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Abstract

Recent empirical findings suggest that macroeconomic variables are seldom normally dis-
tributed. For example, the distributions of aggregate output growth-rate time series of
many OECD countries are well approximated by symmetric exponential-power (EP) den-
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and standard medium-scale New-Keynesian (NK) models are able to replicate this sta-
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1 Introduction

Gaussian assumptions are extensively employed in theoretical and applied macroeconomics.

An increasing number of recent studies, however, have started to question this practice. For

example, Christiano (2007) criticizes using normal likelihood functions. He shows that the dis-

tributions of the residuals of standard VAR analyses display marked excess kurtosis, concluding

that “the evidence against the normality assumption is substantial” (Christiano, 2007, p. 145).

Similarly, Mishkin (2011) warns against the use of Gaussian shocks in quantitative studies

of optimal monetary policy, arguing that in reality “the distribution of shocks hitting the econ-

omy is more complex” and “may exhibit excess kurtosis, that is, tail risk” (p. 24). Empirical

findings strongly support Mishkin’s argument. For instance, growth rates of macroeconomic

variables are seldom normally distributed, no matter if they are observed over a cross section

or along a time series. More specifically, Fagiolo et al. (2008) show that, in the majority of

OECD countries, the distribution of within-country time-series output growth rates —properly

depurated from autocorrelation, outliers, and additional structure— is well approximated by

symmetric exponential-power (EP) densities with Laplace tails, persistently fatter than Gaus-

sian ones. In other words, extreme output changes typically occur more frequently than implied

by a normal distribution.1

Non normality and fat tails do not characterize only output growth rates. In Table 1, we

summarize the statistical properties of growth-rate distributions for some important macroeco-

nomic U.S. time series such as real GDP (Y), consumption (C), investment (I), employment (E),

inflation (P), and real wage (W). We report their second, third and fourth moments, together

with a battery of normality tests for the null hypothesis that data are normally distributed.

Both the large kurtosis figures and normality-test p-values suggest that growth-rate distribu-

tions of U.S. time series are not normal and exhibit fat tails. Note also that skewness is quite

mild in all series.

In this paper, we ask if existing standard macroeconomic models are able to replicate this

statistical regularity. In particular, we focus on two standard workhorse models: the Real

Business Cycle (RBC) model and the standard medium-scale New Keynesian (NK) model.2

There exist two basic sources allowing for fat-tail emergence in RBC or NK models. First, a

given model can endogenously generate fat tails because of its structural assumptions, even

if it is hit by purely Gaussian uncorrelated shocks. In this case, fat-tail distributed time-

series arise via the endogenous transmission mechanism embodied in the model. Second, fat

tails could just be the result of exogenous stochastic disturbances, whose distribution is non-

Gaussian. Obviously, such an approach would require to find an appropriate distributions for

the exogenous shocks. Following Fagiolo et al. (2008), we suggest below that EP densities

1Interestingly, fat-tail output growth-rate distributions emerge also for cross-section data, both at the level
of countries (Canning et al., 1998; Lee et al., 1998; Castaldi and Dosi, 2009), industries (Castaldi and Sapio,
2008) and firms (Bottazzi and Secchi, 2003; Fu et al., 2005).

2The former is a basic RBC model: the text-book neoclassical growth model with technology shocks. The
latter is a version of the standard medium-scale model used in various papers (cf., for example, Smets and
Wouters, 2003; Christiano et al., 2005; Schmitt-Grohé and Uribe, 2006). Shocks are modeled as in Smets and
Wouters (2003).
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with Laplace tails are a very good candidate. This is justified by the observation that Laplace

distributions have been shown to well-proxy the properties of U.S. output growth-rate time

series distributions. Furthermore, as we discuss in what follows, growth-rate distributions of

other U.S. macroeconomic variables are close to be Laplacian.

This paper explores both sources of fat-tail emergence in macroeconomics by simulating

RBC and NK models, using shocks drawn from either a Gaussian or an EP/Laplace distribu-

tion. Note that, since the model has to be non-linear to endogenously produce non-Gaussian

distributions from Gaussian shocks, we shall simulate both RBC and NK models using a second-

order approximation.

