crisis may be avoided by allowing a bank
extra sources of liquidity — for example, by letting the bank sell its long period
assets or by establishing a special “liquidity creator” (a.k.a. the central bank) with
the duty to provide liquidity on demand. Yet, none of these solutions is zero-cost.

Summing up, we have four elements to take into account when evaluating the
“market vs firm” dichotomy in its general form of a network of interconnected
agents: 1) the cost of establishing a communication channel (say, a contract)
between two agents; 2) the effectiveness in the transmission of the
inputs/information among the agents; 3) the robustness of the entire system, or
of parts of it, to the breakdown of an agent or a communication channel; 4) the
cost of providing each agent with the capacity to manage the inputs/information
received. The four features find easy translation in the banking system case.
Standard economics only emphasizes the first and, sometimes, the fourth
element. However, it is just through the interplay of all four that we may fully
characterize the working of every system where either information or inputs or
liquidity are transmitted from one agent to another.

For a complete solution we have to look outside economics and towards the
theory of complex networks, a relatively young research area in physics and
mathematics that aims at investigating the topological properties of non-trivial
networks. In a series of recent papers physicists Vito Latora and Massimo
Marchiori (LM thereafter) have proposed some notions of network cost and
network efficiency that happen to nicely overlap with the four above-mentioned
features. The rest of the paper aims at presenting these notions, showing that
they can provide a richer toolbox for the analysis of interconnected systems, such

as the banking one.?

* For an authoritative call to employ in macroeconomics the tools of network analysis, see Caballero 2011. See the
previous footnote for some references in this literature, where however no mention is made of LM’s formalism.



The paper is organized as follows. The next section covers the basic material of
complex network theory. In §§ 3-4 we introduce LM’s notions of, respectively,
network efficiency and network cost and collapse. The fifth § examines how our
approach may be applied to the analysis of banking systems and liquidity crises.

§6 concludes.

§2. Basic definitions and the notion of small worlds

Consider a generic network G with N members and K links connecting the

members (with K < N (N —l) / 2, to ensure that the network is sparse, i.e., that

only a few of the total possible number of edges exist). If we represent G as a
graph, N is the number of vertices and K that of the edges. The polar cases are
those of regular and random networks. The former can be represented by a graph
where each vertex is connected with the same number of other vertices, the latter
are represented by the kind of irregular graphs that obtain when any two vertices
may be independently connected with a given probability.

In a 1998 paper Duncan Watts and Steven Strogatz (WS thereafter) have shown
that the connection topology of some real world networks is neither completely
regular, nor completely random (Watts & Strogatz 1998). These networks, named
small worlds in analogy with the notion developed by social psychologist Milgram
(1967), enjoy both a property typical of regular networks, namely, a high
clustering, and one typical of random networks, namely, a small characteristic
path length. The first is a local property and refers to the high probability that the
existence of a link between network members i and j and between members jand
k entails the existence of a link also between members i and k - that is to say,
there is a high probability that “the friends of my friends are also my friends”. The
second is a global property and refers to the shortest distance, in terms of edges
to be traveled, between any two network members:3 the average value of these
shortest distances calculated over all network pairs of vertices is called the

network’s characteristic path length. In random networks this average value is

? This shortest distance is also popularly known as the number of degrees of separation.



relatively small, indicating the likely existence of direct connections even between
faraway vertices.

WS use the mentioned properties to characterize small worlds. However, their
definition can only be applied to a special class of networks, namely, those
represented by graphs which are, at the same time, simple, connected and
unweighted. A graph is simple when no multiple links connecting the same pair of
vertices exist. A graph is connected when there exists at least one path connecting
any couple of vertices (i.e., it must always be possible to reach a given vertex
starting anywhere in the graph). Finally, a graph is unweighted when all the
edges between vertices are equal: in such a case, the term topological networks is
used, to indicate that what distinguishes edges is just their position and relation
to other edges, but not their individual properties (like, say, length).

