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A genome-wide association study (GWAS) of educational attainment was conducted in a
discovery sample of 101,069 individuals and a replication sample of 25,490. Three
independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913,
rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient
of determination R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear
polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational
attainment and cognitive function. Genes in the region of the loci have previously been
associated with health, cognitive, and central nervous system phenotypes, and bioinformatics
analyses suggest the involvement of the anterior caudate nucleus. These findings provide
promising candidate SNPs for follow-up work, and our effect size estimates can anchor power
analyses in social-science genetics.

Twin and family studies suggest that a broad
range of psychological traits (1), economic
preferences (2–4), and social and economic

outcomes (5) are moderately heritable. Discov-
ery of genetic variants associated with such traits
may lead to insights regarding the biological path-
ways underlying human behavior. If the predic-
tive power of a set of genetic variants considered
jointly is sufficiently large, then a “risk score” that
aggregates their effects could be useful to control
for genetic factors that are otherwise unobserved,
or to identify populations with certain genetic
propensities, for example in the context of med-
ical intervention (6).

To date, however, few if any robust asso-
ciations between specific genetic variants and
social-scientific outcomes have been identified
probably because existing work [for a review,
see (7)] has relied on samples that are too small
[for discussion, see (4, 6, 8, 9)]. In this paper, we
apply to a complex behavioral trait—educational
attainment—an approach to gene discovery that
has been successfully applied to medical and
physical phenotypes (10), namely meta-analyzing
data from multiple samples.

The phenotype of educational attainment is
available in many samples with genotyped par-
ticipants (5). Educational attainment is influenced
by many known environmental factors, including
public policies. Educational attainment is strong-
ly associated with social outcomes, and there is a

well-documented health-education gradient (5, 11).
Estimates suggest that around 40% of the variance
in educational attainment is explained by genetic
factors (5). Furthermore, educational attainment is
moderately correlated with other heritable char-
acteristics (1), including cognitive function (12)
and personality traits related to persistence and
self-discipline (13).

To create a harmonized measure of educa-
tional attainment, we coded study-specific mea-
sures using the International StandardClassification
of Education (1997) scale (14). We analyzed a
quantitative variable defined as an individual’s
years of schooling (“EduYears”) and a binary var-
iable for College completion (“College”). Col-
lege may be more comparable across countries,
whereas EduYears contains more information
about individual differences within countries.

A genome-wide association study (GWAS)
meta-analysis was performed across 42 cohorts
in the discovery phase. The overall discovery sam-
ple comprises 101,069 individuals for EduYears
and 95,427 for College. Analyses were performed
at the cohort level according to a prespecified
analysis plan, which restricted the sample to Cau-
casians (to help reduce stratification concerns).
Educational attainment was measured at an age
at which participants were very likely to have com-
pleted their education [more than 95% of the sam-
ple was at least 30 (5)]. On average, participants
have 13.3 years of schooling, and 23.1% have a

College degree. To enable pooling of GWAS re-
sults, all studies conducted analyses with data im-
puted to the HapMap 2 CEU (r22.b36) reference
set. To guard against population stratification, the
first four principal components of the genotypic
data were included as controls in all the cohort-
level analyses. All study-specific GWAS results
were quality controlled, cross-checked, and meta-
analyzed using single genomic control and a
sample-size weighting scheme at three indepen-
dent analysis centers.

At the cohort level, there is little evidence of
general inflation of P values. As in previous GWA
studies of complex traits (15), the Q-Q plot of
the meta-analysis exhibits strong inflation. This
inflation is not driven by specific cohorts and is
expected for a highly polygenic phenotype even
in the absence of population stratification (16).

From the discovery stage, we identified one
genome-wide–significant locus (rs9320913, P =
4.2 × 10–9) and three suggestive loci (defined as
P < 10–6) for EduYears. For College, we identified
two genome-wide–significant loci (rs11584700,
P = 2.1 × 10–9, and rs4851266, P = 2.2 × 10–9)
and an additional four suggestive loci (Table 1).
We conducted replication analyses in 12 addition-
al, independent cohorts that became available af-
ter the completion of the discovery meta-analysis,
using the same pre-specified analysis plan. For
both EduYears and College, the replication sam-
ple comprises 25,490 individuals.

