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1 Introduction

A core premise of contemporary economic models is that researchers can adequately

specify in probabilistic terms how individuals alter the way they make decisions and

how the processes underpinning market outcomes unfold over time. Based on this core

premise individual and aggregate outcomes at all points in time are represented with

an overarching probability distribution. We refer to such models as determinate. To

confront determinate models with empirical evidence a ‘theory-first approach’ to econo-

metrics is typically used, see Hoover (2006b) and Spanos (2009). In the ‘theory-first

approach’ the determinate theoretical model delivers a complete stochastic specifica-

tion that relates aggregate outcomes to a set of explanatory variables, and the role of

econometrics is solely to quantify the theoretical parameters of interest and test their

statistical significance using regression or other statistical techniques (Spanos, 2006).

By contrast, the Imperfect Knowledge Economics (IKE) approach recognizes that an

overarching stochastic specification of aggregate outcomes is beyond our reach because

the process underpinning market outcomes is contingent: it changes at times and in ways

that no one can fully anticipate with a probability distribution. Hence, theoretical IKE

models are by design contingent and partly open: they allow for unanticipated change

in the causal structure, which cannot be specified in advance in probabilistic terms.

Confronting IKE models with empirical evidence is a challenge due to the contingency,

as they do not imply an overarching causal structure for aggregate outcomes that can

be directly estimated and tested using standard econometric tools.

In this project, we address this challenge. We show how cointegrated vector autore-

gressive (CVAR) models and extensions thereof, together with an underlying method-

ological framework that we call the Copenhagen-LSE-Oxford (CLO) approach, can serve

as a basis for an IKE econometric methodology1.

The CVAR model and CLO methodology is based on a ‘data-first approach’ to

econometrics, where the stochastic specification of the econometric model is derived

from the data based on statistical testing, rather than imposed from the outset based

on a priori assumptions of a determinate theoretical model. Although we point out

1What we call the Copenhagen-LSE-Oxford (CLO) methodology originated from the work of Dennis
Sargan at London School of Economics, but is today mainly associated with the work of David Hendry
and co-workers at Oxford University and Søren Johansen and Katarina Juselius at the University of
Copenhagen. For a broad introduction and discussion of the main econometric methodologies see Hoover
(2006a), and see Hoover (2006b) and Spanos (2009) for a discussion of the ‘data-first’ and ‘theory-first’
approaches.

For a broad introduction to the theory and application of the CVAR model see Juselius and Jo-
hansen (2006), Johansen (1996), and Juselius (2006). Hendry (1995) provides a broad introduction to
econometric modeling based on a general-to-specific approach, see also Mizon (1995) for a survey.
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that a priori considerations based on economic theory is used as a guide in the variable

selection, specification, and testing of the econometric model.

The essence of the ‘data-first approach’ to econometrics is the general-to-specific ap-

proach, which first seeks a general unrestricted model as a valid statistical representation

of the data for the sample period considered, and then tests restrictions on the general

model with the aim of finding a specific model that accounts for the information of the

general model more parsimoniously. The first step involves what Spanos (2010) calls

‘statistical testing,’ which focuses on testing the statistical adequacy of the model as

a representation of the data for the sample period considered. Once a valid statistical

representation of the data is found, the empirical validity of potentially conflicting hy-

potheses from economic theory can be imposed and tested as restrictions and reductions

of the general model, which involves what Spanos (2010) calls ‘substantive testing.’

The ‘data-first approach’ is suitable for empirically testing IKE models as it allows

for contingency in the underlying data-generating process by searching for stochastic

specifications as statistically valid ‘local’ representations of the data. Because structural

change cannot be modeled as probabilistic, the specification of an IKE econometric

model has to be based upon and tested against the data. Consequently, the ‘data-first’

methodology of the CVAR model allows for structural change to be identified ex post

in the historical data without an ex ante probabilistic specification of exactly when and

how the structural breaks occur. The key point here is that while IKE acknowledges

that an economist cannot fully specify the occurence of structural breaks in an economic

model ex ante, an econometrician using the ‘data-first approach’ can test for and identify

structural breaks in the historical economic data ex post. However, it should be noted

that IKE does not imply that there are no empirical relations that are stable at the

aggregate level over time; IKE just don’t start from an a priori assumption that all

empirical relations are indeed stable at all points in time.

The CVAR model’s system approach and its distilling of time series according to their

degree of persistence has proven to be extremely useful for representing and modeling

non-stationary macroeconomic and financial data. In practice, the specification of a

statistically well-specified CVAR model requires selecting a suitable lag-length, including

level shifts and dummy variables, and potentially splitting the sample into subsamples

with different CVAR models for each subsample. With good econometric modeling

skills, and a sense of the context under study, an econometrician can identify samples of

historical data in which a specific CVAR model adequately represents the data. Inference

in the CVAR model is then valid and testable hypotheses based on an IKE model can

be tested as restrictions on the general model.

Although the ‘data-first approach’ of the CVAR provides a suitable way to empirically
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estimate and test IKE models, there are important challenges in bridging the empirics

and theory. First, IKE models allow for contingent structural change in the stochastic

representations of the individual variables and the causal parameters, whereas a standard

CVAR model has parameters which are assumed constant over time. An important

question here is under what conditions can structural breaks in both the stochastic

representations of the variables and the causal parameters be identified using standard

statistical procedures and residual misspecification tests. Moreover, to what extent

and under what conditions can we determine whether seperate subsample analyses are

preferred over a full-sample analysis. Finally, many IKE models imply that markets

are boundedly unstable: wide price swings away from benchmark values are eventually

reversed and sustained movements back towards these values occur.2 This implication

suggests that there may be a connection between the boundedness of the market process

and our ability to estimate cointegration relationships using the CVAR model. For

example, is it the case that a greater tendency for reversals in the market leads to a

greater chance that the system will be characterized by cointegration relationships?

To analyze these and other questions, this project simulates outcomes from IKE

models and uses CVAR models to analyze the simulated data econometrically. In this

paper, we present some preliminary results based on simulations from a simple IKE

model of stock prices. There are two key features of this model that underpin our

results: i) there are stretches of time in which market participants either maintain their

forecasting strategies or revise them only moderately, and ii) price swings away from the

benchmark value are bounded. In modeling this second feature, both the stock price

and current earnings are assumed to fluctuate persistently, but boundedly so, around a

common long-run trend in earnings.

Our simulations show that even though the specification of the CVAR model is

‘wrong’ compared to the specification used to simulate outcomes from an IKE model,

it can nonetheless be used as a statistically adequate representation of the data with

an adequate lag structure. Furthermore, we show that the bounded instability of the

relationship between the simulated asset prices and earnings plays a key role in our

ability to understand and interpret the estimates of the CVAR model. Cointegration

between the simulated time-series can be found when the time-varying parameters of

the simulated series are bounded, which implies that the variables are ‘stochastically

2For example, in the Frydman and Goldberg (2007, 2013) model of asset price swings and risk,
persistent trends in fundamental variables and the influence of psychological and social factors can lead
market participants to bid asset prices persistently away from benchmark values over a stretch of time.
But, this instability is bounded in part because of risk considerations: if departures from bechmark
values continued to grow, they would eventully lead market participants to revise their forecasting
strategies in ways that resulted in a sustained countermovement back toward benchmark values.
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cointegrated’, rather than cointegrated. In this case, the CVAR model can be used

to estimate the unconditional sample means of the time-varying parameters, see Tabor

(2013).

Future research will extend the simulations to handle more general IKE specifications.

Moroever, the econometric analyses of this research will focus directly on identifying and

testing for structural breaks in the CVAR model and on deriving distributions of the

estimators from the simulations, which can be compared to the standard distributions

of the CVAR model.

The rest of the paper is structured in the following way. In section 2 a simple IKE

model of stock prices and earnings is presented and the link between boundedness in

the model and cointegration is discussed. Section 3 presents the simulation setup for

the simple IKE model, introduces the CVAR model used for the econometric analysis

of the simulated data, shows an illustration of the simulated series, and finally presents

and discuss the results from the CVAR estimations based on the simulated data.

2 A Simple IKE Model of Stock Prices and

Earnings

In this paper we consider a simple version of an IKE model of stock prices and earnings.

The model a simplified version of the general IKE model of asset price swings and

risk presented in Frydman and Goldberg (2007, 2013). The simple model considered

here captures some—but not all—of the main ideas of an IKE asset pricing model in a

simple way that mimics some of the key features of the stock market. The simple model

considered here allows us to simulate potential outcomes from an IKE model which can

be econometrically analysed with a CVAR model in a fairly simple setup. It serves as

a starting point for the research project and it will be gradually extended. For a full

presentation and discussion of the general IKE model of asset price swings and risk, see

Frydman and Goldberg (2013).

The general IKE model of long swings in asset prices can be written in reduced form

at the aggregate level as:

pt = p̂t|t+1 − ûpt + εp,t, (1)

where pt is the asset price at time t, ûpt is an uncertainty premium, and εp,t is a normal

IID error term with variance σ2
p.

A key element of the IKE asset pricing model is the assumption that the uncer-

tainty premium covaries positively over time with the gap between the asset price and

a historical benchmark level. Defining this gap as:
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gapt = pt − pBMt , (2)

the uncertainty premium can be represented as:

ûpt = σ · gapt = σ
(
pt − pBMt

)
, (3)

where pBMt is the benchmark level for the asset price, and p̂t|t+1 is a representation of

the aggregate forecast of the future asset price. The parameter σ determines the effect

of the gap on the asset price, and here we assume for simplicity that the parameter is

constant.

Given the specification of the uncertainty premium the asset price can be written as:

pt = p̂t|t+1 − σ
(
pt − pBMt

)
+ εpt , (4)

which is equivalent to

pt = λp̂t|t+1 + (1− λ) pBMt , (5)

and

pt = pBMt + λ
(
p̂t|t+1 − pBMt

)
. (6)

Equation (5) shows that in each period the asset price is represented as a weighted aver-

age of the price forecast and the benchmark price with weights given by λ = 1/ (1 + σ)

and 1− λ, respectively. Equation (6) shows that the asset price can also be represented

as the benchmark price plus a multiple of the deviation between the forecasted price

and the benchmark price.

The overall idea of the IKE model of asset price swings and risk is that market

participants base their forecasting strategies of the future price on a combination of

fundamental, psychological, and social factors, and that persistent trends in the funda-

mental variables and the influence of psychological and social factors can lead market

participants to bid asset prices persistently away from the benchmark price over a strech

of time. However, this instability is bounded in part because of risk considerations: if

departures from benchmark values continued to grow, they would eventually lead mar-

ket participants to revise their forecasting strategies in ways that resulted in a sustained

countermovement back towards benchmark values.