Latora and Marchiori (LM) aim at generalizing WS’s definition of small worlds, in
order to extend it to a more general class of networks. But before moving to LM’s
work, a little extra terminology is needed from complex network theory.4

In the case of WS’s simple, connected and unweighted graphs, all the

information necessary to describe a given graph G is summarized by the Nx N

symmetric matrix {aij} - called the adjacency matrix — where each q; is 1 if an

edge exists joining vertex i to vertex jand O otherwise. Define the degree of vertex

i as the number £, of its edges, i.e., the number of other vertices directly
connected with i — the neighbors of i. Each k, can be determined from the

adjacency matrix as k, = Zal_j , i.e., as the sum of 1s which can be found in row i
j

The average value of k, captures an important characteristic of any graph — that
is, its connectivity — and is calculated as k=1/N) k,=2K/N .

Now define d; as the smallest number of edges to go from i to j— what we call
the shortest path between i and j. In general, it is d, >1, with the equality when a

direct link exists between i and j. Note that all entries in the shortest paths

matrix {di/.} can also be determined from the information in the adjacency matrix.

* See Newman 2005; Caldarelli & Vespignani 2007, Ch.1; Caldarelli 2007, Ch.1.



Both notions used by WS to define a small world stem from the previous
definitions. The characteristic path length L of graph G is defined as the average
of the shortest paths between two generic vertices:

1
L(G) =mi¢j§€“cdﬁ 3
The clustering of a network is measured by the clustering coefficient. Take G, to
be the subgraph of the neighbors of vertex i. If the graph is simple, there are &,

such neighbors, hence G, may have at most &, (k,—1)/2 edges in case it is

completely connected (meaning that every neighbor of i is connected to every

other neighbor of i). The clustering coefficient C, of subgraph G, is defined as the

fraction of possible edges of G,that actually exist: C, = ‘ , where K

G
ki (ki - 1)/ 2
indicates the actual number of edges in sub-graph G, . The clustering coefficient

C of graph G is the average of the C,, calculated over all possible is:
1
C(G)=—) C,.
(G)=5 2.6
WS’s small worlds are networks with a high clustering coefficient C and a small

characteristic path length L.6

§3. Network efficiency measures

In a series of works LM (with their co-authors) have proposed a new property for
complex networks, called efficiency, and a couple of measures of the cost required
to build a network’s edges and vertices.” LM efficiency measures the effectiveness

of communication between network members, i.e., how “fast” the information may

> The formula clarifies why connectedness is crucial in WS’s analysis. If graph G is disconnected, there are at least
two vertices with no finite length path connecting them, i.e., which are at infinite distance one from the other. In such a

case L (G) becomes an ill-defined quantity.

% Note that the existence, both theoretically and in the real world, of networks endowed with these two properties could
not be taken for granted before WS, given that regular networks have both high C and high L, while random networks
have both low C and low L. Small worlds are networks that exhibit a high level of clustering, but also preserve the
possibility to directly (or, in any case, swiftly) travel between any pair of vertices, regardless of their position in the
graph.

" See Latora & Marchiori 2001; 2002; Crucitti et al. 2003; 2004; Crucitti, Latora & Marchiori 2004.



travel between any two vertices of a graph. The notion is more general than WS’s
clustering and characteristic path length because it can be applied to every kind
of graph, be it non-simple and/or disconnected and/or weighted. The latter
circumstance is especially crucial. Real networks are almost never just
topological, i.e., the links connecting network members almost always differ one
from the other in terms of, say, physical length (think of a transportation
network) or volume of “transmission” (think of computer networks, which
transmit data, or financial networks, which transmit liquidity). Moreover, LM
efficiency can be calculated both globally and locally, i.e., for the network as a
whole and for any of its sub-networks.

LM’s main use of their new notion is to prove that small worlds are
characterized by high global and local efficiency. The former property means that
in a small world communication between any two members is very effective, the
latter that communication among neighbors of a given member is not disrupted
even in case that member abandons the network. To give a concrete example,® a
transport network is a small world if: i) it is usually possible to go quickly —i.e.,
with a relatively small number of intermediate stops — from one station to another
(global efficiency), and, i) if closing a station usually does not disrupt the
possibility to travel from the station immediately preceding it to that immediately
following (local efficiency).