We try to answer a simple research question: can the two workhorse macroeconomic models

replicate the statistical regularity regarding higher moments of growth-rate macroeconomic

time-series distributions? In particular, can such models generate fat tails? Our results suggest

a negative answer. We show that, in the RBC case, simulated time-series distributions simply

mirror the ones of the shocks hitting the model. This is because the RBC model lacks an

internal shock propagation mechanism (see Cogley and Nason, 1995). In other words, it does

not add structure to the nature of the shocks, thus acting like a neutral filter. This implies that

the RBC model is able to replicate fat tails exogenously, but not endogenously. The NK model,

instead, never generates fat-tail growth-rate distributions, either endogenously or exogenously.

What is more, the NK structure points in the wrong direction: even if the model is hit by

fat-tail shocks, it delivers quasi-normal growth-rate distributions for simulated macroeconomic

time-series.

The idea that the economy can be hit by positive-probability big shocks is not new in macroe-

conomics (see, e.g., Rietz, 1988; Barro, 2006). The literature on fat tails and macroeconomic

modeling, however, is still in its infancy, even if it may gain more attention as a consequence of

the global financial crisis. Of course, there may be alternative sources of non-normality in the

data that we do not investigate in this paper. Non-normality in DSGE models may arise from

stochastic volatility as in Fernández-Villaverde and Rubio-Ramı́rez (2007) and Justiniano and

Primiceri (2008), who introduce low-frequency movements in volatility to explain the source

of the Great Moderation period. Moreover, Posch (2009) shows that non-normality can also

result from the presence of jumps in aggregate productivity in a standard neoclassical growth

model.

The rest of the paper is organized as follows. Section 2 discusses the methodology that we

employ in our exercises. Results are presented in Section 3. Finally, Section 4 concludes.

2 Methodology

We begin by comparing growth-rate distributions of quarterly U.S. time series of real GDP (Y),

consumption (C), investment (I), employment (E), inflation (P), and real wage (W), with simu-

lated distributions for the same variables as generated by RBC and NK models under di↵erent

assumptions about the underlying shock distributions (see the Appendix for a description of the

3



model). Observed U.S. series range from 1948Q1 to 2010Q4 (251 observations) and are drawn

from the St. Louis Federal Reserve Economic Data (FRED) database3. We take second-order

approximations of RBC and NK models and we perform a Monte Carlo analysis, generating

1000 series of 1000 observations for each macroeconomic variable.

We use the most standard RBC and NK models. The former is a plain-vanilla RBC model:

the basic text-book neoclassical growth model with a technology shock.4 The NK model is a

version of the standard medium-scale model used in various papers (cf., for example, Smets

and Wouters, 2003; Christiano et al., 2005; Schmitt-Grohé and Uribe, 2006). It features both

real and nominal frictions. The real frictions are: monopolistic competition, habit persistence

in consumption, fixed cost in an otherwise standard Cobb-Douglas production function that

generates increasing return to scale and guarantees zero profit in equilibrium, variable capacity

utilization and adjustment costs in investment. The nominal frictions are: a cash-in-advance

constraint on wage payments of firms, sticky wages and prices á la Calvo-Yun, past inflation

indexation of non-resetted prices. Christiano et al. (2005) argues that all these frictions appear

to be crucial in replicating the dynamics of macroeconomic variables along the business cycle.

Monetary policy is described by a standard Taylor rule. Shocks and calibration are as in Smets

and Wouters (2003).

We play with two scenarios as far as shocks are concerned. In the first scenario, we draw

i.i.d. shocks from a standard Gaussian distribution. In the second one, shocks are i.i.d. and

Laplace distributed, with zero mean and unit standard deviation. Their density thus reads:

p(z) =
exp{�

p

2|z|}
p

2
. (1)

As mentioned above, Laplace distributions are good first-pass proxies for empirically-observed

growth-rate time series in the U.S. and OECD countries. Therefore we shall begin by this

simplifying assumption, leaving for a future investigation a more precise variable-specific shock

generating mechanism.