The bounded instability implies that the price forecast p̂t|t+1 is allowed to move per-

sistently away from the benchmark price level pBMt , but ultimately such movements are

bounded. Hence, from equation (6) it follows that the asset price pt moves persistently,

but boundedly so, around the benchmark price pBMt .
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2.1 A Representation of the Benchmark Price and

Price Forecast

We now depart from the general IKE model of asset price swings and risk and consider

a simple model of stock prices and earnings. In this simple model both the benchmark

price and the representation of the aggregate price forecast depend only on corporate

earnings, and thereby the stock price is assumed only to depend on corporate earnings.

We assume that earnings has a long-run non-stationary trend and a short-run component

fluctuating persistently around the long-run trend. The benchmark price depends on

the long-run trend in earnings, while the price forecast for simplicity is represented only

in terms of currently observed earnings.

First, we assume that there is a non-stationary long-run trend in earnings which can

be represented as a random walk:

xt = xt−1 + µx + εx,t, (7)

where µx > 0 is a constant positive drift term and εx,t is an IID normal error with vari-

ance σ2
x. We assume that current earnings xt fluctuate persistently around the long-run

trend xt, and that the fluctuations can be represented by a segmented trend specification.

The segmented trend push current earnings persistently away from the long-run trend,

but eventually a reversal in the segmented trend occurs, thereby causing a countermove-

ment of current earnings back towards the long-run trend. As current earnings reach the

long-run trend level they are allowed to continue away from the long-run trend in the

opposite direction, but eventually another reversal will cause another countermovement

back towards the long-run trend. Hence, the idea is that the short-run fluctuations in

earnings are bounded around the long-run trend, so that current earnings has a non-

stationary long-run trend and a bounded short-run trend represented with a segmented

trend specification.

To capture this idea, we assume that current earnings can be represented as station-

ary around a segmented trend:

xt = (1− ρx) Ψt + ρxxt−1 + εx,t, (8)

where Ψt is a segmented trend, 0 < ρx < 1 is an autoregressive constant parameter, and

εx,t is a normal IID error term with variance σ2
x. Moreover, we assume that the variance

of current earnings is greater than the variance of the long-run trend in earnings, σ2
x > σ2

x.

The segmented trend Ψt has a number, n, of long swings and we let 0 = T ∗0 < T ∗1 <

T ∗2 < ... < T ∗n = T denote the points in time at which the segmented trend changes
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direction. The length of the ith swing is given by Ti = T ∗i − T ∗i−1. The segmented trend

can be written as:

∆Ψ = µt for t = T ∗i−1, ..., T
∗
i , (9)

where µt is restricted to take on values with opposite signs in subsequent segments. The

IKE model does not specify when the switches in µt occur and what values it can take

on with a probability distribution. Though, we assume that the probability of a switch

in the direction of the segmented trend increases with the deviation between current

earnings and the long-run trend, xt − xt, so that the deviation is bounded through the

segmented trend specification.

We can rewrite current earnings as:

xt = xt + (Ψt − xt) + ρx (xt−1 −Ψt) + εx,t, (10)

which shows that current earnings has a non-stationary long-run component determined

by xt, a bounded component determined by the deviation between the segmented trend

and the long-run trend (Ψt − xt), and finally a stationary component. The important

implication of the assumed specification is that the deviation between current earnings

and their long-run trend is bounded.

Next, the uncertainty premium depends on the gap between current stock price and

the benchmark price, which we assume can be represented as a multiple of the long-run

trend in earnings:

pBMt = B′xt, (11)

where B is a parameter assumed to be constant for the sample considered, which however

need not need be the case in a general IKE model.

Finally, we represent the aggregate forecast of the future price as:

p̂t|t+1 = b′txt, (12)

where we assume for simplicity that the aggregate forecasts of the future price can be

represented only in terms of current earnings xt, so that bt is a scalar representing the

weight attached to earnings in the forecasting strategy.

Movements in the price forecast depend on two factors, movements in earnings and

revisions of the forecasting strategies:

∆p̂t|t+1 = b′t−1∆xt + ∆b′txt. (13)

In modeling revisions of the forecasting strategies we impose the ‘guardedly moderate

revisions’ conditions of Frydman and Goldberg (2007, 2013), which restrict the changes
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in the forecasting weights bt so that the impact of revisions on the total change in the

price forecast is smaller than the impact of the segmented trend in earnings3:

|∆b′txt| < δt, (14)

where |·| denotes an absolute value and

δt =
∣∣b′t−1µt

∣∣ (15)

represents the ‘baseline trend’ in the price forecast which would occur on average over the

period from T ∗i to T ∗i−1 if the forecasting strategies were not revised, i.e. if ∆bt = 0, over

the period. The condition embodies the idea that if individuals revise their forecasting

strategies, they are reluctant to do so in ways that would change their price forecasts

too much from what would be associated with no revision at all.

As the long-run and segmented trends in earnings unfold over time, the way they feed

into the price forecast and the stock price depends on the revisions of the forecasting

strategies. During streches of time where the guardedly moderate revisions hold, the

revisions can either reinforce or impede the trends in earnings. Thus, we can think of

the revisions of the forecasting weight to current earnings as representing how market

participants interpolate the trends in earnings into the future; if, for example, market

participants forecast that an upward current trend in earnings is unsustainable, so that

they expect a reversal some time in the near future, they might revise their forecasting

strategies in impeding ways, so that the impact of their revisions counteract the current

trend in earnings. Likewise, market participants forecasting that a downward current

trend will soon be reversed might revise their forecasting strategies in reinforcing ways.

Based on this interpretation of the simple IKE model of stock prices and earnings,

it can be interpreted as equivalent to the present-value model of Barsky and De Long

(1993), with earnings taking the role of dividends in their model. In the Barsky and

DeLong present value model a small part of the shocks to dividends in each period feeds

into the future growth rate of dividends, which changes the present value of the future

dividends that determines the stock price. However, while the shocks to dividends feed

into both current dividends and the growth rate the determinate model assumes that

the impact on the stock price is constant over time. By contrast, this simple IKE model

acknowledge that the way the trends in earnings feed into the stock price depends on

how market participants revise their forecasting strategies.

Moreover, the contingency of an IKE model allows for non-moderate revisions of

the forecasting strategies at points in time that cannot be specified with a probability

3We impose only the first of the two condition specified in Frydman and Goldberg (2007, 2013) as
the second becomes redundant in the univariate case we are considering here.
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distribution. Thus, at points in time that cannot be anticipated the revisions of the

forecasting strategies are allowed not to fall within the the qualitative range specified

by the condition in equation (14). However, we do impose the additional condition that

whenever a non-moderate revision of the forecasting strategies occurs, the new set of

forecasting weights bNMt fall within a qualitatively range which is symmetrically bounded

around the parameter B:

b < bNMt < b, (16)

where b= B − τb and b = B + τb represent the upper and lower bounds.

2.2 Bounded Instability and Cointegration

Between Stock Prices and Earnings

Based on equation (6) and the above representations of earnings, the benchmark price,

and the price forecast, the stock price can be written as:

pt = pBMt + λ
(
p̂t|t+1 − pBMt

)
+ εp,t

= B′xt + λ (b′txt −B′xt) + εp,t. (17)

For the stock price to fluctuate boundedly around the benchmark level consistent with

the long-run trend in earnings, the deviation between the price forecast and the bench-

mark price must be bounded. The simple representation considered here allows us to

decompose this deviation into two components:

p̂t|t+1 − pBMt = b′tzt −B′xt
= B′ (xt − xt) + (bt −B)′ xt, (18)

so that the boundedness of each of the two components can be considered individually.

First, the representation of earnings implies that the deviation between current earn-

ings and the long-run trend in earnings xt − xt is bounded. The segmented trend cause

current earnings to fluctuate persistently around the long-run trend xt, so even though

the long-run trend xt is non-stationary—and hence not bounded—the deviation between

the two is bounded.

The second term in equation (18) is a product of bt−B and the non-stationary long-

run trend in earnings xt. However, despite that xt itself is not bounded, boundedness

of (bt −B)′ xt over time requires only that bt−B is bounded with mean zero over time.

In that case the product of a mean zero bounded process and a non-bounded process
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will become bounded4. The guardedly moderate revisions condition in equation (14)

does not imply boundedness of bt, so to achieve boundedness of bt − B we assume that

the probability of a non-moderate revision increases with the deviation bt − B, and by

restricting the non-moderate revision to the symmetric range around B, c.f. equation

(16).

Based on the above specifications, each of the two terms xt − xt and bt − B are

bounded:

xt − xt ∼ bounded, (19)

bt −B ∼ bounded, (20)

which implies that the deviation between the price forecast and the benchmark price is

bounded:

p̂t|t+1 − pBMt ∼ bounded. (21)

It follows from equation (17) that fluctuations of the stock price are bounded around

the benchmark price over time. Hence, the stock price can move persistently away from

the benchmark price consistent with the long-run trend in earnings, as the segmented

trend pushes current earnings away from their long-run trend, or as the forecasting

strategies are revised in reinforcing ways so that bt move away from B. Moreover, the

two effects might impact the stock price in the same direction during some streches of

time, while they might outweigh each other during other streches of time. However,

movements in the stock price away from the benchmark price consistent with the long-

run trend in earnings are ultimately bounded as a reversal in the segmented trend push

current earnings back towards the long-run trend, or as market participants revise their

forecasting strategies in non-moderate ways causing a reversal of the price forecast—and

hence the stock price—back towards the benchmark price.

The important implication of the two boundedness conditions in equations (19) and

(20) is that, despite the underlying bounded instability, the stock price and current

earnings share a common trend given by the non-stationary long-run trend in earnings.

Because the stock price and earnings share a common trend we can think of them

both as being cointegrated with the long-run trend in earnings—as well as with each

other—though the specification of boundedness does not fully correspond to a standard

cointegration relation. First, the boundedness between current earnings and their long-

run trend can be thought of as a cointegration relation with a time-varying adjustment

4In a standard stochastic specification the multiplicative process of a stationary mean zero process
and a non-stationary process becomes ‘stochastically trendless’, which means that the stochastically
trendless property of the non-stationary process dominates the multiplicative process, see McCabe
et al. (2003).
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coefficient: when the segmented trend push earnings away from the long-run trend it cor-

responds to an equilibrium-increasing adjustment coefficient; and when the segmented

trend push earnings towards the long-run trend it corresponds to an adjustment coef-

ficient which is equilibrium-adjusting. Second, as the stock price fluctuates boundedly

around the long-run trend in earnings we can think of the two as being cointegrated,

with persistent deviations from the cointegration relation driven by the two bounded

terms in equation (18).