Let us now define LM efficiency. Dealing with weighted graphs requires that we

define a new matrix, i.e., the matrix of the weights associated to each link. Let w,

be the weight associated to the link between vertices i and j. Generally speaking,
a weight is just a real number attached to an edge,® although its most intuitive

interpretation — and the one followed here — is that of the physical distance

between i and .10 The weight matrix {w,.j} contains all the weights attached to

graph G’s edges. Note that even non-simple graphs may be encompassed by the

concept of weight. Assuming that multiple edges connect vertices i and j, the

¥ See Latora & Marchiori 2001.
? Caldarelli & Vespignani 2007, Ch.1.
' In their works LM always start from this simple interpretation and then adapt it to the different applications. For

example, in the case of a computer network, w; is a number proportional to the time needed to transmit a unit of

information through a direct link between two computers.



weight w, of the i-j connection may in fact be taken as equal to the inverse of the
number of edges between i and j. In simple, unweighted graphs it is w; =1,Vi=# j.
In a weighted graph, the definitions of a vertex degree k, and of the shortest

path d; have to be modified. The weighted degree (also called the strength) of

vertex i now becomes k" = ZWU , while the shortest path d; is determined by

J#
taking into account that the length of the paths connecting any two vertices i and
j cannot be determined anymore by simply counting the number of edges: each

link’s weight now matters too.

In the archetypal case where weights measure physical distances, d;; is the
smallest total of physical distances calculated over all possible paths that connect

iand j . Hence, all entries in the shortest paths matrix {d,j” } are now determined
by using the information contained in the adjacency matrix {aij} and the weight

matrix {Wij}' In general, it is d/ >w,, Vi, j, with the equality only in case a direct

Wy
link connects i and j.

Assume that every vertex sends information along the network through its
edges (namely, it is a parallel network). LM define the efficiency in communication
between i and j as a quantity inversely proportional to the shortest path between

the same vertices: ¢; = 1/ d}, Vi, j. This quantity is well defined even in the case of

1] b
disconnected graphs, because when no path exists between i and j we have

d; =+ and so ¢; =0.!! The average efficiency of graph G is defined by LM as:

2.5 /

E(G)= N(jzs N

and normalized by comparing it to the efficiency of the fully connected graph G, i.e., of

the graph where all the N (N -1) / 2 possible edges exist and thus where the information is

transmitted in the most efficient way given that every vertex is directly linked to all others.
Efficiency reaches its maximum value in G, so much so that, considering that in such

agraph d; =w,, Vi, j, we have:

1]7

' This represents a clear advantage with respect to WS’s notion of characteristic path length which, though clearly
related to LM’s efficiency, is an ill-defined quantity in the case of disconnected graphs.



1
EMAX _ i;ﬁjzec A’J

N(N-1)
This is the value used by LM to normalize E(G). The global efficiency of graph G
is then defined as: E,,, = E(G)/E"" . By construction, E,,, takes values in the

unit interval. It captures the network’s (relative) ability to transmit information
from any vertex to another.

LM also define the local efficiency of graph G by evaluating for each vertex i the
efficiency E(G;) of the sub-graph G, of the &, neighbors of i. Again, we normalize

the efficiency of G, by calculating the efficiency Eg " of the ideal, fully connected

subgraph G“*, where each of the & (k,~1)/2 possible edges exists. The local

efficiency of G is calculated as the average of the local efficiencies over all
possible subgraphs:
1 < E(G))
E =—Y—"t
loc N IEZG: EéllAX