In our analysis, we compute growth rates g(t) for any variable as:

g(t) =
X(t)�X(t� 1)

X(t� 1)
⇠= x(t)� x(t� 1) = (1� L)x(t), (2)

where X(t) is any series employed in this study at time/quarter t, x(t) = ln[X(t)] and L is

the lag operator. Given the time interval Tn = {t1, ..., tn} over which we observe our data, we

define the time-series distribution of growth rates as:

GT
n

= {g(t), t 2 Tn}. (3)

To compare simulated and observed time-series distributions, we employ a parametric ap-

3Freely available online at http://research.stlouisfed.org/fred2/.
4To be more precise we use the model in example1 of the DYNARE examples, as described in the “Stochastic

simulations with DYNARE: A practical guide” with only the technology shocks.
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proach. More precisely, following Fagiolo et al. (2008, 2009), we fit growth-rate distributions

with exponential-power (EP) densities (for details see, Agrò, 1995; Bottazzi and Secchi, 2003).

The EP probability density function reads:

f(x; b, a,m) =
1

2ab
1
b�(1 + 1

b )
e

� 1
b

|x�m

a

|b
, (4)

where a > 0, b > 0 and �(·) is the Gamma function.

The EP is a generalization of a Gaussian random variable, and it is fully characterized by

three parameters: a location parameter m, a scale parameter a and a shape parameter b. The

location parameter controls for the mean of the distribution, whereas the scale parameter is

proportional to the absolute deviation5. The parameter b determines the fatness of the tails:

the larger b, the thinner the tails. In particular, as visualized in Figure 1, if b = 2, the EP

distribution reduces to a Gaussian, whereas if b = 1, one recovers a Laplace (with unit standard

deviation if a = 1/
p

2).

The EP distribution allows one to precisely measure how far the empirical distribution is

from the normal and Laplace benchmarks. Note also that the EP density is characterized by

exponentially-shaped tails, and thus it has finite moments of any order. This is important, as

in many financial applications one typically deals with heavy-tails distributions whose higher

moments (and sometimes even the mean) do not converge (Embrechts et al., 1997). Macroeco-

nomic growth-rate time-series distributions, conversely, almost always possess finite moments.

Therefore, we do not expect, at least in principle, RBC and NK macroeconomic model to badly

behave with such smooth shock distributions.

We fit empirical and simulated distributions with the EP density in Eq. (4) by jointly

estimating the three parameters via maximum likelihood (ML)6. Next, we compare EP-density

parameter estimates obtained from the data with the mean of the ones obtained by fitting

the EP to each Montecarlo simulated time-series. To do so, we calibrate the RBC and NK

as in the standard literature (see, e.g., Smets and Wouters, 2003), properly adjusting the

standard deviations of simulated shocks in either scenarios. Furthermore, before carrying out

ML estimation we subtract the mean from all time series. Since we are mainly interested in the

tail parameter b, this does not a↵ect our estimates, but improves overall estimation e�ciency.

Note also that Montecarlo parameter-estimate distributions are unimodal and quite symmetric.

Therefore, the mean is a good proxy for the aggregate behavior of our models. No dramatic

di↵erence is detected if instead of taking the mean of estimates, one simply pools all zero-mean

time-series together and estimates a unique b parameter by fitting the EP to the pooled sample.

5On the links between moments and parameters of the EP distribution, see Bottazzi (2004).
6We employ the package SUBBOTOOLS, freely available online at

http://cafim.sssup.it/software.html. See Bottazzi (2004) for details. See also Bottazzi and Secchi
(2006) for other theoretical and computational issues concerning this procedure.
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3 Results

Table 1 suggests that empirical growth-rate distributions of U.S. series are characterized by

fat tails. This is confirmed by our EP fits. In line with previous empirical evidence (Fagiolo

et al., 2008, 2009), the GDP growth-rate distribution is well approximated by a Laplace density

(cf. Figure 2 and Table 2). Moreover, growth-rate distributions of all other U.S. time series

are markedly non-Gaussian: estimates of the shape parameter (b̂) range from a maximum of

1.51 for real wage to a minimum of 0.95 for inflation. These results indicate that the presence

of quasi-Laplacian fat tails in growth-rate distributions is a pervasive statistical regularity for

U.S. macroeconomic time series. We now turn to assess whether the RBC and the NK models

are able to account for this empirical evidence.

The RBC model. Our main results for the RBC model are summarized in Tables 3 and 4.