As the stock price and current earnings fluctuate boundedly around the same common

stochastic trend given by the non-stationary long-run trend in earnings, the deviation

between them is bounded and we can think of the stock price and current earnings as be-

ing cointegrated. Though, the boundedness of the IKE model is based on a time-varying

specification which differs from a standard stochastic specification of cointegrated rela-

tions. Moreover, the deviations from the common trend might be so persistent that the

variables should be thought of as being cointegrated from I (2) to I (1), rather than from

I (1) to I (0).

To see that the deviation between the stock price and current earnings is indeed

bounded, rewrite equation (17) to:

pt = b′txt − (1− λ) (b′txt −B′xt) + εp,t, (22)

and re-arrange terms to get:

pt − b′txt = − (1− λ) (b′txt −B′xt) + εp,t. (23)

We know from above that the term b′txt−B′xt is bounded given the assumptions, so the

right-hand side of equation (23) is bounded. Hence, the deviation between the stock price

and the price forecast on the left-hand side is bounded. Furthermore, the assumption

that (bt −B) is bounded with mean zero implies that the stock price pt and current

earnings xt are bounded, and we can think of the stock price and current earnings as

being ‘stochastically cointegrated’5. By rewriting equation (23) as:

pt −B′xt = (bt −B)′ xt − (1− λ) (b′txt −B′xt) + εp,t. (24)

5In a standard stochastic specification, stochastic cointegration between two variables requires that
the time-varying cointegration parameter is stationary. Under this assumption the cointegration relation
with time-varying cointegration parameter βt can be written as:

β′
tXt = β′Xt + (βt − β)

′
Xt,

where the second term becomes ‘stochastically trendless’ when βt − β is stationary with unconditional
mean 0, see McCabe et al. (2003) and Tabor (2013).
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it can be seen that all terms on the right-hand side are bounded, once again because the

term (bt −B)′ xt can be thought of as being ‘stochastically trendless’. Thus, pt − B′xt
becomes bounded.

3 Simulations of the IKE Model of Stock Prices

and Earnings

We use simulations to examine the link from the bounded instability of an IKE model

to estimation of cointegration relations in a CVAR model. Thus, we simulate outcomes

from the simple IKE model of stock prices and earnings and analyze the simulated data

for the stock price and current earnings econometrically with the CVAR model.

The CVAR model is ‘wrong’ compared to the specification of the IKE model used to

simulate the data: the specification of boundedness in the IKE model does not corre-

spond to the specification of cointegration relations in a CVAR model, and the parame-

ters of the IKE model are time-varying, while the CVAR model has constant parameters.

The results in Tabor (2013) suggest that the CVAR model is a quite robust model to use

even though there is an underlying bounded parameter instability in the data. Though,

it is unclear if and under what conditions the CVAR model can be used to estimate

empirical relations between variables based on the specification of an IKE model.

We address this question by using simulations, and here we present some preliminary

results. We show that as long as the deviations of xt − xt and bt −B are not ‘too large’

the CVAR model can be used as a statistically valid representation of the data along

the key dimensions, and we do find the simulated stock price and current earnings

to be cointegrated—and hence sharing a common stochastic trend—with the estimated

cointegration coefficients close to the coefficient B as we would expect based on equation

(24).

3.1 The Simulation Design

An IKE model acknowledges contingent changes that cannot be specified in advance with

a probability distribution. By contrast, computer simulations requires a deterministic

or probabilistic specification of both when and how the contingent structural breaks

occur. Though, while an IKE model itself cannot be simulated because it is contingent

by design, we can simulate outcomes that are consistent with an IKE model, and using

simulations we can easily check the robustness of a specific specification.
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In the simulations presented here we use a standard logistic function to simulate the

probabilities of a switch in the direction of the segmented trend and a non-moderate

revision of the forecasting strategies, respectively, at each point in time. The logistic

function has the form:

P (breaki,t) = [1 + exp (−gi (zi,t−1 − ci))]−1 , (25)

where ci is a threshold value where the probability of a break is one, gi determines the

curvature, and zi,t−1 − ct determines the distance that the probabilities depend on for

i = µ, b, which represent the probabilities of a break in the segmented trend and the

forecasting weights, respectively.

We let the probability of a break in the segmented trend depend on the absolute

deviation xt−1− xt−1, so we set zµ,t = |xt−1 − xt−1|, and we let the probability of a non-

moderate revision of the forecasting strategies depend on the absolute deviation bt−1−B,

so we set zb,t = |bt−1 −B|. Thus, as |xt−1 − xt−1| increases, the probability of a switch

in the direction of the segmented trend increases, and eventually as |xt−1 − xt−1| ≥ cµ

the probability of a switch reaches one. Moreover, after a switch in the direction of the

segmented trend cause a countermovement in xt towards xt, we set the probability of a

switch in the direction to zero until xt has crossed xt. Likewise, as |bt−1 −B| increases,

the probability of a non-moderate revision increases, and eventually the probability of

a non-moderate revision reaches one as |bt−1 −B| ≥ cb.

At each point in time, we make two random draws from a standard uniform distri-

bution at each point in time, and if they exceed the simulated probabilities we draw a

new µt or bt, respectively. The new µt is uniformly drawn within a specified range from

µ to µ, and with opposite sign compared to µt−1, while the new bNMt is drawn uniformly

within the range from B − τb to B + τb.

We fix the curvature parameters gµ = gb = 1.0 and the threshold value for non-

moderate revisions cb = 4.0, and simulate the IKE model for different values of the

threshold parameter gµ and the range for non-moderate revisions τb. These two pa-

rameters are crucial determinants of the degree of bounded instability in the simulated

system, and hence they are the parameters of greatest interest. The greater the thresh-

old parameter cµ, the greater deviation between current earnings and the long-run trend

is allowed before a reversal eventually occurs. The parameter τb determines the sym-

metrical range around B within which a non-moderate revision is randomly drawn. The

guardedly moderate revisions are symmetrical and by themselves do not ensure bound-

edness of bt around B, so this boundedness occurs solely through the non-moderate

revisions in this specification: if bt−1 is far above B, but below B + τb, the probability

of drawing a new bNMt below bt−1 is large.
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The rest of the simulation setup follows the IKE model of stock prices and earnings

as described above. We fix the following parameter values for all simulations presented

here:

B = 2.0, (26)

b0 = 2.0, (27)

λ = 0.5, (28)

[σp, σx, σx] = [0.5, 0.5, 0.1] , (29)

[p0, x0, x0] = 5.0, (30)

ρx = 0.5, (31)

µx = 0.01, (32)[
µ, µ

]
= [0.02, 0.15] (33)

[gµ, gb] = 1.0, (34)

cb = 4.0. (35)

We simulate time-series for pt, xt, and xt for i = 1, 2, ..., N different data-generating

processes based on the N = 16 combinations of the parameters:

τ ib ∈ {0.25; 0.50; 1.00; 1.50} , (36)

and

ciz ∈ {2.0; 3.0; 4.0; 5.0} ,

where the upper limits for the two parameters are selected as the upper limits where

cointegration appears to be found among the variables. For each of the i parameter

specifications, S = 1.000 replications of time-series are simulated with the different

sample lenghts t as given by:

t ∈ {200; 400; 1.000} , (37)

so that in total 48.000 time-series are simulated. The simulations are performed in Ox,

with a random seed set to 1.000 and reset for each new i, so that the random draws are

the same across the different specifications.

For each simulation CVAR model is estimated for the simulated time-series for the

stock price pt and earnings xt, and averages of the results over the S = 1.000 replications

are reported for each data-generating process i and for the different sample lenghts.
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3.2 An Illustration of the Simulated Series

The simulated outcomes for the specification i = 7, where τb = 0.5 and cµ = 4.0, are

shown in Figures 1.1 to 1.5 in the appendix.

Figure 1 shows the simulated series xt and xt in the upper panel, the gap between

the two in the middle panel, and finally the simulated probabilities of a reversal in

the segmented trend in the lower panel. From the upper panel the segmented trend

specification of xt around xt is evident. Moreover, it should be noted that after each

reversal in the segmented trend, a new value for µt is randomly drawn within a range, so

the segmented trends have different slopes for the different segments. From the middle

panel it can be seen how the gap between current earnings and their long-run trend

is bounded over time, and in the lower panel it can be seen that the probability of a

reversal increase as the segmented trend drives current earnings away from the long-run

trend. The blue squares in the lower panel indicate the 23 reversals in the segmented

trend over the sample.

Figure 2 shows the simulated weights attached to current earnings in the forecasting

strategies. The upper panel shows the simulated weights bt, along with B and indicators

for non-moderate revisions. It is clear from the graphs that the simulated parameter bt

is boundedly unstable over time, and that the non-moderate revisions imply a number of

large jumps in the forecasting weights. The middle panel shows the qualitative ranges for

the guardedly moderate revisions, along with the simulated revisions of the forecasting

strategies within these ranges. The lower panel shows the probabilities of a non-moderate

revision of the forecasting strategies over time. On average this probability is around

2.5 percent, and over the long sample of 1.000 observations 22 revisions are simulated

as non-moderate, as indicated by the blue squares.

Figure 3 shows the simulated stock price, the benchmark price, and the price forecast

in the upper panel. As the stock price is represented as a weighted average of the bench-

mark price and the price forecasts it lies between the two over the entire sample period.

The middle panel shows the deviation between the price forecast and the benchmark

price, which is equivalent to a scaled version of the gap between the stock price and the

benchmark price. The lower panel shows the decomposition of the deviation between the

price forecast and the benchmark price as specified in equation (24). From the graphs

it can be seen that each of the two components are bounded over the sample.

In Figure 4 the simulated stock price and current earnings are shown in the upper

panel along with the simulated long-run trend in earnings. The middle panel shows the

deviation pt −B′xt, while the lower panel show the deviation pt −B′xt.
Finally, Figure 5 shows the first-differences of the stock price and current earnings in
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the two upper panels, and it can be seen that there are a few very large outliers, which

are caused by the jumps in bt due to non-moderate revisions. The lower graph displays

the estimated cointegration relation, which looks almost identical with the graph in the

lower panel in Figure 4. Despite the bounded instability in the relation between the

stock price and earnings, a CVAR model for the series displayed in Figures 1-4 finds

the two variables to be cointegrated with the estimated cointegration relation given by

β̂′Xt = pt − 2.38 · xt.

4 The Cointegrated VAR Model

The p-dimensional vector autoregressive (VAR) model with k lags in error-correction

form is given by:

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + µ0 + µ1t+ ΦDt + εt, (38)

for t = 1, 2, ..., T and where X−k−1, ..., X0 are fixed. The error terms εt are assumed to

be independent and Gaussian with mean zero and covariance Σ. The parameters Π and

Γi are of dimension (p× p), the parameters µ0 and µ1 of dimension (p× 1). Dummy

variables and mean shifts can be included in Dt, which has dimension
(
pD, 1

)
, and the

parameters Φ has dimensions
(
p× pD

)
.