E

.. too takes values in the unit interval. Since i ¢ G,, LM’s local efficiency
captures a basic feature of real world networks. It tells how much a network is
fault tolerant, that is to say, how efficient is the communication between the

neighbors of every given i whenever iis removed from the network.!12

§4. Network building and collapse

It follows from the previous definitions that both the global and the local
efficiency of a network grow the larger the number of its edges. A fully connected

graph would exhibit £, = E, =1. However, it is a matter of life that a cost must

loc

be paid whenever a link is established connecting two network members.13

Moreover, the cost is intuitively higher the larger the weight of the connection: the

"2 LM show that WS’s clustering coefficient is always a reasonable approximation of £ i

oc ?

the latter being a more
general and encompassing notion than the former. As noted before, LM’s main theoretical result is proving that WS’s
small worlds enjoy both a high £, , andahigh £, .

" In Coasean terms (see §1), a cost arises whenever a market relationship is established between two agents.
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longer the edge, or the bigger the amount of information to be transmitted, the
more expensive the connection.

That each link comes with a cost is explicitly taken into account by LM,* who
exploit this simple fact to define a subcategory of small worlds networks, called
economic small worlds, which enjoy high global and local efficiency, as every small
world, but also a relatively low cost. These networks thus exhibit three desirable
properties: they are very effective in transmitting information, very resilient to
fault and not excessively expensive to build. In many sense, they represent an

ideal anyone called to build or manage a real world network should aim at.

In order to quantify the cost of a network, LM define the cost evaluator y(-) as
the function determining the cost required to build a connection between i and j

of a given weight w, .15 The simplest such function is y(wij) =hw, , with >0, i.e,

cost is assumed as directly proportional to weight.!6 For simplicity, we take i2=1.
Using the information in the adjacency matrix, and observing that in the fully

connected graph this matrix has all 1s (q; =1, Vi, j), we can define the normalized

cost of graph G as:

Zi#jeG aij}/(M}ij)
Zi#jecy(m}fj)

Even this measure takes values in the unit interval. Note that in the case of an

I'(G)=

unweighted graph, the formula becomes: I'(G)=2K/N(N-1), i.e., the normalized

cost of building a topological network is simply the ratio between the number of

its links and the maximum number of edges it may have. It follows that the cost

of a fully connected, unweighted network is F(Gide"') =1.

'* See Latora & Marchiori 2002. As noted by a referee, a feature that neither LM nor the present paper consider is that
connections may also have a strategic interpretation. This e.g. may happen when any pair of vertices (agents) have the
option of establishing a connection between them (or with someone else) and this option entails a payoff in a game-
theoretic sense. Every connection in the graph may then be interpreted as the outcome of the vertices’ Nash-equilibrium
play. Multiple equilibria — i.e., multiple network structures — would then be an obvious possibility and they could be
Pareto-ordered also in terms of LM’s efficiency notions.

' See Latora & Marchiori 2002. Again, they translate the general notion of weight into the intuitive one of length.

Hence what the function () calculates is the cost of building a link of a given length.
'® Recall that in non-simple graphs the weight may be set equal to the inverse of the number of connections between i

andj. Given that the higher the number of connections, the smaller the weight, it follows that in such a case ¥ () must

be inversely related to W .
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However, the cost of building a network is not exhausted by what is required to
establish each link, because there is also a cost in endowing the network’s
vertices with the ability to “handle” the information. Call capacity a vertex’s ability
to effectively “manage” the information it receives from the other vertices and that
it transmits (or re-transmits) to them.!” This capacity too comes with a cost — the
bigger, the larger is capacity itself.

In a couple of later papers, LM and their collaborators have used the notions of

capacity and its cost to model the dynamic process leading to another real-world

phenomenon, network collapse.!® To this aim, they define the load L, (t) of a given

vertex i at time t as the number of most efficient (i.e., shortest) paths passing
through i at time t. Once more, the intuition behind this concept is
straightforward. Consider again a transportation network, where vertices
represent stations, edges represent routes directly connecting stations and a
journey from one station to another is constituted by the total length of the
route(s) which must be traveled to do it. A most efficient journey is a journey
requiring the shortest length; the load of a given station is the number of such
journeys passing through that station. A properly working station is a station
that can effectively handle its load without affecting the efficiency of the journeys
passing through it.