To begin with, note that the second and the third moment of RBC simulated time-series

distributions do not substantially change if shocks are drawn from a Gaussian or Laplace

distribution.7 This is not the case for the fourth moment: in presence of Laplace shocks, growth-

rate series strongly exhibit excess kurtosis, whereas Gaussian shocks imply fourth moments that

lie very close to 3, i.e. the normal benchmark. This result is confirmed by normality tests. In

presence of Gaussian shocks, the null hypothesis of normality is not rejected at 5% confidence

level in at least 80% of the series generated by the model. On the contrary, with Laplace shocks,

the null hypothesis of normality is always rejected.

Fitting EP densities to the series reveals that the assumptions concerning the nature of

shocks have a very strong impact on the growth-rate distributions of the series generated by

the RBC model (see Table 4). If shocks are Gaussian, estimates of the shape parameter b̂

oscillate around 2 for all the simulated time series, hinting to Gaussian tails. At the opposite,

if shocks are drawn from a Laplace, the b̂’s are slightly larger than 1, the hallmark of Laplacian

tails. This behavior is well captured by the top panels of Figure 3, where, for Montecarlo-

pooled output growth-rate time series generated by the RBC model under alternative shock

assumptions, we plot binned densities against the maximum-likelihood fitted ones (in a semi-log

scale). These results, well in line with results in Cogley and Nason (1995), suggest that the

propagation mechanism is almost neutral in RBC models: distributional properties of growth-

rate time series completely reflect those of the underlying shocks (see also Rotemberg and

Woodford, 1996).

The NK model. The first interesting moments of simulated time series generated by the NK

model are reported in Table 5. As for the RBC model, second and third moments — as well as

relative standard deviation, autocorrelations and cross-correlations with output, not reported

here — are not dramatically a↵ected by shock distributions. Conversely, kurtosis changes when

we move from Gaussian to Laplace shocks. However, changes in kurtosis are less pronounced in

the NK than in the RBC model. In presence of Gaussian shocks, time-series distributions still

7Relative standard deviations, autocorrelations and crosscorrelations with output are not a↵ected by the
source of the shocks either.
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exhibit quasi-Gaussian kurtosis, whereas if shocks are Laplace distributed, kurtosis ranges from

3.2 (investment) to 5 (employment). As it happens in the RBC model, normality-test outcomes

are also influenced by the distribution of the shocks. However, the percentage of cases for which

normality is rejected is lower than in the RBC case. Furthermore, for investment and real wages

the null hypothesis of normality cannot be rejected at 5% confidence level for most of Montecarlo

replications.

All that is reflected in the estimation of the b̂’s, see Table 6. In presence of Gaussian shocks,

growth-rate time-series are normally-distributed, as b̂’s lie very close to 2. This is in line with

RBC results above. If shocks become Laplace-distributed, simulated growth-rate distributions

display fatter tails. However, in contrast with the RBC model, tails are still far from the

Laplace benchmark. The minimum estimated b̂ is 1.27 for employment, while b̂ is very close to

2 for investment and real wage.

The NK model is therefore unable to reproduce the statistical regularity concerning fat-tail

growth-rate time-series distributions, even in presence of Laplace-distributed (fat-tail) shocks,

cf. also the bottom panel of Figure 3. Rather than inducing stronger non-linearities, it seems

that the ensemble of real and nominal rigidities, added in the NK model upon the bare-bone

structure of the RBC model tends to smooth time series of exogenous, fat-tail Laplacian shocks.

Robustness analysis. The foregoing results are robust to a number of additional tweaks. For

example, we have modified the approximation method employed in the model (i.e., employing

first-order, linear approximations instead of second-order ones), changed the econometric length

of Montecarlo samples (i.e., generating time series with a length equal to the empirical ones —

251 observations), and computed growth rates as g(t) = �X(t)/X(t � 1) � 1, to check if the

implicit approximation in log-di↵erence approximations could have a↵ected our results. In all

the exercises we have performed, results were not substantially altered, hinting to a substantial

robustness of our main insights.8

4 Concluding Remarks

Observed growth-rate distributions of U.S. macroeconomic time-series (output, consumption,

investment, inflation, employment and real wage) strongly depart from the Gaussian benchmark

and are well proxied by EP densities with Laplacian tails.