The system is cointegrated if the matrix Π has reduced rank r < p, so that Π can be

written as

Π = αβ′, (39)

where α and β are (p× r) matrices of full column rank, see Johansen (1996). Under the

reduced rank condition the cointegrated VAR model is given by:

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + µ0 + µ1t+ ΦDt + εt. (40)

The levels Xt are nonstationary while the r cointegration relations β′Xt are stationary.

Hence, while the levels Xt are integrated of order one, Xt ∼ I (1), the linear combinations

β′Xt are integrated of order zero, β′Xt ∼ I (0), so that the process ∆Xt is stationary,

∆Xt ∼ I (0). The cointegration relations determine the deviations from the long-run

relations between the variables, while the α-coefficients measures the rate of adjustments

to deviations from the long-run cointegration relations. For a full introduction to the

theory and application of the CVAR model, see Johansen (1996) and Juselius (2006).

The notion of cointegration can be interpreted in the following way: there is a station-

ary long-run equilibrium relation between the non-stationary variables, and whenever
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the variables move away from this long-run relation at least one of the system variables

is adjusting, so that the deviations from the long-run relations are stationary. Hence,

even though the non-stationarity makes the individual system variables path-dependent,

the cointegration relations ensure that the deviations between them are bounded.

Despite that the CVAR model has constant parameters, it has shown able to es-

timate the unconditional mean of time-varying cointegration parameters, at least in

small systems. The requirement for this to be the case is that the time-varying param-

eters are stationary, so that the variables are ‘stochastically cointegrated’, rather than

cointegrated with constant parameters. Disregarding deterministic terms and lagged

first-differences, a stochastically cointegrated system can be written as:

∆Xt = αβ′tXt−1 + εt. (41)

Now assume that the time-varying cointegration parameters are stationary, e.g. so that

it can be represented as an AR(1) process with unconditional mean β:

βt = (1− ρβ) β + ρβt−1 + εβ,t, (42)

where ρβ is an autoregressive parameter and εβ,t is an IID error term with variance σ2
β.

The time-varying parameter can be rewritten as:

βt = β + ρ (βt−1 − β) + εβ,t, (43)

and using this specification the cointegrated system can be written as:

∆Xt = αβ′Xt−1 + α (βt − β)′Xt−1 + εt. (44)

As the term (βt − β) is a mean zero stationary process the product (βt − β)′Xt−1 be-

comes ‘stochastically trendless’, and the system becomes ‘stochastically cointegrated’,

see McCabe et al. (2003). Based on simulations, Tabor (2013) shows that the CVAR

model gives a consistent estimate of the unconditional mean of the time-varying coin-

tegration parameter in a bivariate system, i.e. a consistent estimate of β. This is

possible because the lag structure of the CVAR model can capture the persistence in the

‘stochastically trendless’ term. However, if there is a high degree of persistence in the

time-varying parameter—i.e. ρβ is smaller than, but close to 1—the underlying param-

eter instability shows up as an additional degree of persistence in the estimated CVAR

model, which causes the estimated adjustment coefficients to be biased towards 0.

5 Estimation Results

For each of the simulated time-series of the stock price pt and current earnings xt a

CVAR model is estimated based on an automated procedure. The automatic procedure
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first selects a lag-length k for the unrestricted VAR model in equation (38), where the

lag-length is selected as the lowest number where the test of no autocorrelation cannot

be rejected with a p-value of 0.05. Given the lag-length, the automated procedure tests

for univariate and multivariate autocorrelation, normality, and ARCH in the estimated

residuals. Next, the rank test for reduced rank is performed and the largest roots of

the companion matrix are calculated. Finally, the automatic procedure estimates the

reduced rank CVAR model with a rank of r = 1 imposed irrespective of the conclusion of

the rank test. For details on the estimation and testing procedures see Johansen (1996)

and Juselius (2006), and references therein.

Tables 1-9 in the appendix show the average results over the S = 1.000 replications

for each of the simulated series and estimations, and for the three different sample lengths

considered. It should be noted that the samples of T = 1.000 observations are included

with the purpose to show the asymptotic results based on a long sample.

Table 1 shows the average simulated probabilities of a break in the segmented trend

or a non-moderate revision of the forecasting strategies for each of the specification,

as well as the number of breaks occuring in each of the two per 100 observations. It

can be seen that as the range for drawing non-moderate revisions increases, the average

simulated probability of a non-moderate revision increases from 2 to 3 percent. Hence the

number of simulated non-moderate revisions increases from 2.0 to 3.4. As the threshold

parameter cµ used in the logistic function to simulate the probabilities of a reversal

in the trend increases, the average simulated probability of a reversal decreases almost

exponentially from 8 to 2 percent as cµ falls from 2.0 to 4.0. As the threshold value

increases, fewer simulated reversals in the segmented trend occur. For cµ = 2.0 an

average of 8 reversals occur per 100 observations, meaning that the swings in earnings

around the long-run trend are not very long and persistent. However, for cµ = 4.0 the

number of simulated reversals decreses to 1.6 per 100 observations, which implies that

the movements in earnings away from the long-run trend are very long and persistent.

Table 2 shows the chosen lag-lengths. From the table it can be seen that as the

threshold value for the breaks in the segmented trend, ciµ, increases, the number of lags

needed in the unrestricted model to be able to not reject no autocorrelation increases.

The same holds for an increase in the range for non-moderate revisions, although the

effect appears to be smaller. Furthermore, it can be seen that the number of lags needed

in the model increases with the sample size.

Table 3 shows the misspecification tests for no autocorrelation in the estimated resid-

uals. It is of interest that it is possible to get non-autocorrelated residuals by choosing

an apropriate lag-length in all cases. This is important for inference in the CVAR model,

as autocorrelation in the residuals renders basically all inference invalid, and it shows
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that the flexibility of the lag structure can capture the persistent deviations from the

estimated long-run structure caused by the underlying bounded instability.

The misspecification tests for normality of the estimated residuals are presented in

Table 4. The results show that only with low values for both τb and cµ, combined

with a sample of T = 200, can normality of the residuals not be rejected based on

the multivariate test, and even in these cases the results are really borderline. In all

other cases normality is rejected based on the multivariate test. However, in most

cases univariate normality of the residuals in the equation for the stock price cannot be

rejected for samples of T = 200. By contrast, univariate normality of the residuals in

the equation for current earnings cannot be rejected for all specifications and sample

lengths.

By looking at Table 5, which shows the univariate skewness and excess kurtosis of the

standardized estimated residuals6, it can be concluded that the rejection of univariate

normality in the stock price equation and the rejection of multivariate normality is

caused by a very large degree of excess kurtosis. Thus, the densities of the residuals

have ‘fat tails’, which appears to primarily associated with a few large outliers due to

large non-moderate revisions in bt. These outliers can easily be spotted based on a

graphical inspection of the data—see for example the illustration above—and we argue

that a careful empirical analysis and modeling would—and should—capture the outliers

by including a few dummy variables in the model. Though, it is worth mentioning that

the CVAR is quite robust to excess kurtosis, see Juselius (2006). By contrast, skewness

is more problematic for inference in the CVAR model, but the results in Table 5 shows

that skewness is not a problem.

Table 6 shows the final misspecification test, and the results show that no ARCH

cannot be rejected for all specifications with high p-values. This is not surprising as

the variance of the random shocks was assumed constant in the simulations. However,

ARCH-effects in the residuals might also arise from time-varying parameters, but there

do not appear to be any noticable volatility clustering in the residuals.

The reduced rank tests are reported in Table 7. The reduced rank tests test the

model with a rank of r = 0, 1, respectively, against the unrestricted model with full rank

r = p. A rank of r = 0 corresponds to no cointegration in the system, while a rank of

r = 1 corresponds to one cointegration relation and p− r = 1 common stochastic trend

in the system. For all specifications a rank of r = 1 cannot be rejected on average over

all repititions, with p-values well over 0.05 in most cases. However, only for low values

of τb and cµ can a rank of r = 0 be rejected, which would lead us to choose a reduced

6The skewness of the standardized normally distributed residuals should be 0.0 , and the excess
kurtosis 3.0.
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rank of r = 1. It must be pointed out, though, that in general setting the rank is a

difficult choice which should not be based solely on the trace test, but by a combination

of different indices—such as the number of near-unit roots in the system—as suggested

by Juselius (2006).

It is clear from Table 7, that increasing τb does not appear to have a large impact

on the rank tests, while an increase in cµ has a large impact leading the test for a rank

of r = 0 to not be rejected, so that the rank test indicates a preferred rank of r = 0.

This indicates that the larger fluctuations of current earnings around the long-run trend,

the harder it is to find cointegration between the stock price and earnings based on the

multivariate rank test. This result is not surprising as an increase in τµ makes the

deviations between current earnings and the long-run trend in earnings longer and more

persistent as the segmented trend is allowed to move further away from xt before a

reversal occurs. The greater persistence in the relation between the current earnings

and the long-run trend in earnings implies that deviations from the common stochastic

trend in the estimated CVAR model becomes more persistent. The greater persistence

implies a second near-unit root in the system, which can be seen from the columns with

the roots of the companion matrix in Table 7, and simultaneously that the estimated

cointegration adjustment coefficients α̂i for i = p, x in the reduced rank model with r = 1

decrease, as the estimated adjustment to the cointegration relations becomes slower, see

Table 9.

Tables 8 and 9 present the estimated cointegration coefficients β̂ and the adjustment

coefficients α̂. The cointegration relations are normalized on β̂1, which is the coefficient

to the stock price, so the cointegration relations are given by pt − β̂2xt. Hence, the

normalized coefficients are not shown in Table 8. Moreover, Table 8 presents the average

estimates of β̂2 over all S = 1.000 replications, as well as an average over all replications

excluding a total of 18 out of 48.000 very influential estimated, where the estimated

coefficient
∣∣∣β̂2

∣∣∣ > 1.000. For transparency, the average estimates with and without the

18 very influential estimates are shown, but standard errors and t-values are only shown

for the latter. Finally, Table 8 reports the averages over all replications of the individual

sample averages of bt, as well as the average difference between the estimate β̂2 and the

sample average bt.