The definition of L (¢) is quite flexible. Rather than in terms of the sheer

number of most efficient paths passing through it, a vertex’s load may be defined
in terms of the total weight of those most efficient paths — for example, in terms of
the number of passengers traveling through that station. In such a case two
weights would be attached to each link/route: one representing that route’s
length, the other the number of passengers transported along that route. Another
possibility would be to model the network as a non-simple graph, with multiple
links between i and j. For example, each link might represent a passenger
travelling along that route, so much so that the route’s total weight would simply

equal the number of links. Also note that the load is not identical to the notion of

weighted degree k": the latter is a static measure that captures the weight of all

' See below for a more exact meaning of the loose words “handle” and “manage”.
'8 Crucitti, Latora & Marchiori 2004; Crucitti et al. 2004. Also see Motter & Lai 2002.
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the links of vertex i, while the former is a dynamic notion that considers only
those links belonging to the set of the network’s shortest paths.

The capacity of vertex i may then be defined as the maximum load the vertex

can carry without starting to work less effectively. Formally, C, = ¢, (0) — where

a, 21, called the tolerance parameter, indicates that the vertex may carry a bigger,

though still bounded, load than the initial (at 1=0) one. The limit on capacity is

due to cost Q(¢,): the larger a vertex’s capacity, the higher the cost.19

We can now define more precisely what it means for a vertex to properly
“handle” or “manage” its load. Following Crucitti, Latora & Marchiori 2004, we
model the dynamics of the network’s most efficient paths as an outcome of the
relationship between a vertex’s capacity and its load. Consider an unweighted
network, where the length of a path between two vertices is simply the number of

links to be traveled. Define 4; as the length of a generic path between i and jand

call e, =% € (0,1] the efficiency of that path.20 With a slight modification of LM’s

ij
formalism, let’s denote by e; the efficiency of an i-j path that goes through vertex

x (where x may possibly coincide with either i or j). As before, d; represents the

length of the most efficient path between iand j, and ¢, € (0,1] measures its

efficiency. If the most efficient way to connect i and j is through vertex x, then it is

X

e; =¢,. Hence, load L (1) denotes the number of most efficient paths between any

generic pair of vertices that go through vertex x at time t.
At time ¢ >0, the efficiency of any path between vertex i and j that goes through
x then is:

) 6 (0= if L(1)>C,

G(0) L)<

' Capacity may thus be raised by increasing the tolerance parameter & .
* Intuitively, a very long path is highly inefficient (in the limit case of disconnected vertices, it is e; —> 0), while a

direct path has maximum efficiency ( e; = ).

13



In words: if for any reason a vertex’s load exceeds it capacity, the vertex begins to
“work less properly”: the efficiency of every path passing through it falls
proportionally to the ratio between capacity and load.?!

Here comes the crucial observation by LM and their collaborators. Among the i-j
paths through x that witness a (possibly dramatic) fall in their efficiency, also

feature a number of most efficient paths (i.e., of i-j paths for which at time ¢=0 it

is e; =¢;). This means that at least some of them may not qualify anymore as

most efficient: the shortest path between two vertices in the network may not be

anymore the one passing through vertex x. Formally, at time ¢=1, itis ¢; <g,. If

this is so, a redistribution of the most efficient paths across the network is bound

to happen: the new most efficient connection between i and j at time =1 becomes

that passing through, say, vertex z, i.e., ¢; =¢,. But this in turn changes the load

of other vertices, some of which will witness an increase in their load. This may
bring these vertices’ load to exceed their respective capacity, triggering a new
reduction in the paths’ efficiency and a possible new redistribution of most
efficient paths.