This paper asks whether standard workhorse macroeconomic models of business cycle, such

as the basic RBC and NK models, are able to replicate this statistical regularity. The answer

is far from encouraging.

We find that neither the RBC nor the NK model can generate fat-tail time-series distri-

butions if the are hit by i.i.d. Gaussian shocks. This implies that endogenous transmission

mechanisms embedded in both RBC and NK models are not able to reproduce fat tails from

normal disturbances. Conversely, when the RBC model is subject to i.i.d. Laplace-distributed

shocks, it tends to generate Laplace-distributed growth-rate distributions for simulated time

8Data, codes and results are fully available from the authors upon request.
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series. This results from quasi-linearity of the RBC model and from neutrality to shocks of

its endogenous transmission mechanisms. In other words, the growth-rate distribution of the

main series generated by the model have the same shape of the shock distribution that is fed

into the model. On the contrary, the NK structure points in the wrong direction. When shocks

are Laplacian, the NK model tends to deliver growth-rate distributions whose tails that are

slightly fatter than Gaussian ones. This suggests that the endogenous transmission mechanism

of the NK model induced by the several real and nominal rigidities hardwired into the model

is actually smoothing extremal events generated by the fat tails of Laplace disturbances.

Ideally, one would like a model that can endogenously reproduce fat tails from Gaussian

shocks, thanks to transmission mechanisms built into the model. This might allow for a bet-

ter understanding of how alternative mechanisms lead to the endogenous emergence of high-

probability large events. Our results seem to suggest that the two workhorse models employed

in current macroeconomic business-cycle analysis are not able to fulfill this expectations. There-

fore, further research in this field is required to bridge more firmly business-cycle models to

empirical statistical regularities concerning growth-rate time-series distributions of macroeco-

nomic variables.
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JB Lilliefors AD

Series Std. Dev. Skewness Kurtosis test test test

Y 0.0099 -0.0834 4.2402 16.3764*** 0.0707*** 1.9232***
C 0.0084 -0.4250 8.3367 305.4176*** 0.0954*** 3.0373***
I 0.0530 -0.3893 4.8973 43.9859*** 0.0807*** 1.8682***
E 0.0067 -0.4032 3.9027 15.3222*** 0.0728*** 1.8521***
W 0.0083 0.7511 4.0603 35.3592*** 0.0641** 1.8128***
P 0.0079 -0.5724 10.0876 539.0752*** 0.1020*** 4.7237***

Table 1: U.S. growth-rate time series: summary statistics. Legend: (Y) real GDP, (C) consumption, (I)
investment, (E) employment, (P) inflation, (W) real wage; (JB): Jarque-Bera test; (AD): Anderson-Darling
test; (**): Significant at 5% level. (*): Significant at 1% level.

bb ba
Series Par. Std. Err. Par. Std. Err.

Y 1.050 0.007 0.008 0.124
C 1.200 0.042 0.010 0.146
I 1.090 0.006 0.008 0.131
E 1.360 0.006 0.004 0.171
W 1.510 0.007 0.004 0.197
P 0.954 0.005 -0.000 0.111

Table 2: U.S. growth-rate distributions: Estimated EP parameters. Legend: (Y) real GDP, (C) consumption,
(I) investment, (E) employment, (P) inflation, (W) real wage.
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JB Lilliefors AD

Series Std. Dev. Skewness Kurtosis test test test

Gaussian shocks

Y 0.0176 -0.0071 2.9963 0.0460 0.0610 0.0570
C 0.0044 0.0278 2.9948 0.0570 0.0510 0.0580
I 0.0579 -0.0250 3.0972 0.1370 0.0580 0.0690
E 0.0136 -0.0057 2.9973 0.0500 0.0510 0.0480

Laplace shocks

Y 0.0176 -0.0221 5.7803 1 1 0.9940
C 0.0044 0.04659 5.4543 1 1 0.9950
I 0.0579 -0.2023 6.0382 1 1 0.9880
E 0.0136 -0.0314 5.5816 1 1 0.9960

Table 3: Simulated growth-rate distributions in the Real Business Cycle model (second-order approximation):
summary statistics. (JB): Jarque-Bera test; (AD): Anderson-Darling test. Normality tests report the percentage
of series for which the normality hyphotesis cannot be accepted at a 5% confidence level. Legend: (Y) real GDP,
(C) consumption, (I) investment, (E) employment.

bb ba
Series Par. Std. Err. Par. Std. Err.