The results show that the estimated coefficients are fairly close to the sample averages

of bt (which are very close to B as expected) when the sample size is long. For a sample

size of T = 200 the estimated coefficients are in many cases far from the sample averages

of bt. Though, we must point out that even after excluding the 18 most influential

replications, the averages of the estimated coefficients are still very influenced by a few

number of extreme estimates, which a careful econometric analysis would not get.
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From Table 9 it can be seen that the estimated adjustment coefficients are found

to be equilibrium adjusting in all specifications (i.e. α̂2 > 0), while the stock price is

generally found to be equilibrium-increasing for low values of τb and cµ (i.e. α̂1 > 0),

and equilibrium-adjusting for higher values of τb and cµ (i.e. α̂1 < 0). Moreover, in the

former case the estimated adjustment coefficients are on average significant, but as τb

and cµ increase the significance decreases, and eventually both adjustment coefficients

become insignificant. As mentioned above, these results can be understood from the fact

that increasing τb and cµ allows for a greater degree of persistence in the fluctuations of

pt and xt around the common long-run trend in earnings.

6 Conclusion

To conclude on the simulations, the results from the automated estimations indicate that

the CVAR model—with its system approach, lag structure, and decomposition of the

data according to its degree of persistence—can be used as a surprisingly good statistical

representation of the simulated data with an adequate lag structure. Importantly, the

estimations also show that in many cases a ‘correct’ reduced rank of r = 1 is found, and

the estimated cointegration coefficients are close to the corresponding parameters in the

simulations. Finally, we find a large degree of persistence in the system, which indicates

that the underlying bounded instability in the individual processes and parameters shows

up as persistence in the CVAR model.

The results are surprising, in particular when one takes into account that the spec-

ification of the simulations do not correspond to the specification of the CVAR model,

and that the simulations have bounded instability in the parameters, while the CVAR

model has constant parameters.

It is important to note that the inclusion of lagged first-differences in the CVAR

model appears to be an extremely important element in the specification of a general

unrestricted VAR model as a statistically valid representation of the data. It appears

that the underlying bounded instability in the stochastic processes and parameters can

be fairly well captured by the lagged first-differences in the short-run structure—so

that the estimated residuals are fairly well-specified—while the cointegration relations

capture the stable long-run relations in the data.

However, it is worth pointing out that the simulations were based on bounded insta-

bility in the short run, but with stability in the causal structure in the long run. On that

basis the results here might not be very surprising, and it will be interesting to get new

results we expand the fairly simple simulations considered here. In our future work on

bridging IKE models with the CVAR model and more generally the ‘data-first approach’
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to econometrics, we will allow for more variables to enter the forecasting strategies in

the simulations, we will allow for contingent change that is not bounded within a narrow

range, and we will focus directly on testing for structural change in the CVAR model.
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A Graphs of Simulated Series and Results from

CVAR Estimations
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Figure 1: Current earnings, the segmented trend, and the long-run trend in earnings.
The upper panel shows the long-run trend in earnings x̄t (green line), with the segmented
trend Ψt (blue line) and current earnings xt (red line). The middle panel shows the
deviation between current earnings and their long-run trend, x̄t − xt, which determines
the simulated probability of a break in the segmented trend. The simulated probabilities
are shown in the lower panel, where the blue squares indicate a reversal in the direction
of the segmented trend.
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Figure 2: Revision of forecasting strategies. The upper panel shows the weights at-
tached to current earnings in the forecasting strategies over time (red line) along with
non-moderate revisions the forecasting strategies (blue squares) and the parameter B
(green line). The middle panel shows the qualitative ranges imposed on the revisions of
the forecasting strategies by the Guardedly Moderate Revisions condition (green lines),
the simulated revisions of the forecasting strategies (red line), and the non-moderate
revisions the forecasting strategies (blue squares). The lower panel shows the simulated
probability of a non-moderate revision (red line) and the non-moderate revisions the
forecasting strategies (blue squares).
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Figure 3: The stock price, benchmark price, price forecast. The upper panel shows the
simulated stock price (blue line), the benchmark price (green line), and the price forecast
(red line). The middle panel shows the deviation between the price forecast and the
benchmark price. The lower panel shows the decomposition of the deviation between the
price forecast and the benchmark price into two terms, which are individually bounded:
(bt −B)′zt and B′(xt − x̄t).
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Figure 4: The stock price, benchmark price, price forecast. The upper panel shows the
simulated stock price (blue line), the benchmark price (green line), and the price forecast
(red line). The middle panel shows the deviation between the price forecast and the
benchmark price. The lower panel shows the decomposition of the deviation between the
price forecast and the benchmark price into two terms, which are individually bounded:
(bt −B)′zt and B′(xt − x̄t).
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Figure 5: Estimated cointegration relation and first-differences. The upper and middle
panels show the first-differences of the stock price and earnings data, which are analyzed
econometrically with a CVAR model. The lower panel shows the estimated cointegration
relation β̂′Xt.
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Table 1: Breakpoints in the Simulated Data

i τ ib ciµ T P (breakb)
a breaksb

b P (breakµ)a breaksµb

1 0.25 2.00 200 0.02 2.0 0.08 7.9
400 0.02 2.0 0.08 7.7

1000 0.02 2.1 0.08 7.6

2 0.25 3.00 200 0.02 2.0 0.04 4.4
400 0.02 2.0 0.04 4.2

1000 0.02 2.1 0.04 4.2

3 0.25 4.00 200 0.02 2.0 0.03 2.6
400 0.02 2.0 0.03 2.5

1000 0.02 2.1 0.02 2.5

4 0.25 5.00 200 0.02 2.0 0.02 1.7
400 0.02 2.0 0.02 1.7

1000 0.02 2.1 0.02 1.6

5 0.50 2.00 200 0.02 2.2 0.08 7.9
400 0.02 2.2 0.08 7.7

1000 0.02 2.3 0.08 7.6

6 0.50 3.00 200 0.02 2.2 0.04 4.4
400 0.02 2.2 0.04 4.2

1000 0.02 2.3 0.04 4.2

7 0.50 4.00 200 0.02 2.2 0.03 2.6
400 0.02 2.2 0.03 2.5

1000 0.02 2.3 0.02 2.5

8 0.50 5.00 200 0.02 2.2 0.02 1.7
400 0.02 2.2 0.02 1.7

1000 0.02 2.3 0.02 1.6

9 1.00 2.00 200 0.03 2.6 0.08 7.9
400 0.03 2.7 0.08 7.7

1000 0.03 2.8 0.08 7.6

10 1.00 3.00 200 0.03 2.6 0.04 4.4
400 0.03 2.7 0.04 4.2

1000 0.03 2.8 0.04 4.2

11 1.00 4.00 200 0.03 2.6 0.03 2.6
400 0.03 2.7 0.03 2.5

1000 0.03 2.8 0.02 2.5

12 1.00 5.00 200 0.03 2.6 0.02 1.7
400 0.03 2.7 0.02 1.7

1000 0.03 2.8 0.02 1.6

13 1.50 2.00 200 0.03 3.1 0.08 7.9
400 0.03 3.2 0.08 7.7

1000 0.03 3.4 0.08 7.6

14 1.50 3.00 200 0.03 3.1 0.04 4.4
400 0.03 3.2 0.04 4.2

1000 0.03 3.4 0.04 4.2

15 1.50 4.00 200 0.03 3.1 0.03 2.6
400 0.03 3.3 0.03 2.5

1000 0.03 3.4 0.02 2.5

16 1.50 5.00 200 0.03 3.1 0.02 1.7
400 0.03 3.2 0.02 1.7

1000 0.03 3.4 0.02 1.6

All reported values are averages over S = 1000 replications.
a Average simulated probability of a non-moderate revision of the forecasting strategies and

a reversal in the segmented trend, respectively.
b Average number of breakpoints per 100 observations.
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Table 2: Selected Lag-Lengths in the Unrestricted Model

i τ ib ciµ T Av(k)a k = 1b k = 2b k = 3b k ≥ 4b

1 0.25 2.00 200 1.18 0.84 0.15 0.01 0.00
400 1.67 0.49 0.38 0.11 0.02

1000 3.43 0.02 0.18 0.38 0.42

2 0.25 3.00 200 1.33 0.71 0.25 0.04 0.00
400 2.01 0.29 0.46 0.22 0.04

1000 3.63 0.00 0.10 0.37 0.53

3 0.25 4.00 200 1.50 0.58 0.35 0.07 0.00
400 2.38 0.15 0.44 0.32 0.09

1000 3.90 0.00 0.05 0.30 0.65

4 0.25 5.00 200 1.64 0.49 0.39 0.10 0.02
400 2.65 0.08 0.38 0.39 0.15

1000 4.09 0.00 0.03 0.24 0.73

5 0.50 2.00 200 1.22 0.80 0.18 0.02 0.00
400 1.85 0.39 0.42 0.16 0.03

1000 3.99 0.00 0.07 0.27 0.66

6 0.50 3.00 200 1.36 0.68 0.28 0.04 0.00
400 2.14 0.25 0.44 0.25 0.06

1000 3.96 0.00 0.05 0.28 0.68

7 0.50 4.00 200 1.50 0.57 0.36 0.06 0.00
400 2.46 0.14 0.40 0.34 0.12

1000 4.04 0.00 0.03 0.26 0.71

8 0.50 5.00 200 1.64 0.48 0.40 0.10 0.01
400 2.66 0.07 0.38 0.39 0.16

1000 4.18 0.00 0.02 0.21 0.76

9 1.00 2.00 200 1.27 0.77 0.20 0.03 0.00
400 2.09 0.29 0.40 0.24 0.06

1000 4.38 0.00 0.04 0.19 0.78

10 1.00 3.00 200 1.39 0.66 0.29 0.04 0.01
400 2.32 0.19 0.40 0.30 0.10

1000 4.16 0.00 0.03 0.22 0.75

11 1.00 4.00 200 1.54 0.55 0.36 0.08 0.01
400 2.56 0.12 0.36 0.38 0.14

1000 4.23 0.00 0.02 0.20 0.78

12 1.00 5.00 200 1.65 0.48 0.40 0.10 0.01
400 2.72 0.07 0.36 0.39 0.18

1000 4.31 0.00 0.01 0.19 0.80

13 1.50 2.00 200 1.32 0.74 0.21 0.05 0.00
400 2.22 0.25 0.41 0.25 0.10

1000 4.50 0.00 0.03 0.17 0.81

14 1.50 3.00 200 1.43 0.65 0.28 0.06 0.01
400 2.42 0.16 0.40 0.32 0.12

1000 4.32 0.00 0.02 0.18 0.80

15 1.50 4.00 200 1.59 0.53 0.36 0.10 0.01
400 2.58 0.11 0.38 0.36 0.15

1000 4.31 0.00 0.01 0.18 0.81

16 1.50 5.00 200 1.70 0.46 0.40 0.12 0.02
400 2.76 0.07 0.34 0.39 0.20

1000 4.39 0.00 0.01 0.16 0.82

All reported values are averages over S = 1000 replications.
a Average lag-length k.
b Percentage with lag length k = 1, 2, 3 and k ≥ 4, respectively.
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Table 3: Misspecification Tests Part 1: Autocorrelation