LM’s model may thus explain what in complex network literature are called
cascading failures (Watts 2002), and account for why these failures may affect
even seemingly efficient networks. The cascade may be triggered by the removal of
vertex x (say, the closure of a station). This means that all most efficient paths
previously passing through x must now be redistributed across different vertices.
A redistribution of loads among vertices takes place too, but this may create
overload in some vertices. As a consequence, the efficiency of some other
connections may decrease — or, worse, a newly overloaded vertex may crash
down. This in turn creates a new redistribution of most efficient paths across the
network and may cause new overloads, and so on, until the whole network

collapses.?2

! In the transportation example, the overload starts causing delays to all journeys passing through that station.

2 Obviously, the chain of overloads must not necessarily lead to the destruction of the whole system. It is indeed
possible that the initial removal of x, and the related redistribution of most efficient paths, is absorbed by the other
vertices without any further effect, or that the effect stops at the secondary level without any tertiary effect, and so on.
LM note that this apparent robustness to local failures may itself be dangerous because it may lead the network
managers to neglect the possibility that the breakdown of some crucial vertices may trigger a global collapse. Given that
most of the time most troubles with most vertices are harmless at system level, a belief may well arise that the network
is safe — a belief which in fact is false in the case of the breakdown of crucial vertices.
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How to avoid a systemic collapse triggered by vertex x’s breakdown? A
straightforward answer is to augment vertex x’s capacity, but this of course

entails a cost Q(«,) . Alternatively, extra links may be added to the network, with

the goal of spreading the load more evenly across vertices thanks to the creation

of new most efficient paths. But, again, adding links entails a cost: in the general

case, the cost is 7(wij) for each connection of weight w, . Hence, making a

network collapse-proof requires two kinds of cost: one is the cost of building the
network itself and it is proportional to the number and weight of edges; the other
is the cost of endowing the network’s nodes with a capacity large enough to
tolerate a large — potentially, very large — load. The network efficiency and
resilience to shocks depend on the two costs; generally speaking, the higher the
costs, the more efficient and robust the network. However, the decision of where
exactly to spend the resources to increase the network efficiency and resilience
may give rise to a trade-off.

It is immediate to apply LM’s notions and analysis to the economic system.
Modern economies can be depicted as consisting of a myriad of complex
networks. In particular, as the next § shows, it is straightforward to extend LM’s

ideas to the banking (or financial) system.

§5. Network efficiency in the banking system.

Assume each vertex in a complex network is a bank and each edge a financial
relation between two banks — say, an interbank loan. An edge’s weight is now the
amount of liquidity transferred between two banks. Creating a new edge entails a
cost for the lending bank in terms of, say, acquiring information about the
borrowing bank. Load and capacity are, respectively, the amount of money that
passes through a given bank and the maximum amount that bank may effectively
handle. Expanding the latter has a cost in terms of, say, increasing the bank’s
mandatory reserves and/or its personnel. LM’s global efficiency measures the
effectiveness with which liquidity travels throughout the system, i.e., how easy

and fast it is for any bank in the system to lend money to any other. Local
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efficiency captures the system’s ability to guarantee the transmission of liquidity
despite the collapse of one or more of its members.

The dynamics of the network collapse described in the previous § finds an
obvious counterpart in the systemic effects of a liquidity crisis. Therefore, we may
apply our previous analysis — in particular, LM’s efficiency notions — to one of the
most popular models of liquidity crisis, Allen & Gale 2000.23 In that paper, the
authors (AG thereafter) show that a complete —i.e., fully connected — network can
achieve the first best in the interbank deposit market where banks exchange
liquidity. This result is consistent with our analysis: the more interbank links
exist through which money can be transferred, the more efficient the network is
in reallocating liquidity — where efficiency is, as we said, the measure of how
effectively liquidity can travel along the network and the notion of most efficient
path translates into that of the lowest number of steps required to transfer
liquidity from a bank in excess to another lacking it. A complete network, where

every bank can exchange liquidity with every other, is globally efficient (£,,,= 1)

because all transfers can be made with just one step.24

AG’s main result is perhaps the thesis that, as the number of banks in the
network grows, the contagion risk of financial crisis decreases, provided the
network is complete.?> A clear policy implication follows: a fully decentralized
system where a multitude of banks exist, each one free to directly exchange
liquidity with any other, is a very robust system with respect to global financial
contagion. Regulators should therefore be sympathetic to systems of this kind
and, ideally, favor their development. Again, AG’s rationale is consistent with
network efficiency notions. The initial impact of a liquidity shortage somewhere in
the network (AG’s “regions”) becomes ever more negligible at system level (i.e., in
terms of LM’s global efficiency) the larger the number of nodes in the network. At

the same time, and consistently with LM’s local efficiency, a complete network is