For each of the 10 loci that reached at least
suggestive significance, we brought forward for
replication the single-nucleotide polymorphism
(SNP) with the lowest P value. The three genome-
wide–significant SNPs replicate at the Bonferroni-
adjusted 5% level, with point estimates of the
same sign and similar magnitude (Fig. 1 and
Table 1). The seven loci that did not reach genome-
wide significance did not replicate (the effect went
in the anticipated direction in five out of seven
cases). The meta-analytic findings are not driven
by extreme results in a small number of cohorts
(see Phet in Table 1), by cohorts from a specific
geographic region (figs. S7 to S15), or by a sin-
gle sex (figs. S3 to S6). Given the high corre-
lation between EduYears and College (5), it
is unsurprising that the set of SNPs with low
P values exhibit considerable overlap in the two
analyses (tables S8 and S9).

The observed effect sizes of the three replicated
individual SNPs are small [see (5) for discus-
sion]. For EduYears, the strongest effect identi-
fied (rs9320913) explains 0.022% of phenotypic
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variance in the replication sample. This coeffi-
cient of determination R2 corresponds to a dif-
ference of ≈1 month of schooling per allele. For
College completion, the SNP with the strongest
estimated effect (rs11584700) has an odds ratio
of 0.912 in the replication sample, equivalent to a
1.8 percentage-point difference per allele in the
frequency of completing College.

We subsequently conducted a “combined
stage” meta-analysis, including both the discov-
ery and replication samples. This analysis revealed
additional genome-wide–significant SNPs: four for
EduYears and three for College. Three of these
SNPs (rs1487441, rs11584700, rs4851264) are
in linkage disequilibrium with the replicated SNPs.
The remaining four are located in different loci
and warrant replication attempts in future re-
search: rs7309, a 3′ untranslated region (3′UTR)
variant in TANK; rs11687170, close to GBX2;
rs1056667, a 3′UTR variant in BTN1A1; and
rs13401104 in ASB18.

Using the results of the combined meta-
analyses of discovery and replication cohorts,
we conducted a series of complementary and
exploratory supplemental analyses to aid in in-
terpreting and contextualizing the results: gene-
based association tests, expression quantitative
trait locus (eQTL) analyses of brain and blood
tissue data, pathway analysis, functional annota-
tion searches, enrichment analysis for cell-type–
specific overlap with H3K4me3 chromatin marks,
and predictions of likely gene function with the
use of gene-expression data. Table S20 summa-
rizes promising candidate loci identified through
follow-up analyses (5). Two regions, in partic-
ular, showed convergent evidence from func-
tional annotation, blood cis-eQTL analyses, and
gene-based tests: chromosome 1q32 (including
LRRN2, MDM4, and PIK3C2B) and chromo-
some 6 near the major histocompatibility com-
plex. We also find evidence that in anterior
caudate cells, there is enrichment of H3K4me3
chromatin marks (believed to be more common
in active regulatory regions) in the genomic re-
gions implicated by our analyses (fig. S20).
Many of the implicated genes have previously
been associated with health, central nervous sys-
tem, or cognitive-process phenotypes in either
human GWAS or model-animal studies (table
S22). Gene coexpression analysis revealed that
several implicated genes (including BSN, GBX2,
LRRN2, and PIK3C2B) are probably involved in
pathways related to cognitive processes (such as
learning and long-term memory) and neuronal
development or function (table S21).

Although the effects of individual SNPs on
educational attainment are small, many of their
potential uses in social science depend on their
combined explanatory power. To evaluate the
combined explanatory power, we constructed a
linear polygenic score (5) for each of our two
education measures using the meta-analysis re-
sults (combining discovery and replication), ex-
cluding one cohort. We tested these scores for
association with educational attainment in the Ta
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excluded cohort. We constructed the scores using
SNPs whose nominal P values fall below a cer-
tain threshold, ranging from 5 × 10−8 (only the
genome-wide–significant SNPs were included)
to 1 (all SNPs were included).

We replicated this procedure with two of
the largest cohorts in the study, both of which
are family-based samples [Queensland Institute
of Medical Research (QIMR) and Swedish Twin
Registry (STR)]. The results suggest that edu-
cational attainment is a highly polygenic trait
(Fig. 2 and table S23): the amount of variance
accounted for increases as the P value threshold
becomes less conservative (i.e., includes more
SNPs). The linear polygenic score from all mea-
sured SNPs accounts for ≈2% (P = 1.0 × 10−29)
of the variance in EduYears in the STR sam-
ple and ≈3% (P = 7.1 × 10−24) in the QIMR
sample.