Vector test Vector test Univar. test Univ. test
no autocorr. no autocorr. no autocorr. no autocorr.

order 1a order 1-2b order 1 in ε̂1tb order 1 in ε̂2tb

i τ ib ciµ T χ2(4) p− val χ2(8) p− val χ2(4) p− val χ2(4) p− val

1 0.25 2.00 200 4.45 0.43 9.61 0.79 4.00 0.66 3.91 0.67
400 5.37 0.32 12.13 0.67 6.31 0.45 6.52 0.46

1000 5.77 0.29 13.79 0.41 7.71 0.16 8.23 0.15

2 0.25 3.00 200 4.93 0.37 10.69 0.76 4.96 0.59 5.18 0.60
400 5.61 0.30 12.71 0.60 6.78 0.32 7.25 0.31

1000 5.64 0.30 12.76 0.45 6.94 0.21 7.50 0.20

3 0.25 4.00 200 5.16 0.34 11.53 0.71 5.71 0.48 6.26 0.48
400 5.61 0.30 12.79 0.54 6.69 0.26 7.44 0.24

1000 5.57 0.31 12.53 0.46 6.72 0.23 7.39 0.21

4 0.25 5.00 200 5.40 0.32 12.14 0.66 6.10 0.42 6.80 0.39
400 5.53 0.32 12.91 0.50 6.54 0.24 7.40 0.22

1000 5.50 0.32 12.34 0.47 6.79 0.24 7.35 0.22

5 0.50 2.00 200 4.55 0.42 9.82 0.79 4.00 0.63 4.24 0.64
400 5.49 0.31 12.54 0.62 6.12 0.38 7.17 0.37

1000 5.84 0.28 14.28 0.36 7.28 0.17 8.88 0.13

6 0.50 3.00 200 4.91 0.37 10.81 0.75 4.70 0.58 5.35 0.58
400 5.54 0.31 12.82 0.57 6.29 0.32 7.49 0.29

1000 5.54 0.31 12.90 0.43 6.33 0.24 7.69 0.19

7 0.50 4.00 200 5.24 0.34 11.71 0.70 5.31 0.49 6.40 0.46
400 5.47 0.32 12.66 0.54 6.06 0.29 7.43 0.24

1000 5.60 0.31 12.45 0.46 6.00 0.27 7.44 0.20

8 0.50 5.00 200 5.32 0.33 12.14 0.65 5.60 0.44 6.86 0.38
400 5.50 0.32 12.75 0.50 5.86 0.28 7.48 0.21

1000 5.42 0.33 12.36 0.47 5.89 0.28 7.39 0.22

9 1.00 2.00 200 4.55 0.41 10.31 0.77 3.38 0.64 4.58 0.62
400 5.63 0.30 13.19 0.55 4.66 0.45 7.57 0.29

1000 5.76 0.28 14.90 0.34 4.92 0.34 9.13 0.12

10 1.00 3.00 200 4.93 0.37 11.12 0.74 3.71 0.61 5.63 0.55
400 5.58 0.31 12.87 0.53 4.39 0.43 7.54 0.26

1000 5.68 0.30 13.44 0.41 4.58 0.37 8.03 0.18

11 1.00 4.00 200 5.18 0.34 11.70 0.70 4.13 0.56 6.38 0.46
400 5.46 0.32 12.72 0.51 4.50 0.41 7.51 0.23

1000 5.47 0.32 12.80 0.46 4.06 0.42 7.41 0.22

12 1.00 5.00 200 5.41 0.32 12.32 0.65 4.44 0.51 7.00 0.37
400 5.45 0.32 12.72 0.50 4.36 0.41 7.44 0.22

1000 5.36 0.33 12.43 0.48 3.95 0.44 7.17 0.24

13 1.50 2.00 200 4.61 0.41 10.47 0.75 2.80 0.66 4.68 0.62
400 5.55 0.31 13.35 0.53 3.35 0.55 7.68 0.27

1000 5.94 0.27 15.25 0.35 3.38 0.50 8.99 0.13

14 1.50 3.00 200 4.99 0.36 11.27 0.73 3.04 0.64 5.66 0.55
400 5.44 0.32 12.97 0.52 3.26 0.55 7.48 0.24

1000 5.72 0.30 13.58 0.43 3.08 0.54 7.63 0.20

15 1.50 4.00 200 5.15 0.34 11.71 0.69 3.24 0.62 6.35 0.46
400 5.46 0.32 12.95 0.50 3.25 0.55 7.47 0.23

1000 5.66 0.31 13.32 0.46 3.07 0.56 7.20 0.22

16 1.50 5.00 200 5.40 0.32 12.37 0.64 3.48 0.59 6.84 0.37
400 5.41 0.32 12.81 0.49 3.20 0.54 7.40 0.22

1000 5.49 0.32 12.86 0.47 2.95 0.56 6.83 0.25

All reported values are averages over S = 1000 replications.
a Multivariate test for no autocorrelation of order 1 and order 1 − 2, respectively, in the estimated residuals. The

first columns report the test values, while the second report the corresponding p-values.
b Univariate tests for no autocorrelation of order 1 in the estimated residuals. The first columns report the test

values, while the second report the corresponding p-values.
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Table 4: Misspecification Tests Part 2: Normality

Vector test Univar. test Univar. test
normalityb normality of ε̂1tb normality of ε̂2tb

i τ ib ciµ T χ2(4) p− val χ2(2) p− val χ2(2) p− val

1 0.25 2.00 200 81.75 0.06 2.79 0.46 1.97 0.51
400 335.01 0.01 5.48 0.37 1.93 0.51

1000 2735.45 0.00 48.69 0.09 1.91 0.51

2 0.25 3.00 200 83.96 0.06 2.75 0.47 1.98 0.51
400 334.08 0.01 5.13 0.39 2.02 0.51

1000 2772.08 0.00 47.36 0.09 1.92 0.51

3 0.25 4.00 200 82.29 0.07 2.68 0.47 1.94 0.52
400 334.07 0.01 5.22 0.39 1.88 0.52

1000 2758.95 0.00 46.09 0.10 1.95 0.51

4 0.25 5.00 200 85.63 0.07 2.76 0.47 1.92 0.52
400 339.41 0.01 5.72 0.39 1.83 0.53

1000 2788.76 0.00 47.03 0.11 1.95 0.51

5 0.50 2.00 200 207.18 0.02 12.61 0.28 1.97 0.51
400 842.87 0.00 54.35 0.12 1.96 0.50

1000 5069.20 0.00 694.32 0.00 1.90 0.52

6 0.50 3.00 200 202.24 0.03 12.04 0.29 1.96 0.51
400 845.85 0.00 52.95 0.12 2.02 0.50

1000 5125.59 0.00 710.91 0.00 1.93 0.51

7 0.50 4.00 200 203.07 0.03 12.06 0.30 1.95 0.52
400 839.81 0.00 52.80 0.13 1.91 0.52

1000 5169.32 0.00 717.68 0.00 1.95 0.51

8 0.50 5.00 200 205.12 0.03 13.47 0.30 1.92 0.52
400 829.39 0.00 53.86 0.13 1.84 0.52

1000 5147.33 0.00 718.60 0.00 1.94 0.51

9 1.00 2.00 200 389.33 0.01 89.53 0.08 1.97 0.51
400 1378.13 0.00 411.27 0.01 1.97 0.50

1000 6564.38 0.00 3272.08 0.00 1.90 0.52

10 1.00 3.00 200 382.50 0.01 87.53 0.08 1.97 0.51
400 1396.18 0.00 412.64 0.01 2.03 0.50

1000 6627.71 0.00 3315.64 0.00 1.92 0.51

11 1.00 4.00 200 378.77 0.01 90.11 0.09 1.93 0.52
400 1383.35 0.00 413.79 0.01 1.93 0.51

1000 6725.62 0.00 3380.56 0.00 1.94 0.51

12 1.00 5.00 200 391.53 0.01 93.19 0.09 1.92 0.52
400 1362.78 0.00 421.65 0.01 1.87 0.52

1000 6727.86 0.00 3406.74 0.00 1.94 0.51

13 1.50 2.00 200 496.41 0.01 206.98 0.03 1.99 0.51
400 1562.25 0.00 811.22 0.00 1.97 0.51

1000 6516.40 0.00 4707.44 0.00 1.88 0.52

14 1.50 3.00 200 495.58 0.01 205.26 0.04 1.98 0.51
400 1564.72 0.00 811.76 0.00 2.01 0.50

1000 6598.74 0.00 4783.97 0.00 1.91 0.51

15 1.50 4.00 200 483.63 0.01 200.94 0.04 1.93 0.52
400 1563.63 0.00 816.23 0.00 1.95 0.51

1000 6616.48 0.00 4812.31 0.00 1.93 0.51

16 1.50 5.00 200 495.95 0.01 206.62 0.04 1.91 0.52
400 1558.25 0.00 824.87 0.00 1.88 0.52

1000 6667.47 0.00 4858.83 0.00 1.92 0.52

All reported values are averages over S = 1000 replications.
a Multivariate test for normality of the estimated residuals.
b Univariate tests for normality of the estimated residuals.
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Table 5: Misspecification Tests Part 3: Skewness, Kurtosis, and Standard Deviation

Skewnessa Kurtosisb Std.dev.c

i τ ib ciµ T ε̂1t ε̂2t ε̂1t ε̂2t ε̂1t ε̂2t

1 0.25 2.00 200 -0.01 0.00 3.12 2.98 0.56 0.54
400 -0.02 0.00 3.28 2.97 0.57 0.55

1000 -0.03 -0.00 4.03 3.00 0.59 0.55

2 0.25 3.00 200 0.00 0.00 3.11 2.97 0.57 0.55
400 -0.01 0.00 3.26 2.98 0.58 0.55

1000 -0.02 -0.00 4.01 3.00 0.59 0.55

3 0.25 4.00 200 0.01 0.00 3.11 2.97 0.57 0.55
400 -0.00 -0.00 3.25 2.97 0.58 0.55

1000 -0.01 -0.00 3.97 3.00 0.59 0.55

4 0.25 5.00 200 0.01 0.00 3.12 2.97 0.58 0.56
400 -0.00 -0.00 3.28 2.97 0.58 0.55

1000 -0.01 -0.00 3.98 3.00 0.59 0.55

5 0.50 2.00 200 0.01 0.00 3.96 2.98 0.59 0.55
400 -0.01 0.00 5.04 2.97 0.61 0.55

1000 -0.00 -0.00 10.69 3.00 0.66 0.55

6 0.50 3.00 200 0.02 -0.00 3.92 2.97 0.59 0.55
400 -0.01 -0.00 5.02 2.97 0.61 0.55