* See Rotemberg 2008 for an alternative, thoroughly analytic, application of network theory to financially
interconnected systems. Eboli 2001 is one of the seminal papers in this literature.

** AG also claim that the first best allocation of liquidity can be achieved even under an incomplete network structure.
However, while complete structures have several equilibria, i.e., there are several ways to efficiently allocate liquidity
between banks when all links exist (this again is obviously consistent with our formalism), the incomplete structure
analyzed in their paper has only one equilibrium.

* In the AG model the unique equilibrium in the case of an incomplete network (see previous footnote) corresponds to
the pattern of liquidity allocation that, in case of a liquidity shock, may trigger a contagion and lead to the collapse of
the whole system. On the contrary, in the complete network setup there are equilibria with zero risk of contagion, as
well as others with a positive contagion risk.
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also very efficient in each of its subparts. The intuition is that in such a case
liquidity will always find a way to travel through the whole network — or a part of
it — even if a link or a node is wiped off, i.e., even in the case of a bank’s default or
bankruptcy.

On the contrary, when the network is incomplete AG argue that small shocks in
a region can trigger large effects, the bigger the higher the number of nodes. In
other words, a banking system where a multitude of agents operate, but some
agents may for any reason be unable to directly exchange liquidity with some
others, is especially subject to systemic risk. Our analysis shows that this claim
is not entirely correct, because the global outcome of a local shock depends on
the local efficiency of the sub-network where the shock has taken place.

As we argued in 84, when local efficiency is high a sub-network may still work
properly even if a node or a link is deleted. That is to say, in a locally efficient
region liquidity may still find a way to circulate even if a “regional” bank breaks
down. This would prevent a crisis to spread from that region to the whole system,
despite the latter’s incompleteness. The result goes beyond the limits of AG’s
analysis. As we argued in §1, a trade-off exists between the typical opposing
effects of higher interconnectedness in banking or financial systems, namely, the
increasing contagion risk and the larger cushioning potential. By providing an
exact measure of a sub-network’s resilience to local shocks, LM’s notion of local
efficiency may allow a specific determination of which of the two effects prevails in
any given network.

Network analysis also improves with respect to AG model on the side of network
costs. As AG themselves recognize, every link has a cost: “The banking sector is
interconnected in a variety of ways, but transaction and information costs may
prevent banks from acquiring claims on banks in remote regions. To the extent
that banks specialize in particular areas of business or have closer connections
with banks that operate in the same geographical or political unit, deposits may
tend to be concentrated in ‘neighboring’ banks” (Allen & Gale 2000, p.13). This is
a specific instance of the Coasean “cost of using the price mechanism” — and a
reasonable one as well, because a bank would not trust another bank with which
it has no other financial relations and so might prefer not to exchange liquidity
with it rather than pay the price of acquiring information on its financial situation

and business reliability. The formalism presented in §4 improves with respect to
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this basic intuition by highlighting the trade-off between the cost of building a
liquidity network and the efficiency with which liquidity may travel in the system.
An immediate implication of the trade-off is that, quite obviously, the network will
always be incomplete.26

Moreover, we may now also take into account the capacity of each bank to
manage the flow of liquidity passing through it. LM’s notion of load — which
measures the number of most efficient paths passing through a node — can be
applied to measure the amount of money intermediated by a single bank. Each
node has a bounded capacity, i.e., a maximum amount of liquidity it can
intermediate. Capacity is bounded because it is costly to build. This feature
captures, as in AG model, the opportunity cost of liquidity in terms of the higher
return that would accrue to the bank investing in long assets rather than in
short, liquid ones. Thus, increasing the capacity to transmit liquidity through the
system is costly — indeed, very costly if a bank is forced to undersell its long
assets at a very low price.