To explore one of the many potential mediat-
ing endophenotypes, we examined how much
the same polygenic scores (constructed to ex-
plain EduYears or College) could explain in-
dividual differences in cognitive function. Though
it would have been preferable to explore a richer
set of mediators, this variable was available in
STR, a data set where we had access to the
individual-level genotypic data. The Swedish
Enlistment Battery (used for conscription) had

previously been administered to measure cogni-
tive function in a subset of males (5, 17). The
estimated R2 ≈ 2.5% (P < 1.0 × 10−8) for cog-
nitive function is actually slightly larger than the
fraction of variance in educational attainment
captured by the score in the STR sample. One
possible interpretation is that some of the SNPs
used to construct the score matter for education
through their stronger, more direct effects on cog-
nitive function (5). A mediation analysis (table
S24) provides tentative evidence consistent with
this interpretation.

The polygenic score remains associated with
educational attainment and cognitive function
in within-family analyses (table S25). Thus, these
results appear robust to possible population
stratification.

If the size of the training sample used to es-
timate the linear polygenic score increased, the
explanatory power of the score in the prediction
sample would be larger, because the coefficients
used for constructing the score would be es-
timated with less error. In (5), we report projec-
tions of this increase. We also assess, at various
levels of explanatory power, the benefits from
using the score as a control variable in a ran-
domized educational intervention (5). An as-
ymptotic upper bound for the explanatory power
of a linear polygenic score is the additive ge-

netic variance across individuals captured by
current SNP microarrays. Using combined data
from STR and QIMR, we estimate that this upper
bound is 22.4% (SE = 4.2%) in these samples (5)
(table S12).

Placed in the context of the GWAS literature
(10), our largest estimated SNP effect size of 0.02%
is more than an order of magnitude smaller than
those observed for height and body mass index
(BMI): 0.4% (15) and 0.3% (18), respectively.
For comparison with the R2 value of 2% from our
linear polygenic score for education, estimated from
a sample of 120,000, a score for height reached
10%, estimated from a sample of 180,000 (15),
and a score for BMI, using only the top 32 SNPs,
reached 1.4% (18). Taken together, our findings
suggest that the genetic architecture of complex
behavioral traits is far more diffuse than that of
complex physical traits.

Existing claims of “candidate gene” asso-
ciations with complex social-science traits have
reported widely varying effect sizes, many with
R2 values more than 100 times larger than those
we have found (4, 6). For complex social-science
phenotypes that are likely to have a genetic ar-
chitecture similar to educational attainment, our
estimate of 0.02% can serve as a benchmark for
conducting power analyses and evaluating the
plausibility of existing findings in the literature.
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Fig. 1. Regional association plots of replicated loci associated with
educational attainment. (A) rs9320913, (B) rs11584700, (C) rs4851266.
The plots are centered on the SNPs with the lowest P values in the discovery
stage (purple diamonds). The R2 values are from the CEU HapMap 2 sam-
ples. The CEU HapMap 2 recombination rates are indicated in blue on the
right y axes. The figures were created with LocusZoom (http://csg.sph.umich.
edu/locuszoom/). Mb, megabases.
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The few GWAS studies conducted to date in
social-science genetics have not found genome-
wide–significant SNPs that replicate consistently
(19, 20). One commonly proposed solution is
to gather better measures of the phenotypes in
more environmentally homogenous samples.
Our findings demonstrate the feasibility of a
complementary approach: identify a phenotype
that, although more distal from genetic influences,
is available in a much larger sample [see (5) for a
simple theoretical framework and power analysis].
The genetic variants uncovered by this “proxy-
phenotype” methodology can then serve as a set
of empirically-based candidate genes in follow-up
work, such as tests for associations with well-
measured endophenotypes (e.g., personality, cog-
nitive function), research on gene-environment
interactions, or explorations of biological pathways.

In social-science genetics, researchers must
be especially vigilant to avoid misinterpretations.
One of the many concerns is that a genetic as-
sociation will be mischaracterized as “the gene
for X,” encouraging misperceptions that ge-
netically influenced phenotypes are immune
to environmental intervention [for rebuttals, see
(21, 22)] and misperceptions that individual
SNPs have large effects (which our evidence
contradicts). If properly interpreted, identifying
SNPs and constructing polygenic scores are steps
toward usefully incorporating genetic data into
social-science research.
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