1000 0.00 -0.00 10.88 3.00 0.66 0.55

7 0.50 4.00 200 0.04 0.00 3.91 2.97 0.60 0.55
400 0.01 -0.00 5.02 2.97 0.61 0.55

1000 0.00 -0.00 10.95 3.00 0.65 0.55

8 0.50 5.00 200 0.05 0.00 4.02 2.98 0.60 0.56
400 0.01 -0.00 5.05 2.97 0.61 0.55

1000 0.00 -0.00 11.05 3.00 0.65 0.55

9 1.00 2.00 200 0.10 0.00 8.97 2.98 0.68 0.55
400 0.09 -0.00 14.95 2.97 0.74 0.56

1000 0.06 -0.01 35.15 2.99 0.91 0.56

10 1.00 3.00 200 0.12 0.00 8.90 2.97 0.68 0.55
400 0.08 -0.00 15.06 2.97 0.74 0.55

1000 0.06 -0.00 35.64 2.99 0.91 0.55

11 1.00 4.00 200 0.13 0.00 9.03 2.97 0.69 0.55
400 0.11 -0.00 15.25 2.97 0.74 0.55

1000 0.03 -0.00 36.42 3.00 0.91 0.55

12 1.00 5.00 200 0.12 0.00 9.33 2.98 0.69 0.56
400 0.08 -0.00 15.78 2.97 0.74 0.55

1000 0.04 -0.00 36.92 3.00 0.91 0.55

13 1.50 2.00 200 0.10 -0.00 15.89 2.98 0.83 0.55
400 0.11 -0.00 26.29 2.97 0.95 0.56

1000 0.09 -0.01 49.17 2.99 1.29 0.56

14 1.50 3.00 200 0.11 0.00 16.03 2.97 0.84 0.55
400 0.11 -0.00 26.38 2.97 0.95 0.55

1000 0.10 -0.00 49.69 2.99 1.29 0.55

15 1.50 4.00 200 0.12 0.00 16.08 2.97 0.84 0.55
400 0.15 -0.00 26.78 2.97 0.95 0.55

1000 0.08 -0.00 50.28 2.99 1.29 0.55

16 1.50 5.00 200 0.12 0.00 16.52 2.98 0.85 0.56
400 0.08 -0.00 27.28 2.97 0.96 0.55

1000 0.13 -0.00 51.53 2.99 1.29 0.55

All reported values are averages over S = 1000 replications.

a The skewness of the estimated residuals is calculated as skewnessi =
√
T−1

∑T
t=1 ε̂

3
it, where ε̂it are the

estimated system residuals for i = 1, 2.
b The kurtosis of the estimated residuals is calculated as kurtosisi = T−1

∑T
t=1 ε̂

4
it, where ε̂it are the

estimated system residuals for i = 1, 2.
c The standard deviation of the estimated residuals ε̂it for i = 1, 2
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Table 6: Misspecification Tests Part 4: ARCH

Vector test Vector test Univar. test Univ. test
no. ARCH no ARCH no ARCH no ARCH

order 1a order 1-2a order 1 in ε̂1tb order 1 in ε̂2tb

i τ ib ciµ T χ2(9) p− val χ2(18) p− val χ2(1) p− val χ2(1) p− val

1 0.25 2.00 200 31.61 0.38 39.65 0.39 1.02 0.51 0.99 0.51
400 21.93 0.48 30.60 0.50 0.94 0.53 0.96 0.50

1000 10.16 0.60 20.28 0.58 1.08 0.51 1.01 0.51

2 0.25 3.00 200 27.75 0.44 36.05 0.45 1.01 0.51 0.96 0.51
400 17.55 0.55 26.71 0.54 0.95 0.52 0.96 0.50

1000 9.74 0.61 19.15 0.60 1.10 0.52 1.02 0.51

3 0.25 4.00 200 23.42 0.47 31.56 0.48 1.08 0.49 1.02 0.50
400 13.77 0.59 22.25 0.59 0.94 0.52 0.99 0.50

1000 10.11 0.61 19.85 0.60 1.09 0.52 1.01 0.51

4 0.25 5.00 200 20.47 0.51 28.75 0.52 1.06 0.51 0.99 0.51
400 10.68 0.61 19.53 0.60 0.93 0.52 0.99 0.50

1000 10.27 0.60 19.78 0.60 1.06 0.51 1.04 0.49

5 0.50 2.00 200 21.06 0.45 30.19 0.45 1.01 0.53 0.99 0.51
400 15.26 0.51 25.52 0.50 0.97 0.55 0.98 0.50

1000 11.34 0.58 22.21 0.57 1.17 0.64 1.02 0.51

6 0.50 3.00 200 18.90 0.49 28.24 0.49 0.99 0.53 0.97 0.51
400 13.24 0.54 23.60 0.52 0.95 0.56 0.97 0.50

1000 11.31 0.59 22.08 0.57 1.20 0.63 1.01 0.51

7 0.50 4.00 200 16.68 0.50 25.49 0.51 1.05 0.52 1.02 0.49
400 12.55 0.56 22.42 0.55 0.97 0.55 0.99 0.50

1000 11.66 0.58 22.53 0.56 1.32 0.63 1.00 0.51

8 0.50 5.00 200 15.38 0.54 24.16 0.55 0.99 0.53 1.00 0.50
400 11.34 0.56 21.45 0.55 1.06 0.55 0.99 0.50

1000 11.77 0.58 22.61 0.57 1.26 0.63 1.04 0.49

9 1.00 2.00 200 15.26 0.50 26.19 0.49 0.92 0.61 0.98 0.51
400 13.55 0.54 25.19 0.52 1.38 0.65 0.97 0.50

1000 10.79 0.62 21.68 0.59 1.35 0.70 1.04 0.51

10 1.00 3.00 200 14.57 0.52 25.41 0.50 0.96 0.61 0.96 0.51
400 12.40 0.56 23.86 0.52 1.24 0.65 0.99 0.50

1000 10.63 0.62 21.23 0.60 1.28 0.70 1.02 0.51

11 1.00 4.00 200 12.69 0.54 22.96 0.52 1.03 0.60 1.00 0.50
400 12.35 0.56 23.31 0.54 1.20 0.65 1.00 0.50

1000 10.88 0.62 21.60 0.59 1.48 0.70 1.00 0.51

12 1.00 5.00 200 12.49 0.55 22.50 0.54 0.99 0.61 0.99 0.50
400 12.51 0.56 23.77 0.53 1.32 0.65 0.99 0.49

1000 11.17 0.62 21.82 0.60 1.47 0.71 1.04 0.49

13 1.50 2.00 200 14.22 0.53 25.89 0.50 0.98 0.67 0.99 0.51
400 13.29 0.57 24.82 0.53 2.06 0.68 0.97 0.50

1000 12.41 0.63 25.99 0.56 2.52 0.65 1.03 0.51

14 1.50 3.00 200 13.88 0.54 25.23 0.51 1.12 0.67 0.98 0.51
400 11.92 0.60 23.14 0.56 1.88 0.68 0.97 0.50

1000 12.19 0.62 25.46 0.57 2.37 0.66 1.03 0.51

15 1.50 4.00 200 12.53 0.56 23.17 0.53 1.05 0.66 0.99 0.50
400 11.92 0.60 22.82 0.57 1.74 0.69 0.98 0.50

1000 12.34 0.61 25.90 0.56 2.54 0.65 1.03 0.51

16 1.50 5.00 200 11.81 0.57 22.63 0.54 1.02 0.67 1.01 0.49
400 12.53 0.60 23.61 0.57 2.03 0.69 0.97 0.50

1000 13.21 0.62 26.23 0.57 2.79 0.66 1.04 0.50

All reported values are averages over S = 1000 replications.
a Multivariate test for no ARCH of order 1 and order 1− 2, respectively, in the estimated residuals.
b Univariate tests for no autocorrelation of order 1 in the estimated residuals.
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Table 7: Reduced Rank Determination: Rank Test

Reduced rank tests H(r, s)a Roots of comp. matrixb

i τ ib ciµ T H(0, 2) p− val H(1, 1) p− val υ̂1,r=2 υ̂2,r=2 υ̂2,r=1

1 0.25 2.00 200 31.90 0.01 3.02 0.27 0.97 0.74 0.74
400 42.55 0.00 2.21 0.32 0.99 0.81 0.81

1000 48.88 0.00 1.31 0.41 1.00 0.90 0.90

2 0.25 3.00 200 23.16 0.04 2.96 0.26 0.97 0.82 0.82
400 28.45 0.02 2.18 0.32 0.99 0.88 0.88

1000 35.12 0.00 1.30 0.41 1.00 0.93 0.93

3 0.25 4.00 200 16.80 0.13 2.66 0.26 0.98 0.88 0.87
400 18.22 0.09 2.10 0.32 0.99 0.93 0.92

1000 23.45 0.02 1.28 0.41 1.00 0.96 0.96

4 0.25 5.00 200 12.54 0.27 2.35 0.27 0.98 0.92 0.92
400 11.96 0.28 1.98 0.32 0.99 0.96 0.96

1000 15.48 0.10 1.27 0.41 1.00 0.97 0.97

5 0.50 2.00 200 30.11 0.01 3.36 0.21 0.97 0.76 0.76
400 35.45 0.01 2.97 0.24 0.99 0.84 0.84

1000 32.71 0.01 1.92 0.29 1.00 0.94 0.94

6 0.50 3.00 200 22.52 0.04 3.26 0.21 0.97 0.83 0.82
400 25.66 0.03 2.88 0.24 0.99 0.89 0.89

1000 27.54 0.01 1.89 0.29 1.00 0.95 0.95

7 0.50 4.00 200 16.90 0.12 2.98 0.21 0.97 0.88 0.88
400 17.85 0.10 2.73 0.24 0.99 0.93 0.93

1000 21.66 0.03 1.84 0.30 1.00 0.96 0.96

8 0.50 5.00 200 12.97 0.25 2.65 0.22 0.97 0.92 0.91
400 12.62 0.25 2.50 0.25 0.99 0.96 0.95

1000 16.38 0.08 1.78 0.30 1.00 0.97 0.97

9 1.00 2.00 200 28.61 0.02 4.19 0.14 0.96 0.78 0.78
400 29.61 0.03 4.58 0.12 0.98 0.88 0.88

1000 27.88 0.01 2.98 0.18 0.99 0.95 0.95

10 1.00 3.00 200 22.08 0.05 4.03 0.15 0.96 0.84 0.83
400 23.61 0.04 4.39 0.13 0.98 0.91 0.91