Finally, our dynamics of the capacity-to-load ratio explains in very general
terms how a liquidity crisis can spread through the system.2” The fall of a node’s
efficiency depicts the collapse in a bank’s ability to promptly provide liquidity to
everyone entitled to it. Hence, liquidity will find new, most efficient paths to
circulate in the system, but this may trigger a crisis in another bank that, in
turn, cannot handle (i.e., lacks the capacity to sustain) an increase in its liquidity
requirements, and, at the same time, cannot expand its capacity without losing a
big part of its long assets’ value. A cascade effect may follow.

Yet, LM’s formalism shows that the breakdown may be avoided if either, as in
AG, the network is fully connected (maximum global efficiency) or, at least, the
neighbors of the node where the crisis has begun are themselves fully connected
(high local efficiency). The latter is the most interesting case because it shows
that it is possible to insulate a potentially systemic crisis by creating locally

efficient sub-networks of banks that can guarantee the excess liquidity a single

%% Tori et al. 2008 show that the Italian overnight money market is indeed incomplete, with a few big banks trading with
(actually, borrowing from) many, usually small, counterparties, while the majority of banks trade with a few partners.
*7 Tori, Jafarey & Padilla 2006 and Nier et al. 2007 offer several simulations of default and contagion risks in banking
systems modeled as complex networks.
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network member is not able anymore to provide.2® Alternatively, a crisis can be
stopped when there exist, in well-defined areas of the network, one or more nodes
with a large excess capacity. This means one or more banks that must accept to
keep idle an extra amount of liquidity — bearing the relative opportunity cost —
only to be able to use it whenever a crisis erupts, i.e., whenever a failure
somewhere in the network attracts towards that node a number of new most
efficient paths (viz., new liquidity flows). Ideally, the presence of one such bank,
endowed with the proper amount of excess liquidity, in every not-fully-connected
sub-network could guarantee that a financial crisis would always remain
confined within the sub-network itself. In short, our formalism provides a micro-
structural rationale for the role of “money centers” (see §1) as backup providers of

liquidity to the interbank market.

§6. Conclusion

As we argued in the Introduction, the classic “market vs firm” dichotomy of Coase
1937 can be properly analyzed only when all its elements are taken into account,
namely, contracting costs, effectiveness of inter-agent communication, systemic
resilience and managerial ability. To this aim, and given the crucial theoretical
role played by the Coasean dichotomy, the paper suggests that attention should
be paid to complex network analysis, and in particular to the new notions of
network efficiency and network costs introduced by physicists Latora, Marchiori
and their collaborators.

The new tools’ potential is not just theoretical, though. Cost and efficiency play
a crucial role in the design and management of real networks. It is claimed that
the same kind of analysis that is commonly performed in the case of physical
systems, such as transport or computer ones, should also be undertaken for
economic networks, such as, for instance, the interbank market. In the latter
case, the new efficiency notions allow a straightforward improvement with respect

to the well-known analysis of financial crisis in Allen & Gale 2000. In particular,

*¥ The cost of establishing all the necessary links in a financial sub-network should be generally low. Intuitively, it
should be less costly for a bank (in terms of, say, information gathering) to exchange liquidity with a neighboring
partner than with a very distant one.
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either locally efficient sub-networks of banks or the establishment of local “money
centers” emerge as possible solutions to minimize the risk of systemic meltdown.

Still, the paper’s most general implication goes beyond the banking system.
Thanks to complex network theory, the “market vs firm” dichotomy appears even
more fundamental than commonly understood. It actually lies behind the most
efficient planning and implementation of every system of interconnected agents —
that is to say, almost everywhere in modern, network-based economies and

production processes.
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