Gaussian shocks

Y 2.0121 0.1416 0.0177 0.0006
C 2.018 0.1422 0.0044 0.0001
I 1.934 0.1345 0.0571 0.0020
E 2.0097 0.1414 0.0136 0.0005

Laplace shocks

Y 1.0587 0.0627 0.0129 0.0005
C 1.1579 0.0700 0.0034 0.0001
I 1.0777 0.0641 0.0427 0.0017
E 1.1181 0.0671 0.0103 0.0004

Table 4: Simulated growth-rate distributions in the Real Business Cycle model (second-order approximation):
Estimated EP parameters. Legend: (Y) real GDP, (C) consumption, (I) investment, (E) employment.
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JB Lilliefors AD

Series Std. Dev. Skewness Kurtosis test test test

Gaussian shocks

Y 0.0045 -0.0282 2.9980 0.0760 0.0640 0.0690
C 0.0018 0.0041 2.9963 0.0780 0.0670 0.075 0
I 0.0045 -0.0408 2.9769 0.1840 0.1150 0.1680
E 0.0093 -0.0020 2.9971 0.0540 0.0520 0.0490
W 0.0019 -0.0256 2.9943 0.0920 0.0600 0.0740
P 0.0004 -0.0232 3.0091 0.0690 0.0530 0.0640

Laplace shocks

Y 0.0044 -0.0132 3.7428 0.8880 0.3950 0.6550
C 0.0018 0.0163 4.3879 0.9990 0.9250 0.9910
I 0.0045 -0.0472 3.1965 0.3820 0.1930 0.2710
E 0.0093 0.0078 4.9904 1 0.9990 0.9960
W 0.0019 -0.0277 3.2570 0.3770 0.1270 0.2000
P 0.0004 -0.0517 4.0528 0.9830 0.7360 0.9190

Table 5: Simulated growth-rate distributions in the NK model (second-order approximation): summary statis-
tics. (JB): Jarque-Bera test; (AD): Anderson-Darling test. Normality tests report the percentage of series
for which the normality hypothesis cannot be accepted at a 5% confidence level. Legend: (Y) real GDP, (C)
consumption, (I) investment, (E) employment, (P) inflation, (W) real wage.

bb ba
Series Par. Std. Err. Par. Std. Err.

Gaussian shocks

Y 2.0141 0.1418 0.0045 0.0002
C 2.0142 0.1418 0.0018 0.0001
I 2.0418 0.1445 0.0045 0.0002
E 2.0131 0.1417 0.0093 0.0003
W 2.0163 0.1421 0.0019 0.0001
P 2.0021 0.1407 0.0004 0.0001
Laplace shocks

Y 1.6250 0.1074 0.0041 0.0001
C 1.4238 0.0907 0.0015 0.0001
I 1.8777 0.1295 0.0044 0.0002
E 1.2660 0.0783 0.0076 0.0003
W 1.8375 0.1258 0.0018 0.0001
P 1.5168 0.0983 0.0004 0.0001

Table 6: Simulated growth-rate distributions in the NK (second-order approximation): Estimated EP parame-
ters. Legend: (Y) real GDP, (C) consumption, (I) investment, (E) employment, (P) inflation, (W) real wage.
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Figure 1: The exponential-power (EP) density for m = 0, a = 1 and di↵erent shape-parameter values: (i) b = 2:
Gaussian density; (ii) b = 1: Laplace density; (iii) b = 0.5: EP with super-Laplace tails. Note: Log scale on the
y-axis
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Figure 2: Binned empirical densities of U.S. real GDP growth-rate time-series distribution vs. Exponential-
Power fit.
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(a) RBC model, Gaussian shocks
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(b) RBC model, Laplace shocks
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(c) SW model, Gaussian shocks
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(d) SW model, Laplace shocks

Figure 3: Binned densities of simulated output growth-rate distributions in RBC and SWmodels under Gaussian
or Laplace shocks. Solid line: Exponential-Power fit. Dashed lines: b̂± 2�(b̂) Cramér-Rao confidence intervals.
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