1000 26.40 0.01 2.97 0.18 0.99 0.95 0.95

11 1.00 4.00 200 17.29 0.11 3.62 0.15 0.96 0.88 0.87
400 18.37 0.09 4.09 0.13 0.98 0.93 0.93

1000 23.76 0.02 2.75 0.19 0.99 0.96 0.96

12 1.00 5.00 200 13.78 0.21 3.12 0.17 0.97 0.91 0.91
400 14.50 0.17 3.46 0.15 0.98 0.95 0.95

1000 20.85 0.04 2.54 0.21 0.99 0.96 0.96

13 1.50 2.00 200 28.37 0.02 5.22 0.10 0.95 0.79 0.78
400 29.45 0.03 6.12 0.07 0.97 0.88 0.88

1000 31.97 0.00 3.56 0.15 0.99 0.94 0.94

14 1.50 3.00 200 22.67 0.05 4.92 0.11 0.95 0.84 0.83
400 24.62 0.04 5.74 0.08 0.97 0.91 0.91

1000 31.13 0.01 3.47 0.15 0.99 0.94 0.94

15 1.50 4.00 200 18.22 0.10 4.36 0.13 0.95 0.88 0.87
400 20.51 0.06 5.04 0.08 0.97 0.93 0.92

1000 29.12 0.01 3.17 0.17 0.99 0.94 0.94

16 1.50 5.00 200 14.97 0.17 3.66 0.14 0.96 0.90 0.90
400 16.98 0.12 4.05 0.12 0.98 0.94 0.94

1000 27.08 0.01 2.78 0.19 0.99 0.95 0.95

All reported values are averages over S = 1000 replications.
a LR-test of rank r against the unrestricted model with r = p.
b υ̂i,r=j refers to the modulus of the i’th largest root of the companion matrix for the model with rank r = j. Thus,

the first two columns are the two largest unrestricted roots of the companion matrix for the unrestricted model,
while the final column is the largest unrestricted root in the reduced rank model with r = 1 (where the largest root
is restricted to a unit root).
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Table 8: Reduced Rank Estimations with r = 1: Cointegration Coefficients β

i τ ib ciµ T β̂2 β̂∗
2 seβ̂∗

2

a τβ̂∗
2

b b̄tc β̂∗
2 − b̄td

1 0.25 2.00 200 -3.71 -2.88 0.74 -11.47 -2.00 -0.88
400 -2.02 -2.02 0.19 -20.04 -2.00 -0.02

1000 -2.06 -2.06 0.06 -40.19 -2.00 -0.06

2 0.25 3.00 200 -2.16 -2.16 0.63 -8.69 -2.00 -0.17
400 -2.02 -2.02 0.34 -14.36 -2.00 -0.02

1000 -2.06 -2.06 0.08 -30.37 -2.00 -0.06

3 0.25 4.00 200 -3.42 -1.90 1.12 -6.81 -2.00 0.10
400 -2.19 -2.19 0.36 -10.11 -2.00 -0.19

1000 -2.06 -2.06 0.11 -21.33 -2.00 -0.06

4 0.25 5.00 200 -0.46 -0.46 1.10 -5.92 -2.00 1.54
400 -7.43 -2.52 0.79 -7.14 -2.00 -0.52

1000 -2.03 -2.03 0.16 -14.59 -2.00 -0.03

5 0.50 2.00 200 -3.51 -4.91 1.26 -9.30 -2.00 -2.91
400 -2.51 -2.51 0.27 -14.58 -2.00 -0.52

1000 -2.12 -2.12 0.10 -23.13 -2.00 -0.12

6 0.50 3.00 200 -3.36 -1.68 0.92 -7.22 -2.00 0.32
400 -2.63 -2.63 0.46 -11.26 -2.00 -0.64

1000 -2.11 -2.11 0.12 -19.88 -2.00 -0.11

7 0.50 4.00 200 -4.54 -1.59 1.33 -5.87 -2.00 0.41
400 -2.65 -2.65 0.79 -8.58 -2.00 -0.65

1000 -2.09 -2.09 0.15 -16.14 -2.00 -0.09

8 0.50 5.00 200 -2.57 -0.67 1.24 -5.23 -2.00 1.33
400 -2.62 -2.62 0.83 -6.56 -2.00 -0.63

1000 -2.02 -2.02 0.18 -12.54 -2.00 -0.02

9 1.00 2.00 200 -2.77 -2.77 1.91 -6.37 -1.99 -0.78
400 -6.62 -3.12 0.67 -8.77 -1.99 -1.13

1000 -2.17 -2.17 0.19 -12.86 -2.00 -0.18

10 1.00 3.00 200 -1.86 -1.86 1.76 -5.02 -1.99 0.14
400 -4.45 -3.00 1.06 -7.28 -1.99 -1.01

1000 -2.13 -2.13 0.20 -12.20 -1.99 -0.13

11 1.00 4.00 200 -3.39 -3.39 1.77 -4.28 -1.99 -1.40
400 1.42 -2.20 0.70 -6.02 -1.99 -0.21

1000 -2.07 -2.07 0.21 -11.15 -2.00 -0.08

12 1.00 5.00 200 -1.39 -1.39 1.42 -4.00 -1.99 0.61
400 -2.00 -2.00 0.97 -5.23 -1.99 -0.01

1000 -1.94 -1.94 0.22 -9.84 -2.00 0.05

13 1.50 2.00 200 -5.77 -4.56 2.62 -4.94 -1.99 -2.57
400 0.05 -2.88 1.20 -6.59 -1.98 -0.90

1000 -2.17 -2.17 0.23 -10.18 -2.00 -0.18

14 1.50 3.00 200 -5.70 -3.68 2.56 -3.90 -1.99 -1.68
400 -5.46 -3.30 0.90 -5.81 -1.98 -1.31

1000 -2.14 -2.14 0.25 -9.89 -2.00 -0.15

15 1.50 4.00 200 -1.70 -1.70 2.07 -3.48 -2.00 0.30
400 7.12 -1.44 1.14 -4.99 -1.99 0.54

1000 -1.99 -1.99 0.24 -9.28 -2.00 0.01

16 1.50 5.00 200 -0.83 -0.83 1.38 -3.27 -2.00 1.16
400 -0.93 -1.95 0.68 -4.51 -1.99 0.03

1000 -1.89 -1.89 0.24 -8.68 -2.00 0.11

The column for β̂2 reports averages over S = 1000 replications. However, the columns for β̂∗
2 report

averages where a total of 18 out of the 48.000 estimates are excluded due to extreme estimates, where
β̂2 > 1.000 or β̂2 < −1.000.

a Standard error of β̂2.
b T-value of β̂2.
c Sample average of the parameter bt in the simulations.
d Difference between the estimated parameter β̂2 and the sample average of bt.
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Table 9: Reduced Rank Estimations with r = 1: Adjustment Coefficients α

i τ ib ciµ T α̂1 seα̂1
a τα̂1

b α̂2 seα̂2
a τα̂2

b

1 0.25 2.00 200 0.16 0.04 4.34 0.17 0.03 4.69
400 0.15 0.03 5.60 0.16 0.03 6.11

1000 0.09 0.02 5.42 0.11 0.02 6.48

2 0.25 3.00 200 0.10 0.03 2.86 0.11 0.03 3.15
400 0.10 0.02 4.31 0.11 0.02 4.71

1000 0.07 0.02 4.48 0.08 0.01 5.40

3 0.25 4.00 200 0.05 0.04 1.53 0.06 0.03 1.82
400 0.06 0.02 3.05 0.07 0.02 3.38

1000 0.05 0.01 3.59 0.05 0.01 4.33

4 0.25 5.00 200 -0.00 0.04 0.22 0.02 0.04 0.54
400 0.03 0.02 1.87 0.04 0.02 2.16

1000 0.03 0.01 2.71 0.03 0.01 3.34

5 0.50 2.00 200 0.11 0.03 3.49 0.12 0.03 4.08
400 0.09 0.02 4.15 0.11 0.02 5.15

1000 0.03 0.01 2.34 0.05 0.01 4.51

6 0.50 3.00 200 0.07 0.03 2.23 0.08 0.03 2.74
400 0.07 0.02 3.27 0.08 0.02 4.12

1000 0.03 0.01 2.02 0.04 0.01 4.04

7 0.50 4.00 200 0.03 0.03 1.12 0.05 0.03 1.62
400 0.04 0.02 2.24 0.05 0.02 2.98

1000 0.02 0.01 1.68 0.03 0.01 3.49

8 0.50 5.00 200 -0.01 0.04 -0.03 0.02 0.03 0.49
400 0.02 0.02 1.29 0.03 0.02 1.95

1000 0.01 0.01 1.20 0.02 0.01 2.81

9 1.00 2.00 200 0.05 0.02 1.93 0.06 0.02 3.05
400 0.03 0.02 1.68 0.05 0.01 3.73

1000 -0.02 0.01 -1.26 0.02 0.01 2.75

10 1.00 3.00 200 0.02 0.02 1.05 0.05 0.02 2.05
400 0.02 0.02 1.11 0.04 0.01 2.99

1000 -0.02 0.01 -1.33 0.02 0.01 2.58

11 1.00 4.00 200 -0.00 0.03 0.24 0.02 0.02 1.22
400 0.00 0.02 0.36 0.03 0.01 2.09

1000 -0.02 0.01 -1.39 0.02 0.01 2.35

12 1.00 5.00 200 -0.03 0.03 -0.59 0.01 0.03 0.41
400 -0.01 0.02 -0.27 0.02 0.01 1.37

1000 -0.02 0.01 -1.58 0.01 0.01 1.92

13 1.50 2.00 200 0.02 0.02 0.96 0.04 0.01 2.53
400 -0.01 0.02 -0.03 0.03 0.01 2.91

1000 -0.04 0.01 -3.25 0.01 0.01 2.02

14 1.50 3.00 200 -0.00 0.02 0.15 0.03 0.02 1.61
400 -0.02 0.02 -0.43 0.02 0.01 2.39

1000 -0.04 0.01 -3.29 0.01 0.01 1.90

15 1.50 4.00 200 -0.02 0.03 -0.54 0.02 0.02 0.96
400 -0.03 0.02 -1.05 0.02 0.01 1.58

1000 -0.04 0.01 -3.29 0.01 0.01 1.73

16 1.50 5.00 200 -0.05 0.03 -1.23 0.01 0.02 0.27
400 -0.03 0.02 -1.50 0.01 0.01 1.04

1000 -0.04 0.01 -3.40 0.01 0.01 1.40

All reported values are averages over S = 1000 replications.
a Standard error of α̂1 and α̂2, respectively.
b T-value of α̂1 and α̂2, respectively
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